310 research outputs found

    A User-Centered Mapping Design for Geomorphological Hazard Thematic Map

    Get PDF
    Numerous studies have concentrated on developing user-centered designs for hazard zone maps but rarely for hazard-oriented geomorphological maps, named as Geomorphological Hazard Thematic Maps (GHTMs) in this study, which provide more detailed information about natural hazards. This study developed a user-centered mapping design for GHTMs for nonexperts in geomorphology. We invited civil engineers and high school educators to evaluate a sample GHTM\u27s design in group and focus group panel interviews. The civil engineers preferred maps with more geomorphological features, whereas the educators preferred simple designs. Both groups indicated that the inclusion of essential facilities and road networks is essential. The map was also adjusted by adding hillshade layer and by changing the symbology for mass wasting, fault scarps, and fluvial features to increase clarity and simplicity. This case study is the first step toward developing user-centered mapping designs for hazard communication that will deepen their understanding of natural hazards

    Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    Get PDF
    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.ope

    Origin, Transport, and Vertical Distribution of Atmospheric Polluntants over the Northern Sourth China Sea During the 7-SEAS-Dongsha Experiment

    Get PDF
    During the spring of 2010, comprehensive in situ measurements were made for the first time on a small atoll (Dongsha Island) in the northern South China Sea (SCS), a key region of the 7-SEAS (the Seven South East Asian Studies) program. This paper focuses on characterizing the source origins, transport processes, and vertical distributions of the Asian continental outflows over the region, using measurements including mass concentration, optical properties, hygroscopicity, and vertical distribution of the aerosol particles, as well as the trace gas composition. Cluster analysis of backward trajectories classified 52% of the air masses arriving at ground level of Dongsha Island as having a continental origin, mainly from northern China to the northern SCS, passing the coastal area and being confined in the marine boundary layer (0-0.5 km). Compared to aerosols of oceanic origin, the fine mode continental aerosols have a higher concentration, extinction coefficient, and single-scattering albedo at 550 nm (i.e., 19 vs. 14 microg per cubic meter in PM(sub 2.5); 77 vs. 59 M per meter in beta(sub e); and 0.94 vs. 0.90 in omega, respectively). These aerosols have a higher hygroscopicity (f at 85% RH = 2.1) than those in the upwind inland regions, suggesting that the aerosols transported to the northern SCS were modified by the marine environment. In addition to the near-surface aerosol transport, a significant upper-layer (3-4 km) transport of biomass-burning aerosols was observed. Our results suggest that emissions from both China and Southeast Asia could have a significant impact on the aerosol loading and other aerosol properties over the SCS. Furthermore, the complex vertical distribution of aerosols-coinciding-with-clouds has implications for remote-sensing observations and aerosol-cloud-radiation interactions

    An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    Get PDF
    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and chemical processes along transport pathways. In addition, we raise key questions to be addressed by a coming deployment during springtime 2013 in northern SEA, named 7-SEASBASELInE (Biomass-burning Aerosols Stratocumulus Environment: Lifecycles and Interactions Experiment). This campaign will include a synergistic approach for further exploring many key atmospheric processes (e.g., complex aerosol-cloud interactions) and impacts of biomass burning on the surface-atmosphere energy budgets during the lifecycles of biomass burning emissions

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    The Functioning of the Drosophila CPEB Protein Orb Is Regulated by Phosphorylation and Requires Casein Kinase 2 Activity

    Get PDF
    The Orb CPEB protein regulates translation of localized mRNAs in Drosophila ovaries. While there are multiple hypo- and hyperphosphorylated Orb isoforms in wild type ovaries, most are missing in orbF303, which has an amino acid substitution in a buried region of the second RRM domain. Using a proteomics approach we identified a candidate Orb kinase, Casein Kinase 2 (CK2). In addition to being associated with Orb in vivo, we show that ck2 is required for orb functioning in gurken signaling and in the autoregulation of orb mRNA localization and translation. Supporting a role for ck2 in Orb phosphorylation, we find that the phosphorylation pattern is altered when ck2 activity is partially compromised. Finally, we show that the Orb hypophosphorylated isoforms are in slowly sedimenting complexes that contain the translational repressor Bruno, while the hyperphosphorylated isoforms assemble into large complexes that co-sediment with polysomes and contain the Wisp poly(A) polymerase

