108 research outputs found

    Linguistics

    Get PDF
    Contains reports on four research projects.National Institute of Mental Health (Grant 1 PO1 MH-13390-04

    An S-shaped arc in the galaxy cluster RXJ0054.0-2823

    Get PDF
    The center of the galaxy cluster RX J0054.0-2823 at z = 0.292 is a dynamically active region which includes an interacting system of three galaxies surrounded by a large halo of intra-cluster light. We report here the discovery of an S-shaped feature of total length 11 arcsec in the central region of this cluster and discuss its physical nature. We test the gravitational lensing assumption by doing a mass modelling of the central part of the galaxy cluster. We very naturally reproduce position and form of this S-shape feature as a gravitationally lensed background object at redshift between 0.5 and 1.0. We conclude that the lensing nature is the very probable explanation for this S-shaped arc; the ultimate proof will be the spectroscopic confirmation by measuring the high redshift of this elongated feature with surface brightness V~24mag/arcsec2.Comment: 6 pages, accepted for publication in A&

    Linguistics

    Get PDF
    Contains research objectives and reports on five research projects.National Institutes of Health (Grant 1 P01 MH-13390-02

    Clustering properties of a type-selected volume-limited sample of galaxies in the CFHTLS

    Get PDF
    (abridged) We present an investigation of the clustering of i'AB<24.5 galaxies in the redshift interval 0.2<z<1.2. Using 100,000 precise photometric redshifts in the four ultra-deep fields of the Canada-France Legacy Survey, we construct a set of volume-limited galaxy catalogues. We study the dependence of the amplitude and slope of the galaxy correlation function on absolute B-band rest-frame luminosity, redshift and best-fitting spectral type. We find: 1. The comoving correlation length for all galaxies decreases steadily from z~0.3 to z~1. 2. At all redshifts and luminosities, galaxies with redder rest-frame colours have clustering amplitudes between two and three times higher than bluer ones. 3. For bright red and blue galaxies, the clustering amplitude is invariant with redshift. 4. At z~0.5, less luminous galaxies have higher clustering amplitudes of around 6 h-1 Mpc. 5. The relative bias between galaxies with red and blue rest-frame colours increases gradually towards fainter absolute magnitudes. One of the principal implications of these results is that although the full galaxy population traces the underlying dark matter distribution quite well (and is therefore quite weakly biased), redder, older galaxies have clustering lengths which are almost invariant with redshift, and by z~1 are quite strongly biased.Comment: 16 pages, 18 figures, accepted for publication in Astronomy and Astrophysic

    Cross-Correlation of the Cosmic Microwave Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and Point Sources

    Full text link
    We cross-correlate the Cosmic Microwave Background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modelling the theoretical expectation for this signal, we extract the signatures of dark energy (Integrated Sachs-Wolfe effect;ISW), hot gas (thermal Sunyaev-Zeldovich effect;thermal SZ), and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7 \sigma level, which is consistent with the theoretical prediction based on observations of X-ray clusters. We also see the ISW signal at the 2.5 \sigma level, which is consistent with the expected value for the concordance LCDM cosmology, and is an independent signature of the presence of dark energy in the universe. Finally, we see the signature of microwave point sources at the 2.7 \sigma level.Comment: 35 pages (preprint format), 8 figures. In addition to minor revisions based on referee's comments, after correcting for a bug in the code, the SZ detection is consistent with the X-ray observations. Accepeted for publication in Physical Review

    Large Scale Pressure Fluctuations and Sunyaev-Zel'dovich Effect

    Get PDF
    The Sunyaev-Zel'dovich (SZ) effect associated with pressure fluctuations of the large scale structure gas distribution will be probed with current and upcoming wide-field small angular scale cosmic microwave background experiments. We study the generation of pressure fluctuations by baryons which are present in virialized dark matter halos and by baryons present in small overdensities. For collapsed halos, assuming the gas distribution is in hydrostatic equilibrium with matter density distribution, we predict the pressure power spectrum and bispectrum associated with the large scale structure gas distribution by extending the dark matter halo approach which describes the density field in terms of correlations between and within halos. The projected pressure power spectrum allows a determination of the resulting SZ power spectrum due to virialized structures. The unshocked photoionized baryons present in smaller overdensities trace the Jeans-scale smoothed dark matter distribution. They provide a lower limit to the SZ effect due to large scale structure in the absence of massive collapsed halos. We extend our calculations to discuss higher order statistics, such as bispectrum and skewness in SZ data. The SZ-weak lensing cross-correlation is suggested as a probe of correlations between dark matter and baryon density fields, while the probability distribution functions of peak statistics of SZ halos in wide field CMB data can be used as a probe of cosmology and non-Gaussian evolution of large scale structure pressure fluctuations.Comment: 16 pages, 9 figures; Revised with expanded discussions. Phys. Rev. D. (in press

