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Abstract. We calculate the leading isospin conserving few-nucleon contributions to pion scattering on 2H,
3He, and 4He. We demonstrate that the strong contributions to the pion-nucleus scattering lengths can be
controlled theoretically to an accuracy of a few percent for isoscalar nuclei and of 10% for isovector nuclei.
In particular, we find the π-3He scattering length to be (62 ± 4 ± 7) × 10−3m−1

π where the uncertainties
are due to ambiguities in the π-N scattering lengths and few-nucleon effects, respectively. To establish this
accuracy we need to identify a suitable power counting for pion-nucleus scattering. For this purpose we
study the dependence of the two-nucleon contributions to the scattering length on the binding energy of 2H.
Furthermore, we investigate the relative size of the leading two-, three-, and four-nucleon contributions.
For the numerical evaluation of the pertinent integrals, a Monte Carlo method suitable for momentum
space is devised. Our results show that in general the power counting suggested by Weinberg is capable to
properly predict the relative importance of N-nucleon operators, however, it fails to capture the relative
strength of N- and (N + 1)-nucleon operators, where we find a suppression by a factor of 5 compared to
the predicted factor of 50. The relevance for the extraction of the isoscalar π-N scattering length from
pionic 2H and 4He is discussed. As a side result, we show that the calculation of the π-2H scattering length
is already beyond the range of applicability of heavy pion effective field theory.

PACS. 21.45.-v Few-body systems – 21.85.+d Mesic nuclei – 02.70.Tt Justifications or modifications of
Monte Carlo methods

1 Introduction

The probably most fundamental quantities characterizing
pion scattering off nucleons are the pion-nucleon (π-N)
scattering lengths. Obviously being low energy observ-
ables, one should be able to understand their size based
on the effective field theory (EFT) of Quantum Chro-
modynamics (QCD), namely Chiral Perturbation Theory
(ChPT). In fact, the impact of symmetries on these quan-
tities is known for a long time [1,2] (for a recent review see
Ref. [3]), but for a quantitative analysis of high accuracy
it is of utmost importance to understand now in detail the
higher order corrections, either isospin symmetric ones or
isospin symmetry violating (IV) ones, based on ChPT, for
they point directly at QCD dynamics.

Despite an on-going effort to learn more on the scat-
tering lengths experimentally, they are still not very accu-
rately known [4]. This is especially true for the isoscalar
scattering length which is so small, that a high control
over various other, normally neglected effects, like IV, is
necessary for a reliable extraction of a(+) from experi-
ment. On the theoretical side important progress for IV
π-N scattering is reported in Refs. [5,6,7]. A first extrac-

tion of the leading charge symmetry breaking (a special
case of IV interactions) π-N scattering amplitude is re-
ported in Refs. [8,9,10] based on an analysis of the re-
cent observation of the IV forward–backward asymmetry
in pn→ dπ0 [11].

The most promising way to get experimental access to
the π-N scattering lengths is the investigation of pionic
atoms, the simplest system being pionic hydrogen. Many
efforts have been undertaken to measure energy shift and
width of this system, allowing for an extraction of the
isoscalar and isovector π-N scattering lengths a(+) and
a(−) assuming that isospin symmetry is exact up to stan-
dard Coulomb interactions [12,13].

In principle, it appears to be possible to extract both
the isoscalar and the isovector scattering length from pio-
nic hydrogen data, for the measurement provides two in-
dependent observables, namely the level shift compared to
the QED value induced by the strong interaction as well as
the width, where the transition π−p→ π0n gives a signif-
icant, known contribution. However, in order to improve
the extraction accuracy and to better control systematics,
an additional source of a(+) is desireable. In this context,
it is important to study more complex systems, like pionic
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deuterium, 3He, or 4He, for the wave functions for those
nuclei can be calculated with high accuracy. It is easy to
see that the pion-nucleus scattering length aπ−A can be
written as

aπ−A =

(

1 + mπ

mN

1 + mπ

AmN

)

(

Aa(+) −Qπ a
(−)2T3

)

+few-nucleon corrections
+IV corrections (1)

Here, A denotes the mass number of the nucleus, T3 the
third component of its isospin, mπ and Qπ the mass and
charge of the pion and mN the nucleon mass. We will not
further discuss the IV corrections here, instead we refer to
Refs. [14,4] for a review on the current status of IV in pion-
nucleus scattering. Especially, the isospin T = 0 nuclei 2H
and 4He yield important new information since contribu-
tions from a(−) are suppressed and the contribution of a(+)

is more prominent. From Eq. (1) it becomes clear that an
understanding of these more complex systems requires to
understand with a high accuracy the few-nucleon contri-
butions to the scattering length. For π-2H scattering they
have been studied for decades within potential multiple
scattering theory, see e.g. Refs.[15,16,17] and references
therein. A first attempt to calculate few-body effects sys-
tematically and model-independently, i.e. within ChPT,
was done by Weinberg [18]. He proposed to organize the
transition operator as an expansion in mπ/Λ with Λ be-
ing the chiral symmetry breaking scale of the order of
1 GeV. This transition operator was then convoluted in
Ref. [18] with phenomenological models for the nucleon-
nucleon (NN) interaction. This work has been refined in
Ref. [19]. The explicit calculations showed that part of
the few-nucleon corrections seem to be suppressed. Maybe
even more troublesome for the extraction of π-N scattering
lengths is the observation that the few-nucleon corrections
were somewhat larger than naive dimensional analysis pre-
dicted. Such issues were addressed in [20]. Here a refined
power counting, the so-called Q–counting, was proposed
that takes the small binding energy of 2H explicitly into
account. Assuming that typical momenta of the nucleons
are given by the binding momentum γ =

√
EdmN , with

Ed denoting the deuteron binding energy, it was found
that the estimated magnitudes of various few-body cor-
rections changed drastically and thus the series needed to
be reorganized compared to the original power counting
used in [18]. Obviously, it is important to investigate the
validity of this assumption, before extending the approach
to even more complex systems or towards higher orders.

