8 research outputs found
LightGlue: Local Feature Matching at Light Speed
We introduce LightGlue, a deep neural network that learns to match local
features across images. We revisit multiple design decisions of SuperGlue, the
state of the art in sparse matching, and derive simple but effective
improvements. Cumulatively, they make LightGlue more efficient - in terms of
both memory and computation, more accurate, and much easier to train. One key
property is that LightGlue is adaptive to the difficulty of the problem: the
inference is much faster on image pairs that are intuitively easy to match, for
example because of a larger visual overlap or limited appearance change. This
opens up exciting prospects for deploying deep matchers in latency-sensitive
applications like 3D reconstruction. The code and trained models are publicly
available at https://github.com/cvg/LightGlue
GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra
We propose GraphMineSuite (GMS): the first benchmarking suite for graph
mining that facilitates evaluating and constructing high-performance graph
mining algorithms. First, GMS comes with a benchmark specification based on
extensive literature review, prescribing representative problems, algorithms,
and datasets. Second, GMS offers a carefully designed software platform for
seamless testing of different fine-grained elements of graph mining algorithms,
such as graph representations or algorithm subroutines. The platform includes
parallel implementations of more than 40 considered baselines, and it
facilitates developing complex and fast mining algorithms. High modularity is
possible by harnessing set algebra operations such as set intersection and
difference, which enables breaking complex graph mining algorithms into simple
building blocks that can be separately experimented with. GMS is supported with
a broad concurrency analysis for portability in performance insights, and a
novel performance metric to assess the throughput of graph mining algorithms,
enabling more insightful evaluation. As use cases, we harness GMS to rapidly
redesign and accelerate state-of-the-art baselines of core graph mining
problems: degeneracy reordering (by up to >2x), maximal clique listing (by up
to >9x), k-clique listing (by 1.1x), and subgraph isomorphism (by up to 2.5x),
also obtaining better theoretical performance bounds
Формирование эмоциональной культуры как компонента инновационной культуры студентов
Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been