56 research outputs found

    W-Gravity

    Full text link
    The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of WW_\infty-gravity is analysed in detail. While the gauge group for gravity in dd dimensions is the diffeomorphism group of the space-time, the gauge group for a certain WW-gravity theory (which is WW_\infty-gravity in the case d=2d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for WW-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising detgμν\sqrt { \det g_{\mu \nu}}) only if d=1d=1 or d=2d=2, so that only for d=1,2d=1,2 can actions be constructed. These two cases and the corresponding WW-gravity actions are considered in detail. In d=2d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphism group. Some of the constraints that arise for d=2d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of WW-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform.Comment: 49 pages, QMW-92-

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA

    Get PDF
    Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.

    Two truncating variants in FANCC and breast cancer risk

    Get PDF
    Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95% CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.Peer reviewe

    A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation

    No full text
    Cellulose nanofibrils constitute the smallest fibrous components of wood, with a width of approximately 4 nm and a length in the micrometer range. They consist of aligned linear cellulose chains with crystallinity exceeding 60%, rendering stiff, high-aspect-ratio rods. These properties are advantageous in the reinforcement components of composites. Cross-linked networks of fibrils can be used as templates into which a polymer enters. In the semi-concentrated regime (i.e. slightly above the overlap concentration), carboxy methylated fibrils dispersed in water have been physically cross-linked to form a volume-spanning network (a gel) by reducing the pH or adding salt, which diminishes the electrostatic repulsion between fibrils. By applying shear during or after this gelation process, we can orient the fibrils in a preferred direction within the gel, for the purpose of fully utilizing the high stiffness and strength of the fibrils as reinforcement components. Using these gels as templates enables precise control of the spatial distribution and orientation of the dispersed phase of the composites, optimizing the potentially very large reinforcement capacity of the nanofibrils

    Classement des colites

    No full text
    corecore