2,807 research outputs found
The effect of supernatural priming on cheating behaviour
Research has shown that the mental activation of concepts related to supernatural agents
(e.g., God, ghost) is capable of altering one’s moral behaviours. Based on the supernatural
monitoring hypothesis, two experiments were conducted to investigate the impact of priming on
cheating behaviour using undergraduate participants from Singapore. The results of the first
experiment showed that participants who were primed with the concepts of God and ghost via a
word-scramble task cheated less in a mathematical task than participants exposed to neutral primes.
The second experiment showed that the activation of God and ghost concepts via a supraliminal
priming method reduced the participants’ cheating in a riddle game, even when the participants
were informed that they would be rewarded monetarily for correctly answering the riddles. The
results suggested that the mental activation of supernatural agents could reduce cheating behaviour
regardless of the presence or absence of explicit belief in supernatural agents
Associations between openness facets, prejudice, and tolerance: a scoping review with meta-analysis
The personality factor of openness to experience, which encompasses curiosity, imagination, and a desire for new experiences, has been associated negatively with prejudice and positively with the closely related value of tolerance. While these relationships have been reviewed at the factor level, there has been no review of research at the lower facet level. This review aims to uncover the relationships between the facets of openness and the constructs of prejudice and tolerance. We conducted a preregistered scoping review with meta-analysis following the recommended guidelines from Joanna Briggs Institute. A total of 2,349 articles were reviewed, with 16 primary research articles (or 17 studies) meeting the criteria for inclusion. Aggregated effect sizes via random-effect meta-analysis revealed that all revised neuroticism-extraversion-openness personality inventory (NEO-PI-R) and international personality item pool (IPIP)-based facets of openness significantly predicted prejudice and tolerance. Out of the three measures [i.e., NEO-PI-R, IPIP-NEO, and honesty-humility, emotionality, extraversion, agreeableness, conscientiousness, and openness to experience personality inventory (HEXACO-PI), and the facets of openness examined], the NEO-PI-R facet of value was most strongly associated with prejudice. In contrast, the NEO-PI-R facet of aesthetics was the facet most strongly associated with tolerance. However, these results should be treated as preliminary in light of the small number of meta-analyzed studies and more primary research studies are needed to confirm the trends found in this review. This review represents the first step in the systematic investigation of the link between the facets of openness and components of prejudice and tolerance and contributes toward explaining prejudice and tolerance
Determination of Ice Water Path in Ice-over-Water Cloud Systems Using Combined MODIS and AMSR-E Measurements
To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2)
Generalization of the Luttinger Theorem for Fermionic Ladder Systems
We apply a generalized version of the Lieb-Schultz-Mattis Theorem to
fermionic ladder systems to show the existence of a low-lying excited state
(except for some special fillings). This can be regarded as a non-perturbative
proof for the conservation under interaction of the sum of the Fermi wave
vectors of the individual channels, corresponding to a generalized version of
the Luttinger Theorem to fermionic ladder systems. We conclude by noticing that
the Lieb-Schultz-Mattis Theorem is not applicable in this form to show the
existence of low-lying excitations in the limit that the number of legs goes to
infinity, e.g. in the limit of a 2D plane.Comment: RevTex, 4 pages with 4 eps figure
Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma.
Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. The Ivy Foundation Early Phase Clinical Trials Consortium conducted a randomized, multi-institution clinical trial to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone. Neoadjuvant PD-1 blockade was associated with upregulation of T cell- and interferon-Îł-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhances both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor
Updates in the management of brain metastases
The clinical management/understanding of brain metastases (BM) has changed substantially in the last 5 years, with key advances and clinical trials highlighted in this review. Several of these changes stem from improvements in systemic therapy, which have led to better systemic control and longer overall patient survival, associated with increased time at risk for developing BM. Development of systemic therapies capable of preventing BM and controlling both intracranial and extracranial disease once BM are diagnosed is paramount. The increase in use of stereotactic radiosurgery alone for many patients with multiple BM is an outgrowth of the desire to employ treatments focused on local control while minimizing cognitive effects associated with whole brain radiotherapy. Complications from BM and their treatment must be considered in comprehensive patient management, especially with greater awareness that the majority of patients do not die from their BM. Being aware of significant heterogeneity in prognosis and therapeutic options for patients with BM is crucial for appropriate management, with greater attention to developing individual patient treatment plans based on predicted outcomes; in this context, recent prognostic models of survival have been extensively revised to incorporate molecular markers unique to different primary cancers
Structure-based discovery of opioid analgesics with reduced side effects
Morphine is an alkaloid from the opium poppy used to treat pain. The potentially lethal side effects of morphine and related opioids—which include fatal respiratory depression—are thought to be mediated by μ-opioid-receptor (μOR) signalling through the β-arrestin pathway or by actions at other receptors. Conversely, G-protein μOR signalling is thought to confer analgesia. Here we computationally dock over 3 million molecules against the μOR structure and identify new scaffolds unrelated to known opioids. Structure-based optimization yields PZM21—a potent Gi activator with exceptional selectivity for μOR and minimal β-arrestin-2 recruitment. Unlike morphine, PZM21 is more efficacious for the affective component of analgesia versus the reflexive component and is devoid of both respiratory depression and morphine-like reinforcing activity in mice at equi-analgesic doses. PZM21 thus serves as both a probe to disentangle μOR signalling and a therapeutic lead that is devoid of many of the side effects of current opioids
Symmetry and topology in antiferromagnetic spintronics
Antiferromagnetic spintronics focuses on investigating and using
antiferromagnets as active elements in spintronics structures. Last decade
advances in relativistic spintronics led to the discovery of the staggered,
current-induced field in antiferromagnets. The corresponding N\'{e}el
spin-orbit torque allowed for efficient electrical switching of
antiferromagnetic moments and, in combination with electrical readout, for the
demonstration of experimental antiferromagnetic memory devices. In parallel,
the anomalous Hall effect was predicted and subsequently observed in
antiferromagnets. A new field of spintronics based on antiferromagnets has
emerged. We will focus here on the introduction into the most significant
discoveries which shaped the field together with a more recent spin-off
focusing on combining antiferromagnetic spintronics with topological effects,
such as antiferromagnetic topological semimetals and insulators, and the
interplay of antiferromagnetism, topology, and superconductivity in
heterostructures.Comment: Book chapte
Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C\u3eT), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the g inner dyneins (DHC7 and DHC3) and the d inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process
A search for resonant production of pairs in $4.8\ \rm{fb}^{-1}p\bar{p}\sqrt{s}=1.96\ \rm{TeV}$
We search for resonant production of tt pairs in 4.8 fb^{-1} integrated
luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay
channel, where one top quark decays leptonically and the other hadronically. A
matrix element reconstruction technique is used; for each event a probability
density function (pdf) of the ttbar candidate invariant mass is sampled. These
pdfs are used to construct a likelihood function, whereby the cross section for
resonant ttbar production is estimated, given a hypothetical resonance mass and
width. The data indicate no evidence of resonant production of ttbar pairs. A
benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} <
900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
- …