20 research outputs found

    Innate lymphoid cells integrate stromal and immune signals to enhance antibody production by splenic marginal zone B cells

    Get PDF
    Innate lymphoid cells (ILCs) regulate stromal, epithelial and immune cells, but their impact on B cells remains unclear. We identified RORγt + ILCs nearby the marginal zone (MZ), a splenic compartment containing innate-like B cells that respond to circulating T cell-independent (TI) antigens. Spenic ILCs established a bidirectional crosstalk with MAdCAM-1 + marginal reticular cells by providing tumor necrosis factor (TNF) and lymphotoxin, and activated MZ B cells via BAFF, CD40 ligand and the Notch ligand, Delta-like 1. Splenic ILCs further helped MZ B cells and their plasma cell progeny by co-opting neutrophils through the release of GM-CSF. Consequently, ILC depletion impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune and circulatory systems

    The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells

    Get PDF
    © 2016 Chorny et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation-related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell-independent and T cell-dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens.This study was supported by European Advanced grant ERC-2011-ADG-20110310, Ministerio de Ciencia e Innovación grant SAF2011-25241, and Marie Curie reintegration grant PIRG-08-GA-2010-276928 to A. Cerutti; Sara Borrell post-doctoral fellowships to A. Chorny; and US National Institutes of Health grants R01 AI57653, U01 AI95613, P01 AI61093, and U19 096187 to A. Cerutti. C. Cunha and A. Carvalho were funded by grants from Fundação para a Ciência e Tecnologia, co-funded by Programa Operacional Regional do Norte (ON.2—O Novo Norte)., and from the Quadro de Referência Estratégico Nacional (SFRH/BPD/96176/2013 to C. Cunha and grant IF/00735/2014 to A. Carvalho) through the Fundo Europeu de Desenvolvimento Regional and Projeto Estratégico (LA 26 – 2013–2014; PEst-C/SAU/LA0026/2013). The financial support of the European Commission (FP7-HEALTH-2011-ADITEC-No.280873 and ERC-PHII-669415) to A. Mantovani is gratefully acknowledged.info:eu-repo/semantics/publishedVersio

    The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells

    Get PDF
    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation–related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell–independent and T cell–dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens.European Advanced grant ERC-2011-ADG-20110310, Ministerio de Ciencia e Innovación grant SAF2011-25241, and Marie Curie reintegra -tion grant PIRG-08-GA-2010-276928 to A. Cerutti; Sara Borrell post-doctoral fellow -ships to A. Chorny; and US National Institutes of Health grants R01 AI57653, U01 AI95613, P01 AI61093, and U19 096187 to A. Cerutti. C. Cunha and A. Carvalho were funded by grants from Fundação para a Ciência e Tecnologia, co-funded by Programa Operacional Regional do Norte (ON.2—O Novo Norte)., and from the Quadro de Referência Estratégico Nacional (SFRH/BPD/96176/2013 to C. Cunha and grant IF/00735/2014 to A. Carvalho) through the Fundo Europeu de Desenvolvimento Regional and Projeto Estratégico (LA 26 – 2013–2014; PEst-C/SAU/LA0026/2013

    Review and evaluation of the methodological quality of the existing guidelines and recommendations for inherited neurometabolic disorders

    Full text link

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Role of progranulin in humoral immunity

    Get PDF
    Human spleen is continually exposed to blood-borne antigens derived from autologous apoptotic cells and commensal bacteria. This chronic stimulation of the marginal zone (MZ) results in the generation of a steady-state antibody response that occurs under non-inflammatory conditions. Immunoregulatory signals, still poorly understood, are required to avoid continuous inflammation. Our group identified a population of splenic neutrophils called B cell-helper neutrophils (NBH cells) that contribute to the induction of steady-state antibody responses in the MZ1. NBH cells express B cell-activating and immunoregulatory factors, including progranulin (PGRN). PGRN is an anti-inflammatory protein highly expressed at sites constantly exposed to antigens. It was shown to regulate several processes, including embryogenesis, neuronal survival, and wound repair. However, the role of PGRN in the immune response is still largely unknown. Here we show that PGRN actively participates in the pre-immune and post-immune responses against splenic microbial antigens, regulating the frequency and/or function of innate and adaptive immune cells such as neutrophils, dendritic cells, T and B cells. These findings suggest that PGRN functions as an endogenous adjuvant that may facilitate the development of novel strategies for modulating protective immune responses against invading pathogens.El bazo humano está continuamente expuesto a antígenos provenientes de la sangre derivados de células apoptóticas autólogas y bacterias comensales. Esta estimulación crónica de la zona marginal (ZM) resulta en la generación de una respuesta de anticuerpos que se produce de forma fisiológica bajo condiciones no inflamatorias. Para evitar la inflamación continua, se requieren señales inmunorreguladoras, todavía poco conocidas. Nuestro grupo identificó una población de neutrófilos esplénicos llamada neutrófilos ayudantes de células B (células NBH)1 que contribuyen a la inducción de anticuerpos en la ZM en condiciones fisiológicas. Las células NBH expresan factores activadores de las células B y factores inmunorreguladores, incluyendo progranulina (PGRN). PGRN es una proteína antiinflamatoria altamente expresada en lugares constantemente expuestos a antígenos. Regula varios procesos, incluyendo la embriogénesis, la supervivencia neuronal, y la reparación de heridas. Sin embargo, el papel de PGRN en la respuesta inmune sigue siendo en gran medida desconocido. En este estudio demostramos que PGRN participa activamente en las respuestas pre- y post-inmunes contra antígenos microbianos en el bazo, regulando la frecuencia y / o la función de células inmunitarias innatas y adaptativas como neutrófilos, células dendríticas, células T y B. Estos hallazgos sugieren que PGRN actúa como un adyuvante endógeno que puede facilitar el desarrollo de nuevas estrategias para modular la respuesta inmunitaria protectora contra patógenos invasores
    corecore