    The importance of language for language development: Linguistic determinism in the 1980s

    Get PDF
    The semantic and syntactic functions of verbs are the major aspects of linguistic complexity that contribute to the cognitive requirements for learning language between two and three years of age. Several contrastive categories of verbs emerged from our studies with action/state as the largest and most general. Contrastive subcategories of action verbs were locative/nonlocative action, durative/nondurative action, and completive/noncompletive action. The subcategories of state verbs were volitional/epistemic/notice/communication states. The psychological and linguistic validity of these semantic categories rests on their being coextensive with major grammatical developments and/or their sequential development

    Fifty Years of IMF Variation: The Intermediate-Mass Stars

    Full text link
    I track the history of star count estimates of the Milky Way field star and open cluster IMFs, concentrating on the neglected mass range from 1 to 15 M⊙{_\odot}. The prevalent belief in a universal IMF appears to be without basis for this mass range. Two recent estimates of the field star IMF using different methods and samples give values of the average logarithmic slope Γ\Gamma between -1.7 and -2.1 in the mass range 1.1 to 4 M⊙{_\odot}. Two older estimates between 2 and 15 M⊙{_\odot} disagree severely; the field IMF in this range is essentially unknown from star counts. Variations in Γ\Gamma among open cluster IMFs in this mass range have not decreased despite numerous detailed studies, even for studies using homogeneous data and reduction procedures and including only clusters with a significant mass range. These cluster variations \textit{might} be due to the combined effects of sampling, systematic errors, stellar evolution uncertainties, dynamical evolution, and unresolved binaries. If so, then the cluster data are consistent with a universal IMF, but are also consistent with sizeable variations. The cluster data do not allow an estimate of an average IMF or Γ\Gamma because the average depends on the choice of weighting procedure and other effects. If the spread in cluster IMFs is in excess of the effects listed above, real IMF variations must occur that do not depend much on physical conditions explored so far. The complexity of the star formation process seen in observations and simulations suggests that large realization-to-realization differences might be expected, in which case an individual cluster IMF would be in part the product of evolutionary contingency in star formation, and the function of interest is the probability distribution of IMF parameters.Comment: 18 pages, including 4 figures: invited talk presented at the conference on "IMF@50: The Stellar Initial Mass Function Fifty Years Later" held at Abbazia di Spineto, Siena, Italy, May 2004; to be published by Kluwer Academic Publishers, edited by E. Corbelli, F. Palla, and H. Zinnecke

    Radio Emission from Ultra-Cool Dwarfs

    Full text link
    The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag

    Fossil Groups Origins: I. RX J105453.3+552102 a very massive and relaxed system at z~0.5

    Full text link
    The most accepted scenario for the origin of fossil groups (FGs) is that they are galaxy associations in which the merging rate was fast and efficient. These systems have assembled half of their mass at early epoch of the Universe, subsequently growing by minor mergers. They could contain a fossil record of the galaxy structure formation. We have started a project in order to characterize a large sample of FGs. In this paper we present the analysis of the fossil system RX J105453.3+552102. Optical deep images were used for studying the properties of the brightest group galaxy and for computing the photometric luminosity function of the group. We have also performed a detail dynamical analysis of the system based on redshift data for 116 galaxies. This galaxy system is located at z=0.47, and shows a quite large line-of-sight velocity dispersion \sigma_{v}~1000 km/s. Assuming the dynamical equilibrium, we estimated a virial mass of M ~ 10^{15} h_{70} M_{\odot}. No evidence of substructure was found within 1.4 Mpc radius. We found a statistically significant departure from Gaussianity of the group members velocities in the most external regions of the group. This could indicate the presence of galaxies in radial orbits in the external region of the group. We also found that the photometrical luminosity function is bimodal, showing a lack of M_{r} ~ -19.5 galaxies. The brightest group galaxy shows low Sersic parameter (n~2) and a small peculiar velocity. Indeed, our accurate photometry shows that the difference between the brightest and the second brightest galaxies is 1.9 mag in the r-band, while the classical definition of FGs is based on a magnitude gap of 2. We conclude that this fossil system does not follow the empirical definition of FGs. Nevertheless, it is a massive, old and undisturbed galaxy system with little infall of L^{*} galaxies since its initial collapse.Comment: 17 pages, 14 figures, accepted for publication at A&
    • 

    corecore