2,216 research outputs found

    Investigations of the carbon fibre cross-sectional areas and their non-circularities by means of laser diffraction

    Get PDF
    Laser diffraction is a commonly used tool to measure the fibre diameter of carbon fibres prior to mechanical testing. However, non-circularities of carbon fibres need to be considered in order to minimise measuring errors. As the work at hand demonstrates, using a single measurement of the fibre diameter may cause deviations as high as 30% from a computationally determined value. It appears that the error can be minimised by acquiring a data set of several apparent diameters as a function of the angle around the fibre axis. Based on this data, the cross-sectional area can be calculated as a circle with an averaged diameter or as an ellipse by applying an elliptical fitting procedure

    Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors

    Get PDF
    Guanylurea dicyanamide, [(H2N)C(-O)NHC(NH2)2][N(CN)2], has been synthesized by ion exchange reaction in aqueous solution and structurally characterized by single-crystal X-ray diffraction (C2/c, a = 2249.0(5) pm, b = 483.9(1) pm, c = 1382.4(3) pm, β = 99.49(3)°, V = 1483.8(5) × 106 pm3, T = 130 K). The thermal behavior of the molecular salt has been studied by thermal analysis, temperature-programmed X-ray powder diffraction, FTIR spectroscopy, and mass spectrometry between room temperature and 823 K. The results were interpreted on a molecular level in terms of a sequence of thermally induced addition, cyclization, and elimination reactions. As a consequence, melamine (2,4,6-triamino-1,3,5-triazine) is formed with concomitant loss of HNCO. Further condensation of melamine yields the prototypic CNx precursor melem (2,6,10-triamino-s-heptazine, C6N7(NH2)3), which alongside varying amounts of directly formed CNxHy material transforms into layered CNxHy phases without significant integration of oxygen into the core framework owing to the evaporation of HNCO. Thus, further evidence can be added to melamine and its condensation product melem acting as “key intermediates” in the synthetic pathway toward graphitic CNxHy materials, whose exact constitution is still a point at issue. Due to the characteristic formation process and hydrogen content a close relationship with the polymer melon is evident. In particular, the thermal transformation of guanylurea dicyanamide clearly demonstrates that the formation of volatile compounds such as HNCO during thermal decomposition may render a large variety of previously not considered molecular compounds suitable CNx precursors despite the presence of oxygen in the starting material

    Implementation and comparison of algebraic and machine learning based tensor interpolation methods applied to fiber orientation tensor fields obtained from CT images

    Get PDF
    Fiber orientation tensors (FOT) are used as a compact form of representing the mechanically important quantity of fiber orientation in fiber reinforced composites. While they can be obtained via image processing methods from micro computed tomography scans (CT), the specimen size needs to be sufficiently small for adequate resolution – especially in the case of carbon fibers. In order to avoid massive workload by scans and image evaluation when determining full-field FOT distributions for a plaque or a part, e.g., for comparison with process simulations, the possibilities of a direct interpolation of a few measured FOT at specific support points were opened in this paper. Hence, three different tensor interpolation methods were implemented and compared qualitatively with the help of visualization through tensor glyphs and quantitatively by calculating originally measured tensors at support points and evaluating the deviations. The methods compared in this work include two algebraic approaches, firstly, a Euclidean component averaging and secondly, a decomposition approach based on separate invariant and quaternion weighting, as well as an artificial intelligence (AI)-based method using an artificial neural network (ANN). While the decomposition method showed the best results visually, quantitatively the component averaging method and the neural network behaved better (that is for the type of quantitative error assessment used in this paper) with mean absolute errors of 0.105 and 0.114 when calculating previously measured tensors and comparing the components. With each method providing different advantages, the use for further application as well as necessary improvement is discussed. The authors would like to highlight the novelty of the methods being used with small and CT-based tensor datasets

    Low-energy neutron-deuteron reactions with N3LO chiral forces

    Get PDF
    We solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on Ay puzzle in elastic scattering and cross sections in symmetric-space-star and neutron-neutron quasi-free-scattering breakup configurations, for which large discrepancies between data and theory have been reported.Comment: 22 pages, 7 figure

    ATLAS Detector Paper Back-Up Note: Electrons and Photons

    Get PDF
    This is the supporting note to the ATLAS Detector paper for electron and photon reconstruction with the Inner Detector. It describes the software used to produce the results presented in the ATLAS Detector paper

    Towards a high precision calculation for the pion-nucleus scattering lengths

    Get PDF
    We calculate the leading isospin conserving few-nucleon contributions to pion scattering on 2^2H, 3^3He, and 4^4He. We demonstrate that the strong contributions to the pion-nucleus scattering lengths can be controlled theoretically to an accuracy of a few percent for isoscalar nuclei and of 10% for isovector nuclei. In particular, we find the π\pi-3^3He scattering length to be (62±4±7)×103mπ1(62 \pm 4\pm 7)\times 10^{-3} m_{\pi}^{-1} where the uncertainties are due to ambiguities in the π\pi-N scattering lengths and few-nucleon effects, respectively. To establish this accuracy we need to identify a suitable power counting for pion-nucleus scattering. For this purpose we study the dependence of the two-nucleon contributions to the scattering length on the binding energy of 2^2H. Furthermore, we investigate the relative size of the leading two-, three-, and four-nucleon contributions. For the numerical evaluation of the pertinent integrals, aMonte Carlo method suitable for momentum space is devised. Our results show that in general the power counting suggested by Weinberg is capable to properly predict the relative importance of NN-nucleon operators, however, it fails to capture the relative strength of NN- and (N+1)(N+1)-nucleon operators, where we find a suppression by a factor of 5 compared to the predicted factor of 50. The relevance for the extraction of the isoscalar π\pi-N scattering length from pionic 2^2H and 4^4He is discussed. As a side result, we show that beyond the calculation of the π\pi-2^2H scattering length is already beyond the range of applicability of heavy pion effective field theory.Comment: 24 pages, 14 figures, 10 table

    I. Flux and color variations of the quadruply imaged quasar HE 0435-1223

    Get PDF
    aims: We present VRi photometric observations of the quadruply imaged quasar HE 0435-1223, carried out with the Danish 1.54m telescope at the La Silla Observatory. Our aim was to monitor and study the magnitudes and colors of each lensed component as a function of time. methods: We monitored the object during two seasons (2008 and 2009) in the VRi spectral bands, and reduced the data with two independent techniques: difference imaging and PSF (Point Spread Function) fitting.results: Between these two seasons, our results show an evident decrease in flux by ~0.2-0.4 magnitudes of the four lensed components in the three filters. We also found a significant increase (~0.05-0.015) in their V-R and R-i color indices. conclusions: These flux and color variations are very likely caused by intrinsic variations of the quasar between the observed epochs. Microlensing effects probably also affect the brightest "A" lensed component.Comment: 10 pages, 8 figure

    The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation

    Get PDF
    Aims: We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ1214b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. Methods: The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods. Results: The observations are used to determine the photometric parameters and the physical properties of the GJ1214 system. Our results are in good agreement with published values. Individual times of mid-transit are measured with uncertainties as low as 10s, allowing us to reduce the uncertainty in the orbital period by a factor of two. Conclusions: A Bayesian analysis reveals that it is highly improbable that the observed transit times is explained by TTV, when compared with the simpler alternative of a linear ephemeris.Comment: Submitted to A&
    corecore