8 research outputs found

    A systematic map of studies testing the relationship between temperature and animal reproduction

    Get PDF
    Funding: This work was funded by the European Society for Evolution (which funds a Special Topic Network on Evolutionary Ecology of Thermal Fertility Limits to CF, AB, RRS and TARP), the Natural Environment Research Council (NE/P002692/1 to TARP, AB and RRS, NE/X011550/1 to LRD and TARP), the Biotechnology and \Biological Sciences Research Council (BB/W016753/1 to AB, TARP and RRS) and a Heisenberg fellowship from the German Research Foundation (FR 2973/11-1 to CF).1. Exposure to extreme temperatures can negatively affect animal reproduction, by disrupting the ability of individuals to produce any offspring (fertility), or the number of offspring produced by fertile individuals (fecundity). This has important ecological consequences, because reproduction is the ultimate measure of population fitness: a reduction in reproductive output lowers the population growth rate and increases the extinction risk. Despite this importance, there have been no large‐scale summaries of the evidence for effect of temperature on reproduction. 2. We provide a systematic map of studies testing the relationship between temperature and animal reproduction. We systematically searched for published studies that statistically test for a direct link between temperature and animal reproduction, in terms of fertility, fecundity or indirect measures of reproductive potential (gamete and gonad traits). 3. Overall, we collated a large and rich evidence base, with 1654 papers that met our inclusion criteria, encompassing 1191 species. 4. The map revealed several important research gaps. Insects made up almost half of the dataset, but reptiles and amphibians were uncommon, as were non‐arthropod invertebrates. Fecundity was the most common reproductive trait examined, and relatively few studies measured fertility. It was uncommon for experimental studies to test exposure of different life stages, exposure to short‐term heat or cold shock, exposure to temperature fluctuations, or to independently assess male and female effects. Studies were most often published in journals focusing on entomology and pest control, ecology and evolution, aquaculture and fisheries science, and marine biology. Finally, while individuals were sampled from every continent, there was a strong sampling bias towards mid‐latitudes in the Northern Hemisphere, such that the tropics and polar regions are less well sampled. 5. This map reveals a rich literature of studies testing the relationship between temperature and animal reproduction, but also uncovers substantial missing treatment of taxa, traits, and thermal regimes. This database will provide a valuable resource for future quantitative meta‐analyses, and direct future studies aiming to fill identified gaps.Publisher PDFPeer reviewe

    Timeless or tainted? The effects of male ageing on seminal fluid

    Get PDF
    International audienceReproductive ageing can occur due to the deterioration of both the soma and germline. In males, it has mostly been studied with respect to age-related changes in sperm. However, the somatic component of the ejaculate, seminal fluid, is also essential for maintaining reproductive function. Whilst we know that seminal fluid proteins (SFPs) are required for male reproductive success across diverse taxa, age-related changes in SFP quantity and composition are little understood. Additionally, only few studies have explored the reproductive ageing of the tissues that produce SFPs, and the resulting reproductive outcomes. Here we provide a systematic review of studies addressing how advancing male age affects the production and properties of seminal fluid, in particular SFPs and oxidative stress, highlighting many open questions and generating new hypotheses for further research. We additionally discuss how declines in function of different components of seminal fluid, such as SFPs and antioxidants, could contribute to age-related loss of reproductive ability. Overall, we find evidence that ageing results in increased oxidative stress in seminal fluid and a decrease in the abundance of various SFPs. These results suggest that seminal fluid contributes towards important age-related changes influencing male reproduction. Thus, it is essential to study this mostly ignored component of the ejaculate to understand male reproductive ageing, and its consequences for sexual selection and paternal age effects on offspring

    Functional insights from the GC-poor genomes of two aphid parasitoids, <em>Aphidius ervi</em> and <em>Lysiphlebus fabarum</em>

