688 research outputs found
Theta Phase Entrainment of Single-Cell Spiking in Rat Somatosensory Barrel Cortex and Secondary Visual Cortex Is Enhanced during Multisensory Discrimination Behavior
Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity
Optical control of nanoparticle catalysis influenced by photoswitch positioning in hybrid peptide capping ligands
YesHere we present an in-depth analysis of structural factors that modulate peptide-capped nanoparticle
catalytic activity via optically driven structural reconfiguration of the biointerface present at the particle surface.
Six different sets of peptide-capped Au nanoparticles were prepared, in which an azobenzene photoswitch was incorporated
into one of two well-studied peptide sequences with known affinity for Au, each at one of three different
positions: The N- or C-terminus, or mid-sequence. Changes in the photoswitch isomerization state induce a reversible
structural change in the surface-bound peptide, which modulates the catalytic activity of the material. This
control of reactivity is attributed to changes in the amount of accessible metallic surface area available to drive the
reaction. This research specifically focuses on the effect of the peptide sequence and photoswitch position in the
biomolecule, from which potential target systems for on/off reactivity have been identified. Additionally, trends
associated with photoswitch position for a peptide sequence (Pd4) have been identified. Integrating the azobenzene
at the N-terminus or central region results in nanocatalysts with greater reactivity in the trans and cis conformations,
respectively; however, positioning the photoswitch at the C-terminus gives rise to a unique system that is
reactive in the trans conformation and partially deactivated in the cis conformation. These results provide a fundamental
basis for new directions in nanoparticle catalyst development to control activity in real time, which could
have significant implications in the design of catalysts for multistep reactions using a single catalyst. Additionally,
such a fine level of interfacial structural control could prove to be important for applications beyond catalysis, including
biosensing, photonics, and energy technologies that are highly dependent on particle surface structures.Air Office of Scientific Research, grant number FA9550-12- 1-0226
Statistical mechanics of RNA folding: a lattice approach
We propose a lattice model for RNA based on a self-interacting two-tolerant
trail. Self-avoidance and elements of tertiary structure are taken into
account. We investigate a simple version of the model in which the native state
of RNA consists of just one hairpin. Using exact arguments and Monte Carlo
simulations we determine the phase diagram for this case. We show that the
denaturation transition is first order and can either occur directly or through
an intermediate molten phase.Comment: 8 pages, 9 figure
Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection
We present experimental data and their theoretical interpretation for the
decay rates of temperature fluctuations in a thin layer of a fluid heated from
below and confined between parallel horizontal plates. The measurements were
made with the mean temperature of the layer corresponding to the critical
isochore of sulfur hexafluoride above but near the critical point where
fluctuations are exceptionally strong. They cover a wide range of temperature
gradients below the onset of Rayleigh-B\'enard convection, and span wave
numbers on both sides of the critical value for this onset. The decay rates
were determined from experimental shadowgraph images of the fluctuations at
several camera exposure times. We present a theoretical expression for an
exposure-time-dependent structure factor which is needed for the data analysis.
As the onset of convection is approached, the data reveal the critical
slowing-down associated with the bifurcation. Theoretical predictions for the
decay rates as a function of the wave number and temperature gradient are
presented and compared with the experimental data. Quantitative agreement is
obtained if allowance is made for some uncertainty in the small spacing between
the plates, and when an empirical estimate is employed for the influence of
symmetric deviations from the Oberbeck-Boussinesq approximation which are to be
expected in a fluid with its density at the mean temperature located on the
critical isochore.Comment: 13 pages, 10 figures, 52 reference
Optical actuation of inorganic/organic interfaces: comparing peptide-azobenzene ligand reconfiguration on gold and silver nanoparticles
YesPhotoresponsive molecules that incorporate peptides capable of material-specific recognition provide a basis for biomolecule-mediated control of the nucleation, growth, organization, and activation of hybrid inorganic/organic nanostructures. These hybrid molecules interact with the inorganic surface through multiple noncovalent interactions which allow reconfiguration in response to optical stimuli. Here, we quantify the binding of azobenzene-peptide conjugates that exhibit optically triggered cis-trans isomerization on Ag surfaces and compare to their behavior on Au. These results demonstrate differences in binding and switching behavior between the Au and Ag surfaces. These molecules can also produce and stabilize Au and Ag nanoparticles in aqueous media where the biointerface can be reproducibly and reversibly switched by optically triggered azobenzene isomerization. Comparisons of switching rates and reversibility on the nanoparticles reveal differences that depend upon whether the azobenzene is attached at the peptide N- or C-terminus, its isomerization state, and the nanoparticle composition. Our integrated experimental and computational investigation shows that the number of ligand anchor sites strongly influences the nanoparticle size. As predicted by our molecular simulations, weaker contact between the hybrid biomolecules and the Ag surface, with fewer anchor residues compared with Au, gives rise to differences in switching kinetics on Ag versus Au. Our findings provide a pathway toward achieving new remotely actuatable nanomaterials for multiple applications from a single system, which remains difficult to achieve using conventional approaches.Air Office of Scientific Research, grant number FA9550-12-1-0226
A Biased Review of Sociophysics
Various aspects of recent sociophysics research are shortly reviewed:
Schelling model as an example for lack of interdisciplinary cooperation,
opinion dynamics, combat, and citation statistics as an example for strong
interdisciplinarity.Comment: 16 pages for J. Stat. Phys. including 2 figures and numerous
reference
Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for the production of neutral Higgs bosons decaying into
tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The
data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by
the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the
95% C.L. on the product of production cross section and branching ratio for a
scalar resonance decaying into tautau pairs, and we then interpret these limits
as limits on the production of Higgs bosons in the minimal supersymmetric
standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
Measurement of the photon-jet production differential cross section in collisions at \sqrt{s}=1.96~\TeV
We present measurements of the differential cross section dsigma/dpT_gamma
for the inclusive production of a photon in association with a b-quark jet for
photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for
photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is
the photon transverse momentum. The b-quark jets are required to have pT>15 GeV
and rapidity |y_jet| < 1.5. The results are based on data corresponding to an
integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the
Fermilab Tevatron Collider at sqrt(s)=1.96 TeV. The measured cross
sections are compared with next-to-leading order perturbative QCD calculations
using different sets of parton distribution functions as well as to predictions
based on the kT-factorization QCD approach, and those from the Sherpa and
Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV
We present final searches of the anomalous gammaWW and ZWW trilinear gauge
boson couplings from WW and WZ production using lepton plus dijet final states
and a combination with results from Wgamma, WW, and WZ production with leptonic
final states. The analyzed data correspond to up to 8.6/fb of integrated
luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96
TeV. We set the most stringent limits at a hadron collider to date assuming two
different relations between the anomalous coupling parameters
Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2
TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154,
-0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization,
and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings
parameterization. We also present the most stringent limits of the W boson
magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL
Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV
We present the first measurement of the inclusive three-jet differential
cross section as a function of the invariant mass of the three jets with the
largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96
TeV. The measurement is made in different rapidity regions and for different
jet transverse momentum requirements and is based on a data set corresponding
to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at
the Fermilab Tevatron Collider. The results are used to test the three-jet
matrix elements in perturbative QCD calculations at next-to-leading order in
the strong coupling constant. The data allow discrimination between
parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected
chi2 values for NNPD
- …