As mentioned above, the second issue of the first calcu-
lations of two-nucleon corrections to π-2H scattering is the
relatively large size of the leading few-nucleon terms. Re-
cently, higher order contributions to this class of diagrams
have been investigated in Ref. [20] and Refs. [21,22]. Es-
pecially, the results of the latter references indicate that
the small scale γ does not play a role in the higher order
terms studied in Refs. [21,22]. It is however not clear at
this point, whether the hierarchy of two-, three- and four-
nucleon contributions is as expected by the power count-
ing. An understanding of the systematics of such higher

order corrections is mandatory when analyzing data on
3He and 4He.

In this paper, we study the presumably leading two-,
three- and four-nucleon contributions explicitly. In Sec. 2,
we will discuss the implications of using the different power
countings in more detail. In Sec. 3, we repeat the well-
known expressions for two-nucleon operators, derive a com-
plete set of leading three-nucleon operators and give ex-
pressions for the probably most relevant example of a
four-nucleon operator. The contribution to the scattering
length based on these expressions requires the evaluation
of high dimensional integrals involving the operators and
few-nucleon wave functions. Such a problem will also ap-
pear in other applications. Therefore, we explain our nu-
merical method for such calculations in detail in Sec. 4.
In Sec. 5, we turn to 2H and study the dependence of the
leading two-nucleon contributions on the binding energy
based on an unphysically over- or underbound 2H. The re-
sults will shed light on the validity of Q–counting. We then
introduce the input into our calculations for the required
few-nucleon wave functions in more detail in Sec. 6. This
is a prerequisite for our further studies. Sec. 7 is devoted
to 3He where the scattering length of π-3He system is cal-
culated. For the first time, we give explicit results for the
contribution of three-nucleon corrections to pion-nucleus
scattering. Finally, in Sec. 8, we estimate four-nucleon con-
tributions to π-4He scattering based on an explicit calcu-
lation. We then summarize our findings and conclude in
Sec. 9. More technical aspects of this work are deferred to
the appendices.

2 Power-counting schemes for pion-nucleus

scattering

The central goal of this work is to provide the calcula-
tions necessary to extract the isoscalar scattering length
from data on the pion-nucleus scattering length. The basis
for this is a reliable power counting which allows one to
identify the relevant operators and provides a framework
to estimate the diagrams not included. To reach maximal
predictive power we include in each channel all diagrams
that contribute up to one order lower than the contribu-
tion of the leading, unknown counter term. Especially the
estimate of higher order operators requires some care. We
here estimate the contributions from higher order opera-
tors, not calculated explicitly, by two methods:

• We demonstrate that all N -nucleon diagrams included
can be organized in a series in powers of some param-
eter χ. Thus, a calculation performed up to order χn

is expected to have an uncertainty of order χ(n+1).
• Using a set of wave functions generated for regulators
varying over a large range of values, we investigate
quantitatively the regulator dependence of the various
matrix elements. This regulator dependence should be
absorbed into a pertinent counter term. Therefore, we
get access to the possible counter term contribution.

As we will see, for isoscalar nuclei both methods give con-
sistent results supporting our claim that the scattering of
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pions off isoscalar targets at threshold can be calculated
with an uncertainty of the order of 5 % of the leading
two-nucleon contributions: 1 × 10−3 m−1

π for π-2H and
2 × 10−3 m−1

π for π-4He scattering. For isovector nuclei
the contribution of the leading contact term is estimated
via scaling of the leading isoscalar contribution. This al-
lows us to estimate the accuracy of the calculation for
π-3He scattering to be of the order of 10%.

It should also be stressed that up to now we are not
able to identify a power counting that allows one to relate
operators with different numbers of active nucleons, say
one-nucleon with two- or three-nucleon operators. How-
ever, although we do not quantitatively understand the
reasons for successive suppression of operators with an
increasing number of active nucleons, the suppression ob-
served numerically is quantitatively sufficiently large to al-
low for controlled results. In addition, it turns out that the
successive suppression observed between N - and (N + 1)-
nucleon operators is the same for N = 1, 2, 3, which is
important for controlled uncertainty estimates. We also
demonstrate that it is indeed possible to estimate reliably
the relative importance of various N -nucleon operators.

What we need to carry out this program is a reliable
power counting. There are two scales relevant for pion-
nucleus scattering at threshold, namely the pion mass,
mπ, and the nucleus binding momentum, γ, which may
either be evaluated via

γ =
√

2µǫ , (2)

with µ for the reduced mass of a single nucleon with re-
spect to the remainder and ǫ for the binding energy with
respect to the first break-up channel, or via

γ̃ =
√

2mN(E/A) , (3)

with (E/A) for the binding energy per nucleon. For the
nuclei of relevance here — 2H, 3He, and 4He — both for-
mulas give similar answers, namely 46 and 46 MeV, 82 and
69 MeV, and 167 and 115 MeV for γ and γ̃ for the three
nuclei in order. In the following we will therefore only use
the quantity γ for the binding momentum.

