173 research outputs found

    Strong Gravitational Lensing and Dark Energy Complementarity

    Full text link
    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w_0 and time variation w_a. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1% accuracy can improve equation of state characterization by 15-50%. Next generation surveys should provide data on roughly 10^5 lens systems, though systematic errors will remain challenging.Comment: 7 pages, 5 figure

    Exploring the Expanding Universe and Dark Energy using the Statefinder Diagnostic

    Get PDF
    The coming few years are likely to witness a dramatic increase in high quality Sn data as current surveys add more high redshift supernovae to their inventory and as newer and deeper supernova experiments become operational. Given the current variety in dark energy models and the expected improvement in observational data, an accurate and versatile diagnostic of dark energy is the need of the hour. This paper examines the Statefinder diagnostic in the light of the proposed SNAP satellite which is expected to observe about 2000 supernovae per year. We show that the Statefinder is versatile enough to differentiate between dark energy models as varied as the cosmological constant on the one hand, and quintessence, the Chaplygin gas and braneworld models, on the other. Using SNAP data, the Statefinder can distinguish a cosmological constant (w=1w=-1) from quintessence models with w0.9w \geq -0.9 and Chaplygin gas models with κ15\kappa \leq 15 at the 3σ3\sigma level if the value of \om is known exactly. The Statefinder gives reasonable results even when the value of \om is known to only 20\sim 20% accuracy. In this case, marginalizing over \om and assuming a fiducial LCDM model allows us to rule out quintessence with w0.85w \geq -0.85 and the Chaplygin gas with κ7\kappa \leq 7 (both at 3σ3\sigma). These constraints can be made even tighter if we use the Statefinders in conjunction with the deceleration parameter. The Statefinder is very sensitive to the total pressure exerted by all forms of matter and radiation in the universe. It can therefore differentiate between dark energy models at moderately high redshifts of z \lleq 10.Comment: 21 pages, 17 figures. Minor typos corrected to agree with version published in MNRAS. Results unchange

    Quinstant Dark Energy Predictions for Structure Formation

    Full text link
    We explore the predictions of a class of dark energy models, quinstant dark energy, concerning the structure formation in the Universe, both in the linear and non-linear regimes. Quinstant dark energy is considered to be formed by quintessence and a negative cosmological constant. We conclude that these models give good predictions for structure formation in the linear regime, but fail to do so in the non-linear one, for redshifts larger than one.Comment: 9 pages, 14 figures, "Accepted for publication in Astrophysics & Space Science

    Induced Gravity and the Attractor Dynamics of Dark Energy/Dark Matter

    Get PDF
    Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.Comment: 11 pages, 10 figures, accepted in JCAP, results unchanged, an explanation added on perfect fluids for general spinor Lagrangian

    Cosmic Shear with Next Generation Redshift Surveys as a Cosmological Probe

    Full text link
    The expansion of the universe causes spacetime curvature, distinguishing between distances measured along and transverse to the line of sight. The ratio of these distances, e.g. the cosmic shear distortion of a sphere defined by observations of large scale structure as suggested by Alcock & Paczynski, provides a method for exploring the expansion as a function of redshift. The theoretical sensitivity to cosmological parameters, including the dark energy equation of state, is presented. Remarkably, sensitivity to the time variation of the dark energy equation of state is best achieved by observations at redshifts z<1. While systematic errors greatly degrade the theoretical sensitivity, this probe may still offer useful parameter estimation, especially in complementarity with a distance measure like the Type Ia supernova method implemented by SNAP. Possible future observations of the Alcock-Paczynski distortion by the KAOS project on a 8 meter ground based telescope are considered.Comment: 6 pages, 8 figure

    Optimal strategies : theoretical approaches to the parametrization of the dark energy equation of state

    Full text link
    The absence of compelling theoretical model requires the parameterizing the dark energy to probe its properties. The parametrization of the equation of state of the dark energy is a common method. We explore the theoretical optimization of the parametrization based on the Fisher information matrix. As a suitable parametrization, it should be stable at high redshift and should produce the determinant of the Fisher matrix as large as possible. For the illustration, we propose one parametrization which can satisfy both criteria. By using the proper parametrization, we can improve the constraints on the dark energy even for the same data. We also show the weakness of the so-called principal component analysis method.Comment: 7pages, 11 figures, 2 tables, To match the version accepted by AS

    Reducing Zero-point Systematics in Dark Energy Supernova Experiments

    Get PDF
    We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission calibration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based.Comment: 30 pages,8 figures, 5 table, one reference added, submitted to Astroparticle Physic

    Constraints on early dark energy from CMB lensing and weak lensing tomography

    Get PDF
    Dark energy can be studied by its influence on the expansion of the Universe as well as on the growth history of the large-scale structure. In this paper, we follow the growth of the cosmic density field in early dark energy cosmologies by combining observations of the primary CMB temperature and polarisation power spectra at high redshift, of the CMB lensing deflection field at intermediate redshift and of weak cosmic shear at low redshifts for constraining the allowed amount of early dark energy. We present these forecasts using the Fisher-matrix formalism and consider the combination of Planck-data with the weak lensing survey of Euclid. We find that combining these data sets gives powerful constraints on early dark energy and is able to break degeneracies in the parameter set inherent to the various observational channels. The derived statistical 1-sigma-bound on the early dark energy density parameter is sigma(Omega_d^e)=0.0022 which suggests that early dark energy models can be well examined in our approach. In addition, we derive the dark energy figure of merit for the considered dark energy parameterisation and comment on the applicability of the growth index to early dark energy cosmologies.Comment: 25 pages, 14 figures, 3 tables; v2: very minor additions, updated to match version to be published in JCA

    Isocurvature modes and Baryon Acoustic Oscillations

    Get PDF
    The measurement of Baryonic Acoustic Oscillations from galaxy surveys is well known to be a robust and powerful tool to constrain dark energy. This method relies on the knowledge of the size of the acoustic horizon at radiation drag derived from Cosmic Microwave Background Anisotropy measurements. In this paper we quantify the effect of non-standard initial conditions in the form of an isocurvature component on the determination of dark energy parameters from future BAO surveys. In particular, if there is an isocurvature component (at a level still allowed by present data) but it is ignored in the CMB analysis, the sound horizon and cosmological parameters determination is biased, and, as a consequence, future surveys may incorrectly suggest deviations from a cosmological constant. In order to recover an unbiased determination of the sound horizon and dark energy parameters, a component of isocurvature perturbations must be included in the model when analyzing CMB data. Fortunately, doing so does not increase parameter errors significantly.Comment: 23 pages, 3 figure

    Seeking Evolution of Dark Energy

    Get PDF
    We study how observationally to distinguish between a cosmological constant (CC) and an evolving dark energy with equation of state ω(Z)\omega(Z). We focus on the value of redshift Z* at which the cosmic late time acceleration begins and a¨(Z)=0\ddot{a}(Z^{*}) = 0. Four ω(Z)\omega(Z) are studied, including the well-known CPL model and a new model that has advantages when describing the entire expansion era. If dark energy is represented by a CC model with ω1\omega \equiv -1, the present ranges for ΩΛ(t0)\Omega_{\Lambda}(t_0) and Ωm(t0)\Omega_m(t_0) imply that Z* = 0.743 with 4% error. We discuss the possible implications of a model independent measurement of Z* with better accuracy.Comment: 9 pages, LaTeX, 5 figure
    corecore