    The potential of liquid marbles for biomedical applications: a critical review

    Get PDF
    Liquid marbles (LM) are freestanding droplets covered by micro/nanoparti- cles with hydrophobic/hydrophilic properties, which can be manipulated as a soft solid. The phenomenon that generates these soft structures is regarded as a different method to generate a superhydrophobic behavior in the liquid/ solid interface without modifying the surface. Several applications for the LM have been reported in very different fields, however the developments for bio- medical applications are very recent. At first, the LM properties are reviewed, namely shell structure, LM shape, evaporation, floatability and robustness. The different strategies for LM manipulation are also described, which make use of magnetic, electrostatic and gravitational forces, ultraviolet and infrared radiation, and approaches that induce LM self-propulsion. Then, very distinc- tive applications for LM in the biomedical field are presented, namely for diagnostic assays, cell culture, drug screening and cryopreservation of mam- malian cells. Finally, a critical outlook about the unexplored potential of LM for biomedical applications is presented, suggesting possible advances on this emergent scientific area. The authors acknowledge funding from the European Research Council grant agreement ERC-2012-ADG 20120216-321266 for project ComplexiTE. N. M. Oliveira acknowledges the financial support from Portuguese Foundation for Science and Technology - FCT (Grant SFRH/BD/73172/2010), from the financial program POPH/FSE from QREN.info:eu-repo/semantics/publishedVersio

    Pathogenic Neisseria Hitchhike on the Uropod of Human Neutrophils

    Get PDF
    Polymorphonuclear neutrophils (PMNs) are important components of the human innate immune system and are rapidly recruited at the site of bacterial infection. Despite the effective phagocytic activity of PMNs, Neisseria gonorrhoeae infections are characterized by high survival within PMNs. We reveal a novel type IV pilus-mediated adherence of pathogenic Neisseria to the uropod (the rear) of polarized PMNs. The direct pilus-uropod interaction was visualized by scanning electron microscopy and total internal reflection fluorescence (TIRF) microscopy. We showed that N. meningitidis adhesion to the PMN uropod depended on both pilus-associated proteins PilC1 and PilC2, while N. gonorrhoeae adhesion did not. Bacterial adhesion elicited accumulation of the complement regulator CD46, but not I-domain-containing integrins, beneath the adherent bacterial microcolony. Electrographs and live-cell imaging of PMNs suggested that bacterial adherence to the uropod is followed by internalization into PMNs via the uropod. We also present data showing that pathogenic Neisseria can hitchhike on PMNs to hide from their phagocytic activity as well as to facilitate the spread of the pathogen through the epithelial cell layer

    Myc-regulated microRNAs attenuate embryonic stem cell differentiation

    Get PDF
    Myc proteins are known to have an important function in stem cell maintenance. As Myc has been shown earlier to regulate microRNAs (miRNAs) involved in proliferation, we sought to determine whether c-Myc also affects embryonic stem (ES) cell maintenance and differentiation through miRNAs. Using a quantitative primer-extension PCR assay we identified miRNAs, including, miR-141, miR-200, and miR-429 whose expression is regulated by c-Myc in ES cells, but not in the differentiated and tumourigenic derivatives of ES cells. Chromatin immunoprecipitation analyses indicate that in ES cells c-Myc binds proximal to genomic regions encoding the induced miRNAs. We used expression profiling and seed homology to identify genes specifically downregulated both by these miRNAs and by c-Myc. We further show that the introduction of c-Myc-induced miRNAs into murine ES cells significantly attenuates the downregulation of pluripotency markers on induction of differentiation after withdrawal of the ES cell maintenance factor LIF. In contrast, knockdown of the endogenous miRNAs accelerate differentiation. Our data show that in ES cells c-Myc acts, in part, through a subset of miRNAs to attenuate differentiation

    Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Get PDF
    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed
    corecore