Let q denote some generic momentum. There are two
different power-counting schemes proposed for pion-nucleus
scattering at threshold. These differ in how q is treated rel-
ative to mπ and γ. In Ref. [18], referred to as Weinberg
counting, the assignment

q ∼ mπ (4)

is proposed while in Ref. [20], in the following called Q–
counting,

q ∼ γ ≪ mπ (5)

is used. In [20] the authors argue that the latter assign-
ment is to be preferred, since, for π-2H scattering, i) it
naturally explains why the contribution of Diagram (a)
of Fig. 1 is more than an order of magnitude larger than
those of (b) and (c); ii) it quantitatively explains the mag-
nitude of the contribution of the diagram of Fig. 2; and
iii) it quantitatively explains the contribution of the boost

correction — this term emerges as a recoil correction to
the leading isoscalar π-N scattering amplitude.

As in the πN sector, chiral symmetry enforces that op-
erators that are odd under the exchange of the external
pions — isovector operators — appear with at least one
derivative acting on the pion field, while those that are
even — isoscalar — have at least two derivatives or one
insertion of the quark mass matrix. As a consequence,
isoscalar operators are one order in mπ/mN suppressed
compared to their isovector counter parts. This is another
argument in favour of using isoscalar targets to get high
accuracy information on the π-N scattering lengths: since
the contribution of the leading order counter term sets the
limit for the accuracy for the extraction of the π-N scat-
tering lengths, the analysis of the scattering off isovector
nuclei provides values for the scattering lengths about an
order of magnitude less accurate.

The pertinent few-body corrections can now be classi-
fied in terms of q andmπ. Because of the arguments above,
the leading isoscalar 4Nππ counter term contributes to
the π-2H scattering length at order (mπ/mN)2, where for
simplicity we identified the chiral symmetry breaking scale
with the nucleon mass, while the leading two-nucleon cor-
rection — Diagram (a) of Fig. 1 — scales as (mπ/q)

2.
Explicit calculation gives that the leading two-nucleon di-
agram contributes about 20×10−3m−1

π to the π-2H scat-
tering length. Thus in the Weinberg scheme we estimate
about 1×10−3m−1

π for the leading counter term contribu-
tion while in Q–counting the leading counter term is ex-
pected to contribute only 0.1×10−3m−1

π , since the leading
two-nucleon term benefits from an enhancement of order
(mπ/q)

2 ≃ (mπ/γ)
2 in Q–counting. Thus again, if we aim

at a reliable estimate of the accuracy of the calculations
performed we need to understand which one of the power-
counting schemes describes the hierarchy of diagrams for
pion-nucleus scattering at threshold. This will be done in
Sec. 5.1.

It turns out that Weinberg and Q–counting predict
a very different binding energy dependence of ratios of
few-body corrections. These relations can be tested em-
pirically: the NN potential at leading order of the chiral
expansion comprises 1π–exchange and two counter terms.
One of them can be adjusted such that any given (physi-
cal or unphysical) deuteron binding energy can be repro-
duced. This has been done to investigate the binding en-
ergy dependence of the relevant ratios of few-nucleon con-
tributions. The main conclusion of Sec. 5.2 will be that the
binding energy dependence of these ratios is in accordance
with the prediction from Weinberg — up to logarithmic
corrections — and in strong disagreement to the predic-
tion from Q–counting.

In addition to providing some explanation for the ap-

parent suppression of a
(1bc)
π−A vs. a

(1a)
π−A, in Ref. [20] it was

argued that boosted π-N amplitudes give a significant con-
tribution (number iii) in the list given above), in discrep-
ancy to what is expected from Weinberg counting. On the
other hand, since the corresponding operator is propor-
tional to the square of the nucleon momentum, this would
imply an observable effect of the nucleon kinetic energy in-
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side the deuteron, which is in conflict with general prop-
erties of field theories. In Ref. [22] both problems were
solved: once the ∆–isobar is included as an explicit degree
of freedom, simultaneously the residual boost contribu-
tion becomes sufficiently small to be in line with Wein-
berg counting and appears at an order where there is also
a counter term.

Finally, we analyze the contribution of the triple scat-
tering diagram of Fig. 2 in Sec. 5.3. In Weinberg count-
ing this diagram is estimated to contribute only at or-
der (mπ/mN)2 relative to the leading two-nucleon oper-
ator. On the other hand numerical studies revealed that
its actual value exceeds this estimate by about an order
of magnitude. In Sec. 5.3 we will demonstrate that this
enhancement is not due to the smallness of the deuteron
binding energy, contrary to the claim in Ref. [20], but due
to an integrable singularity in the corresponding expres-
sion that produces an enhancement by a factor of π2. In
view of this, also item ii) of the list that was used to argue
in favour of Q–counting does not apply anymore.

We are led to conclude that Weinberg counting gives
a more reliable power counting scheme than Q–counting.

With these remarks, we now want to look at the pos-
sible few-nucleon contributions in more detail.