    No full text
    Background Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biocontrol, and infecting aphids requires overcoming both aphid defenses and their defensive endosymbionts. Results We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp), highly syntenic, and the most AT-rich reported thus far for any arthropod (GC content: 25.8% and 23.8%). This nucleotide bias is accompanied by skewed codon usage, and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and age-specific energy demands. We identify expansions of F-box/Leucine-rich-repeat proteins, suggesting that diversification in this gene family may be associated with their broad host range or with countering defenses from aphids’ endosymbionts. The absence of some immune genes (Toll and Imd pathways) resembles similar losses in their aphid hosts, highlighting the potential impact of symbiosis on both aphids and their parasitoids. Conclusions These findings are of fundamental interest for insect evolution and beyond. This will provide a strong foundation for further functional studies including coevolution with respect to their hosts, the basis of successful infection, and biocontrol. Both genomes are available at https://bipaa.genouest.org

    A systematic map of studies testing the relationship between temperature and animal reproduction

    No full text
    1. Exposure to extreme temperatures can negatively affect animal reproduction, by disrupting the ability of individuals to produce any offspring (fertility), or the number of offspring produced by fertile individuals (fecundity). This has important ecological consequences, because reproduction is the ultimate measure of population fitness: a reduction in reproductive output lowers the population growth rate and increases the extinction risk. Despite this importance, there have been no large-scale summaries of the evidence for effect of temperature on reproduction. 2. We provide a systematic map of studies testing the relationship between temperature and animal reproduction. We systematically searched for published studies that statistically test for a direct link between temperature and animal reproduction, in terms of fertility, fecundity or indirect measures of reproductive potential (gamete and gonad traits). 3. Overall, we collated a large and rich evidence base, with 1654 papers that met our inclusion criteria, encompassing 1191 species. 4. The map revealed several important research gaps. Insects made up almost half of the dataset, but reptiles and amphibians were uncommon, as were non-arthropod invertebrates. Fecundity was the most common reproductive trait examined, and relatively few studies measured fertility. It was uncommon for experimental studies to test exposure of different life stages, exposure to short-term heat or cold shock, exposure to temperature fluctuations, or to independently assess male and female effects. Studies were most often published in journals focusing on entomology and pest control, ecology and evolution, aquaculture and fisheries science, and marine biology. Finally, while individuals were sampled from every continent, there was a strong sampling bias towards mid-latitudes in the Northern Hemisphere, such that the tropics and polar regions are less well sampled. 5. This map reveals a rich literature of studies testing the relationship between temperature and animal reproduction, but also uncovers substantial missing treatment of taxa, traits, and thermal regimes. This database will provide a valuable resource for future quantitative meta-analyses, and direct future studies aiming to fill identified gaps

    A systematic map of studies testing the relationship between temperature and animal reproduction

    No full text
    1. Exposure to extreme temperatures can negatively affect animal reproduction, by disrupting the ability of individuals to produce any offspring (fertility), or the number of offspring produced by fertile individuals (fecundity). This has important ecological consequences, because reproduction is the ultimate measure of population fitness: a reduction in reproductive output lowers the population growth rate and increases the extinction risk. Despite this importance, there have been no large‐scale summaries of the evidence for effect of temperature on reproduction. 2. We provide a systematic map of studies testing the relationship between temperature and animal reproduction. We systematically searched for published studies that statistically test for a direct link between temperature and animal reproduction, in terms of fertility, fecundity or indirect measures of reproductive potential (gamete and gonad traits). 3. Overall, we collated a large and rich evidence base, with 1654 papers that met our inclusion criteria, encompassing 1191 species. 4. The map revealed several important research gaps. Insects made up almost half of the dataset, but reptiles and amphibians were uncommon, as were non‐arthropod invertebrates. Fecundity was the most common reproductive trait examined, and relatively few studies measured fertility. It was uncommon for experimental studies to test exposure of different life stages, exposure to short‐term heat or cold shock, exposure to temperature fluctuations, or to independently assess male and female effects. Studies were most often published in journals focusing on entomology and pest control, ecology and evolution, aquaculture and fisheries science, and marine biology. Finally, while individuals were sampled from every continent, there was a strong sampling bias towards mid‐latitudes in the Northern Hemisphere, such that the tropics and polar regions are less well sampled. 5. This map reveals a rich literature of studies testing the relationship between temperature and animal reproduction, but also uncovers substantial missing treatment of taxa, traits, and thermal regimes. This database will provide a valuable resource for future quantitative meta‐analyses, and direct future studies aiming to fill identified gaps

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore