189 research outputs found

    Parasitic plants have increased rates of molecular evolution across all three genomes

    No full text
    BACKGROUND Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. RESULTS We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. CONCLUSIONS Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data

    Parasitic plants have increased rates of molecular evolution across all three genomes

    Get PDF
    Background: Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results: We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions: Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data

    Optimising pension financing with an application to the Finnish earnings-related pension scheme

    Get PDF
    In this research we assess optimality criteria for the contribution patch, taking expenditures as given. The contribution rule is examined both in case of certainty and in case of uncertainty about future alternatives. Under certain natural conditions, it is optimal to set the contribution immediately at a level which is permanently adequate. In case of uncertain future alternatives, it is best to set the expected contribution rate at a level which is sustainable in terms of the expectations. We also study how uncertainty in the contributions base influences the setting of contribution rates

    4D-fy: Text-to-4D Generation Using Hybrid Score Distillation Sampling

    Full text link
    Recent breakthroughs in text-to-4D generation rely on pre-trained text-to-image and text-to-video models to generate dynamic 3D scenes. However, current text-to-4D methods face a three-way tradeoff between the quality of scene appearance, 3D structure, and motion. For example, text-to-image models and their 3D-aware variants are trained on internet-scale image datasets and can be used to produce scenes with realistic appearance and 3D structure -- but no motion. Text-to-video models are trained on relatively smaller video datasets and can produce scenes with motion, but poorer appearance and 3D structure. While these models have complementary strengths, they also have opposing weaknesses, making it difficult to combine them in a way that alleviates this three-way tradeoff. Here, we introduce hybrid score distillation sampling, an alternating optimization procedure that blends supervision signals from multiple pre-trained diffusion models and incorporates benefits of each for high-fidelity text-to-4D generation. Using hybrid SDS, we demonstrate synthesis of 4D scenes with compelling appearance, 3D structure, and motion.Comment: Project page: https://sherwinbahmani.github.io/4df

    Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lapointe, B. E., Brewton, R. A., Herren, L. W., Wang, M., Hu, C., McGillicuddy, D. J., Lindell, S., Hernandez, F. J., & Morton, P. L. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nature Communications, 12(1), (2021): 3060, https://doi.org/10.1038/s41467-021-23135-7.The pelagic brown macroalgae Sargassum spp. have grown for centuries in oligotrophic waters of the North Atlantic Ocean supported by natural nutrient sources, such as excretions from associated fishes and invertebrates, upwelling, and N2 fixation. Using a unique historical baseline, we show that since the 1980s the tissue %N of Sargassum spp. has increased by 35%, while %P has decreased by 44%, resulting in a 111% increase in the N:P ratio (13:1 to 28:1) and increased P limitation. The highest %N and ÎŽ15N values occurred in coastal waters influenced by N-rich terrestrial runoff, while lower C:N and C:P ratios occurred in winter and spring during peak river discharges. These findings suggest that increased N availability is supporting blooms of Sargassum and turning a critical nursery habitat into harmful algal blooms with catastrophic impacts on coastal ecosystems, economies, and human health.This work was funded by the US NASA Ocean Biology and Biogeochemistry Program (80NSSC20M0264, NNX16AR74G) and Ecological Forecast Program (NNX17AF57G), NOAA RESTORE Science Program (NA17NOS4510099), National Science Foundation (NSF-OCE 85–15492 and OCE 88–12055), “Save Our Seas” Specialty License Plate funds, granted through the Harbor Branch Oceanographic Institute Foundation, Ft. Pierce, FL, and a Red Wright Fellowship from the Bermuda Biological Station. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida. D.J.M. gratefully acknowledges the Holger W. Jannasch and Columbus O’Donnell Iselin Shared Chairs for Excellence in Oceanography, as well as support from the Mill Reef Fund

    Bird and bat predation services in tropical forests and agroforestry landscapes

    Full text link
    Understanding distribution patterns and multitrophic interactions is critical for managing batĂą and birdĂą mediated ecosystem services such as the suppression of pest and nonĂą pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed Ăą forestĂą agriĂą habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134094/1/brv12211_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134094/2/brv12211.pd

    Practice patterns in diagnostics, staging, and management strategies of gallbladder cancer among Nordic tertiary centers

    Get PDF
    Background and objective: Gallbladder cancer (GBC) is a rare malignancy in the Nordic countries and no common Nordic treatment guidelines exist. This study aimed to characterize the current diagnostic and treatment strategies in the Nordic countries and disclose differences in these strategies. Methods: This was a survey study with a cross-sectional questionnaire of all 19 university hospitals providing curative-intent surgery for GBC in Sweden, Norway, Denmark, and Finland. Results: In all Nordic countries except Sweden, neoadjuvant/downstaging chemotherapy was used in GBC patients. In T1b and T2, majority of the centers (15–18/19) performed extended cholecystectomy. In T3, majority of the centers (13/19) performed cholecystectomy with resection of segments 4b and 5. In T4, majority of the centers (12–14/19) chose palliative/oncological care. The centers in Sweden extended lymphadenectomy beyond the hepatoduodenal ligament, whereas all other Nordic centers usually limited lymphadenectomy to the hepatoduodenal ligament. All Nordic centers except those in Norway used adjuvant chemotherapy routinely for GBC. There were no major differences between the Nordic centers in diagnostics and follow-up. Conclusions: The surgical and oncological treatment strategies of GBC vary considerably between the Nordic centers and countries.publishedVersio

    Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K

    Get PDF
    AbstractTwo lowland catchments in the U.K. were sampled throughout 2010–11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350–400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350–400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function

    Phenobarbital induction of cytochrome p-450 b,e genes is dependent on protein synthesis

    Full text link
    Phenobarbital induces liver cytochrome P-450 b,e proteins mainly by increasing the rate of transcription of these genes. The mechanism responsible for the phenobarbital increment in the rate of transcription of cytochrome P-450 b,e genes is unknown. The objective of this study was to assess whether active protein synthesis was needed for phenobarbital to induce the liver cytochrome P-450 b,e genes. Cycloheximide (2 mg per kg, i.p.) was administered 90 min prior to a single inductive dose of phenobarbital (80 mg per kg, i.p.) and mRNAS measured at 3, 6 and 12 hr by dot-blot hybridization. While phenobarbital increased cytochrome P-450 b,e mRNAs about 12-fold at 3 hr, this induction was abolished by cycloheximide. To define whether the absence of protein synthesis in hepatocytes inhibited the phenobarbital induction of cytochrome P-450 at the transcriptional level, in vitro transcription rates using isolated nuclei were measured. After phenobarbital administration, there was about a 20-fold increment in transcriptional rate of cytochrome P-450 b,e genes. This increment was abolished by prior injection of cycloheximide. It is proposed that either preexisting regulatory proteins or transacting factors dependent on active protein synthesis participate in the regulation of liver cytochrome P-450 b,e gene transcription after phenobarbital.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38337/1/1840080223_ftp.pd
    • 

    corecore