3 Few-nucleon contributions

Our main concern here are the few-nucleon corrections.
For an evaluation of such contributions, expectation values
of the basic pion–few-nucleon (π-A) amplitudes with the
few-nucleon wave functions need to be calculated. Such
wave functions can be obtained using standard methods
to solve the few-nucleon Schrödinger equation based on
nucleon-nucleon (NN) interactions [23]. Whereas in the
first attempts to understand such contributions, wave func-
tions based on phenomenological NN interactions were
used [18,19], it is by now standard to also employ wave
functions generated with nuclear interactions based on
ChPT. The basic idea is to use naive dimensional analysis
for a potential, which is then used to solve a Schrödinger
equation [24,25]. Several groups have developed NN inter-
actions based on this approach [26,27,28] and also three-
(3N) and four-nucleon (4N) interactions have been formu-
lated [29,30] and employed [31], see also Ref. [32] for a
recent review. Obviously, employing chiral interactions is
preferable to calculate the pion-nucleus scattering length
since nuclear interactions and π-A amplitudes will be con-
sistent.

In this work, we will present results on both kinds of
interactions. We still show results based on phenomeno-
logical interactions, namely AV18 [33], Nijmegen 93 [34],
and CD-Bonn [35]. For 3He and 4He, we augment the nu-
clear Hamiltonian by a 3N interaction, so that the bind-
ing energies of these nuclei are reasonably well reproduced
[36]. These results may serve as benchmark and might give
indications on the size of the model-dependence of older
calculations. We also employ wave functions based on chi-
ral nuclear interactions between the leading order (LO, or-

der 0 in the chiral expansion) and next-to-next-to-leading
order (N2LO, order 3 in the chiral expansion).

Chiral interactions require a regularization scheme in
order to obtain a well-defined Schrödinger equation. Most
realizations use a momentum cutoff of the order of 500 MeV
to this aim. For the leading order, at least when restricting
oneself to S-wave interactions, it is possible to obtain fits
for a much larger range of cutoffs [37]. These attempts
have triggered a controversy in the community [38]. It
should be noted that an inconsistency becomes apparent
for large cutoffs, when higher order NN interactions are
used [39]. Here, we use a wide range of cutoffs only for
LO interactions, so that also this inconsistency does not
apply. This allows us to use results for a wide range of
cutoffs to estimate the size of leading counter terms. Pa-
rameter sets for the S-wave contact interactions are given
in Tables 3, 4, and 5. Since these calculations are by no
means high precision ones, we have neglected the minor
contribution of higher partial waves in this case.

For the higher order chiral forces, we have employed
order 2 (NLO) and order 3 (N2LO) ones of Ref. [28]. In
the N2LO case, we added, as required by power counting,
3N forces, which were tuned to reproduce the 3He binding
energy and N-2H scattering lengths.

Since we restrict ourselves to leading, tree-level π-A op-
erators, we may derive them using Feynman diagrams as
done below. The reduction from four-dimensional quan-
tities to three-dimensional ones can be easily performed
using the on-shell energies of nucleons and pions. The per-
tinent integrals involving the wave functions and operators
will be given below since their form depends on the num-
ber of nucleons involved.

3.1 Leading two-nucleon contributions

The leading two-nucleon contributions are known for many
years [18,19,20]. In the following, we call the numeri-
cally most important contribution, depicted in Fig. 1(a),
“Coulombian” because of its 1

q2 pion propagator. The ex-

plicit expression for the amplitude is

iM(1a) = i
m2

π

4f4
π q 2

{

2δab (τ 1 · τ 2)− τb1τ
a
2 − τa1 τ

b
2

}

(6)

where q is the momentum transfer between the nucleons,
the τ i are usual Pauli matrices acting in the isospin space
of nucleon i and fπ the pion decay constant. Throughout
this work, we employ fπ = 92.4 MeV. The small latin
letters refer to isospin indices of the pions as given in the
figure.

The amplitudes of Figs. 1(b) and 1(c) are individually
dependent on the parametrization of the pion field. The
sum of both, however, is independent of this choice as it
should. Therefore, we will only show results for the sum
of both contributions for which the amplitude reads

iM(1b+1c) = −i g
2
Am

2
π

4f4
π

1

(q 2 +m2
π)

2 (σ1 · q) (σ2 · q)

×
{

δab (τ 1 · τ 2)−
(

τa1 τ
b
2 + τb1τ

a
2

) }

. (7)
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kπ

kπ

kπ

k ′

π

k ′

π

k ′

π

q q̃

q̃

−q̃

a

aa

b

b

b

c
cc

d

τ1 τ1

τ2 τ2

τd
1

τe
2

Fig. 1. Leading two-nucleon contributions to π-A scattering.

kπ

kπ
′

Fig. 2. Triple scattering two-nucleon diagram.

Here, we additionally encounter σi, the Pauli matrices
acting in the spin space of nucleon i. Since the propaga-
tors contain an additional pion mass, we will refer to this
contribution as “non-Coulombian”.

In addition, in Ref. [20], the diagram shown in Fig. 2
was identified as numerically important, although in Wein-
berg counting it appears only at order N2LO as compared
to the leading order diagrams of Fig. 1. This observation
was taken as a support for the modified power counting,
Q–counting, as discussed in the previous section. As we
will show in section 5.3, a part of this amplitude is in-
deed enhanced, however, not parametrically but as a con-
sequence of the special topology of the diagram. Therefore
we also include this triple scattering diagram, although
this is not supported by a power counting yet. Straight-
forward evaluation of its most dominant part gives

iM(2) = −2i

(

mπ

2f2
π

)3
1

8|q|

×
{

τb1τ
a
2 + τa1 τ

b
2 +

i

2
ǫabe (τe1 + τe2 )

}

. (8)

For a discussion of the full expression for the amplitude we
refer to Sec. 5.3. It is important to note that, although the
triple scattering diagram is enhanced compared to what is
expected from dimensional analysis, this enhancement is
not sufficient to fully overcome the parametric suppression
as provided by chiral symmetry. Comparing the double
scattering contribution, Eq. (6), to the triple scattering
contribution, Eq. (8), we still find a relative suppression1

of order
m2

π/(16f
2
π) ∼ 0.14 ,

1 For this comparison we evaluated both operators for
isoscalar nucleon pairs and under the assumption that q ∼ mπ,
in line with Weinberg counting.

which is close to the ratio found from the exact evalu-
ation of the matrix elements. Thus, there is a suppres-
sion by an order of magnitude between the two contribu-
tions. We conjecture that the related diagram with four
πN interactions will be suppressed by yet another order of
magnitude and is therefore irrelevant for this study. Note,
however, in case of K-nucleus scattering a resummation
of the multiple scattering series is unavoidable [40,41,42].
Also in Ref. [42], it was argued that a resummation needs
to be done including nucleon recoil effects in the propaga-
tors, for the nucleon recoil in multiple scattering diagrams
induces potentially important corrections of the order of
√

mK/mN , with mK being the kaon mass, as compared
to the static contributions.

As was argued above, all diagrams that contribute to
lower orders than the first counter term should be included
in this study. In addition to the diagrams discussed so far,
there are potentially also those that are enhanced due to
the presence of either two-nucleon or πNN–cuts. More-
over, there are also contributions from the ∆–isobar. The
effect of the πNN–cuts was discussed in detail in Ref. [43],
see also Ref. [44] for a related discussion. It was shown in
Ref. [43] that, although formally enhanced, the contribu-
tions of the πNN–cuts to the π-2H scattering length nearly
vanish as a result of a cancellation of different two-nucleon
diagrams enforced by the Pauli principle. The same argu-
ment also applies to the scattering off 4He. In Ref. [21]
and [22] it was shown that diagrams with an NN–cut, of-
ten called dispersive terms 2, and those with an interme-
diate ∆ start to contribute at the same order. Although
individually sizable, the two groups of diagrams cancel
each other nearly exactly. This cancellation should also
appear in heavier nuclei whenever pions get scattered off
an isoscalar NN pair. The analogous diagrams for isovector
NN pairs were not studied yet, however, their contribution
is intimately connected to the reaction pp → ppπ0. The
total cross section near threshold in this pion production
channel, which is the relevant quantity to estimate the
contributions from the NN–cuts, is more than an order of
magnitude smaller than that of pp → pnπ+ [45]. In addi-
tion, the ∆–isobar is a lot less important in that channel
compared to the deuteron channel [46]. In total, we there-

2 Note, the group of so–called disconnected diagrams (where
the pion is absorbed on one nucleon and emitted from another
one) are included in the dispersive corrections.
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fore expect a negligible contribution from intermediate∆’s
and NN–cuts to pion-nucleus scattering.

In Ref. [20] also corrections that arise through the
boost of the πN interaction were identified as numerically
significant. However, in a formalism that includes the ∆
as explicit degree of freedom this is no longer the case [22]
— see also discussion at the end of Sec. 2.

Therefore, we may assume that the contributions listed
in Eqs. (6) to (8) are all two-nucleon contributions that
need to be included in this calculation.

With the help of Feynman diagrams, we have obtained
the amplitude on two free nucleons. Following Weinberg,
the amplitude resulting for nucleons bound can be ob-
tained calculating the expectation value of the free ampli-
tude using the A-nucleon bound state wave function. E.g.
for A = 3, the wave function ψα (p12,p3) in momentum
space depends on the two momenta p12 and p3, which are
Jacobi momenta defined by

p12 =
1

2
(k1 − k2)

p ′

12 =
1

2
(k ′

1 − k ′

2)

p3 =
2

3
k3 − 1

3
(k1 + k2)

p ′

3 =
2

3
k ′

3 −
1

3
(k ′

1 + k ′

2) . (9)

Here ki and k ′
i are the momenta of the nucleons before and

after scattering of the pion. α denotes an index labeling
the different spin and isospin states of the three nucleons.

For the two-nucleon contribution, making use of the
conservation of momentum of the third nucleon, we obtain
in this way

〈Ô2−nucleon〉 = ∑

∫

α′

d3p′12
(2π)3

∑

∫

α

d3p12 d
3p3

× ψ∗

α′ (p ′

12,p3)Mα′α (p ′

12,p12)ψα (p12,p3) (10)

where the amplitude has also been expressed in terms of
Jacobi momenta p12 using the definitions of Eq. (9). We
note that the factors (2π)3 take into account that we nor-
malize momentum eigenstates to δ3(p− p′) ((2π)3 δ3(p−
p′)) for the wave functions (operators) throughout this
work. Eq. (10) is easily generalized to A = 4 and higher.

The corresponding contribution to the scattering length
can in general be determined via

aN−nucleon
π−A =

1

4π

(

A

N

)

(

1

1 + mπ

AmN

)

〈ÔN−nucleon〉 .

(11)

The binomial coefficient in front is introduced to take into
account the number of nucleon–N -tupel in an A-nucleon
system. This factor is three for two-nucleon operators in
3He.

3.2 Leading three-nucleon contributions

One aim of this work is to study the relative importance
of one-, two-, three-nucleon, etc. contributions explicitly.

kπ

k ′

π

q1

q3

a

b

c

d

τe
1

τ
f

2

τ
g

3

Fig. 3. Coulombian three-nucleon contribution to π-A scat-
tering.

Therefore, we now look at three-nucleon contributions to
pion-nucleus scattering. Based onWeinberg’s original power
counting, it is easy to identify the leading ones, which
are shown in Figs. 3 and 14. Note that we have omit-
ted diagrams that vanish in leading order due to thresh-
old kinematics. Naively, these diagrams are suppressed by
(mπ/mN)2 compared to the leading two-nucleon ones. A
closer look reveals that the diagram of Fig. 3 is individu-
ally independent of the parametrization of the pion field.
The resulting amplitude reads

iM(3) =

(

mπ

2f2
π

)3
1

q 2
1 q 2

3

×
{

ǫabe [(τ 1 · τ 2) τ
e
3 + (τ 2 · τ 3) τ

e
1 ]
}

(12)

Again, the propagators resemble Coulombian ones. We
therefore will refer to this amplitude as “Coulombian”
three-nucleon contribution. The definition of the momen-
tum transfers and pion isospin indices can be read off
from the figure. Note that due to the isovector structure
of this operator it will not contribute to pion scattering
on isoscalar nuclei.

Additionally to this Coulombian contribution, we found
a set of seven further diagrams, which are individually de-
pendent on the parametrization of the pion field. The sum
of these diagrams is however parametrization-independent
as is outlined in Appendix A, and the explicit expressions
are given in Appendix B. They all have in common that
at most one of the propagators is Coulombian. In the fol-
lowing, we will therefore refer to these diagrams as half-
Coulombian.

For the three-nucleon contribution, the momentum of
the third nucleon is not conserved anymore. Therefore,
the calculation of the expectation value with respect to
the A = 3 wave function reads

〈Ô3−nucleon〉 =
∑

∫

α′

d3p′12
(2π)3

d3p′3
(2π)3

∑

∫

α

d3p12 d
3p3

× ψ∗

α′ (p ′

12,p
′

3)Mα′α (p ′

12p
′

3,p12p3)ψα (p12,p3) .
(13)



S. Liebig et al.: Towards a high precision calculation for the pion-nucleus scattering lengths 7

kπ

k ′

π

q1

q2

q3

a

b

c

d

e

τ
f

1

τ
g

2

τh
3

τ i
4

Fig. 4. Coulombian four-nucleon contribution to π-A scatter-
ing.

Again, the amplitude has been expressed in terms of Ja-
cobi momenta. The contribution to the scattering length
due to the three-nucleon diagrams is then again found by
inserting Eq. (13) into Eq. (11).

3.3 Leading four-nucleon contribution

In order to also confirm our conclusions on the relative
importance of higher-body π-A amplitudes, we also need
a four-nucleon contribution which, of course, can only be
relevant for scattering on nuclei with A ≥ 4. The probably
most important contribution is Coulombian and shown
in Fig. 4. Based on Weinberg’s original power counting,
this contribution is suppressed by (mπ/mN)4 compared
to the leading two-nucleon contributions. Again, it is in-
dependent of the parametrization of the pion field. Note
that this diagram is not a complete set of leading four-
nucleon terms. We will only evaluate its contribution to
have an estimate of possible higher order contributions to
π-A scattering.

It is an easy exercise to find the corresponding ampli-
tude

iM(4) = i

(

mπ

2f2
π

)4
1

q 2
1 q 2

2 q 2
3

×
{

2δab (τ 1 · τ 2) (τ 3 · τ 4)

+ (τ 1 · τ 4)
(

τ a
2τ

b
3 + τ b

2τ
a
3

)

− (τ 3 · τ 4)
(

τ a
1τ

b
2 + τ b

1τ
a
2

)

− (τ 1 · τ 2)
(

τ a
3τ

b
4 + τ b

3τ
a
4

) }

. (14)

This amplitude then enters the evaluation of the expecta-
tion value analogously to Eqs. (10) and (13) for the two-
and three-nucleon operators

〈Ô4−nucleon〉 =

∑

∫

α′

d3p′12
(2π)3

d3p′3
(2π)3

d3q′4
(2π)3

∑

∫

α

d3p12 d
3p3 d

3q4

× ψ∗

α′ (p ′

12,p
′

3, q
′

4)Mα′α (p ′

12p
′

3q
′

4,p12p3q4)
× ψα (p12,p3, q4) . (15)

Here, we express the 4He wave function ψ in terms of
Jacobi momenta. p12 and p3 are the same as in the three-
nucleon case. q4 is the relative momentum of nucleon 4
and the cluster of nucleons 1, 2 and 3. For details of the
representation of the wave functions, we refer to [36].

4 Numerical method

In this section, we want to introduce briefly the numerical
method used for the evaluation of the pertinent integrals.
Whereas expectation values for 2H can be easily obtained
using standard methods of integration or using a partial
wave decomposition, this becomes more and more tedious
for more and more complex nuclei. One aim of this work
was to establish a scheme to evaluate expectation values in
momentum space based on Monte Carlo (MC) integration
without performing a partial wave decomposition.

In this way, we were able to generate the numerical
expressions of the amplitude reliably with the help of a
Mathematica script. The resulting FORTRAN code lines
could be included in a FORTRAN code evaluating the
high dimensional integrals given above.

For the evaluation, it turned out that simple MC in-
tegration requires a large number of trial points to ob-
tain acceptably small standard deviations. In our tests,
we found that most trial points consisted of momenta for
which the wave functions are nearly zero. Therefore, ob-
viously, an importance sampling similar to the Metropolis
algorithm [47] is required to keep the computational needs
small and increase the accuracy.

Usually such an importance sampling is guided by the
square of the wave function. In configuration space, this
quantity is perfectly suited as a weight function for the
Metropolis algorithm since the weight function is then au-
tomatically normalized to one at least as long as the opera-
tors are local. For momentum space, the structure is more
complicated, since the integrals require weight functions
with higher dimensionality as in configuration space. This
implies that a simple square of the wave function is not
useful for the importance sampling anymore. This prob-
lem could be solved by performing part of the integrals
using standard methods as has been successfully done in
[48]. We found this approach less practical in our case,
since the three- and four-nucleon operators would require
to perform high dimensional integrations using standard
integration methods.

Our solution was to give up weight functions based on
the wave functions of the system, but choose a rational
ansatz instead. The parameters of the ansatz were then
adjusted so that the standard deviation in test cases was
minimized. In this way, we were able to improve the ac-
curacy sufficiently. At the same time, the weight function
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Table 1. Values for the parameters of the weight function for
various cutoffs of the leading order chiral interaction, AV18
and CD-Bonn wave functions. We always chose Cp12 = Cp′

12

and Cp3 = Cp′
3

Λ[fm−1] r Cp12 [fm−1] Cp3 [fm−1]

2.0 7.6 1.25 1.0
3.0 7.6 1.25 1.0
4.0 7.4 2.75 1.25
5.0 7.4 2.75 1.25
10.0 8.5 5.2 3.25
20.0 9.7 8.75 6.0
AV18 7.6 3.0 1.25
CD-Bonn 7.6 3.0 1.25

could be analytically normalized to one so that the calcu-
lations became feasible.

E.g. we choose for the importance sampling for inte-
grals of the form of Eq. (13) a weight function depending
on the four integration variables pi = p12, p3, p

′
12 and p ′

3

w (p ′

12,p
′

3,p12,p3) ≡ w (p′12, p
′

3, p12, p3)

=
∏

i

(r − 3) (r − 2) (r − 1)

8π

C
(r−3)
pi

(pi + Cpi
)
r

(16)

For simplicity, the ansatz only depends on the magnitude
of the momenta. With the parameters Cpi

and r the shape
of the weight functions can be influenced. The ansatz guar-
antees (for large enough r) that the weight function is
normalized to

∫

d3p′12d
3p′3

∫

d3p12d
3p3w (p ′

12,p
′

3,p12,p3) = 1. (17)

A detailed description of our tests of this method can
be found in [49]. Here we only summarize the resulting pa-
rameters in Table 1. For the more simple integral Eq. (10),
the weight function was simplified in the obvious way just
dropping terms depending on p′

3
. We used the same pa-

rameters in both cases.
Still, the size of the integrand is driven by the size of

the wave functions. This is reflected in a strong depen-
dence of the parameters on the wave function used. In the
table, we give our choice for the leading order chiral wave
functions with different cutoffs Λ and the wave functions
obtained based on AV18 and CD-Bonn. For the higher or-
der chiral wave functions, we used the same parameters
as for the leading order Λ = 2 fm−1 wave functions, since
the momentum dependence is similar in this case.

As a first test, we compare results for 2H obtained with
a traditional partial wave (PW) decomposition and with
the MC method. The partial wave decomposed amplitudes
are listed in Appendix C. In Table 2, the results are com-
pared. One can see that the MC results agree well with
the PW values and that these agree well with the previ-
ously obtained values of [20]. We note that 2/3 of the MC
results are within 1σ of the PW result. We found a few
values with more than 2σ deviation. These outliers are

generally expected for a MC calculation and indicate that
the probability distribution is not normal, but has more
extended shoulders. Note, as usual the numerical accuracy
of the MC calculation can easily be enhanced by increas-
ing the number of runs — we stopped our evaluations as
soon as the numerical accuracy was higher than the the-
oretical accuracy of the calculation, which is of the order
of a few percent as discussed below.

5 Testing the counting schemes

5.1 Cutoff dependence and estimate of the leading
counter term

As was argued in the introduction, from the regulator de-
pendence of the contributions from the various diagrams
it is possible to estimate the size of the leading 4Nππ
counter term contribution. Since the estimated contribu-
tion of this term differs drastically between Q–counting
and Weinberg counting, a study of the cutoff dependence
provides a non-trivial test of the counting schemes.

The leading chiral NN interaction is given by

V (p ′,p) = −
(

gA
2fπ

)2

τ 1·τ 2
q · σ1 q · σ2
(q)2 +m2

π

+CS+CT σ1·σ2 .

(18)
In order to obtain a meaningful Schrödinger equation, it
is necessary to introduce a regulator. We here perform
regularization by a smooth cutoff function given by

f(p) = exp

(

−
( p

Λ

)4
)

(19)

which depends on a cutoff parameter Λ. The potential is
then replaced by

V (p ′,p) −→ f(p ′) V (p ′,p) f(p) (20)

In this section, we used gA = 1.2834, mπ = 139.57 MeV,
and fπ = 92.4 MeV for the leading order potential and
the pion scattering amplitudes which is close to the pa-
rameters used in [20]. Note that we use slightly different
parameters for studying 3He and 4He below.

Since we are only interested in the 3S1–
3D1 partial

wave, the deuteron channel, we arbitrarily set CT = 0
and fit CS so that the deuteron binding energy is fixed
to a experimental value for a given value of the cutoff
parameter Λ. The fit results are given in Table 3.

We are now in the position to study the Λ dependence
of the scattering length contributions due to Eqs. (6), (7),
and (8) based on the LO potential. For this, we have ad-
justed the potential so that the deuteron binding energy
is close to the experimental one. For the Coulombian di-
agram, the cutoff dependence has already been studied
in [50] in momentum space. This diagram and the triple
scattering diagram, as given in Fig. 2, have also been in-
vestigated in Refs. [51,52] with the result that, for wave
functions based on the 1π–exchange interaction, the re-
sults become independent of the cutoff in the limit of large



S. Liebig et al.: Towards a high precision calculation for the pion-nucleus scattering lengths 9

Table 2. Comparison of PW and MC results. The scattering length contribution of the different two-nucleon operators Figs.1
(a), (b)+(c) and 2 is compared for different cutoffs and phenomenological wave functions.

Λ[fm−1] a
(1a)
π−

2H
[10−3 m−1

π ] a
(1bc)
π−

2H
[10−3 m−1

π ] a
(2)
π−

2H
[10−3 m−1

π ]

PW MC PW MC PW MC

3.0 -21.37 -21.16(22) -0.666 -0.6658(4) 2.43 2.433(3)
4.0 -20.02 -19.65(9) -0.902 -0.9017(7) 1.77 1.767(2)
5.0 -19.75 -20.13(35) -0.889 -0.8904(6) 1.61 1.613(3)
10.0 -20.72 -22.68(136) -0.824 -0.8232(14) 2.35 2.345(7)
20.0 -20.78 -20.60(52) -0.867 -0.8729(40) 2.49 2.459(29)
AV18 -19.62 -19.45(13) -0.749 -0.7493(6) 1.63 1.631(3)
Nijm93 -19.84 -19.40(11) -0.743 -0.7425(3) 1.72 1.724(3)
CD-Bonn -20.20 -19.99(8) -0.553 -0.5521(4) 1.92 1.924(2)
CD-Bonn [20] -20.20 — -0.55 — — —
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π
]

Fig. 5. Contribution a
(1a)
π−

2H
due to amplitude Eq. (6) to the

π-2H scattering length depending on the cutoff Λ of the LO
potential. The result for the Nijmegen 93 is also shown “(+)”.
It is independent of Λ and is positioned arbitrarily on the plot.

-0.95

-0.90

-0.85

-0.80
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]

Fig. 6. Contribution a
(1bc)
π−

2H
due to amplitude Eq. (7) to the

π-2H scattering length depending on the cutoff Λ of the LO
potential. The result for the Nijmegen 93 is also shown “(+)”.

Λ. In Figs. 5, 6, and 7, this result is seen once more. Note
that the scales are entirely different in these figures. Ad-
ditionally, we observe that the same is true for the con-
tribution due to Eq. (7). We observe a mild oscillation of
the result, the amplitude of which is approximately 5 %
of the respective contribution — 1×10−3m−1

π in absolute

 1.6

 1.7

 1.8

 1.9

 2.0

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

   2    4    6    8   10   12   14   16   18   20

Λ [fm−1]

a
(2

)

π
−

2
H

[1
0
−
3
m

−
1

π
]

Fig. 7. Contribution a
(2)
π−

2H
due to amplitude Eq. (8) to the

π-2H scattering length depending on the cutoff Λ of the LO
potential. The result for the Nijmegen 93 is also shown “(+)”.

terms. From the comparison in Table 2, we observe that
the leading order results are in good agreement with the
previous potential model results. This is also true for the
amplitude in Eq. (8). From this we conclude that a theo-
retical accuracy of 1 × 10−3m−1

π can be reached at most
from a study of pion-nucleus scattering, which means that
a 5% accuracy can be reached.

As was already argued in Sec. 2, the dependence of the
few-body operators on the regulator used for the deuteron
wave function can give us an idea on the numerical size of
the leading counter term contribution. In Weinberg count-
ing the leading isoscalar counter term is expected to be
suppressed by a factor (mπ/mN )2 ∼ 2% compared to the
numerically leading double scattering term. This is fully
in line with the observed amount of Λ dependence, as de-
scribed in the previous paragraph, but in gross disagree-
ment to the expectations of Q–counting, where a counter
term contribution of the order of 0.2 % would be expected.
Thus, from the study of the cutoff dependence we con-
clude that Weinberg counting provides the more accurate
estimate for the leading counter term contribution.
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Table 3. Values for CS depending on the cutoff Λ. For these
fits, the experimental binding energy Ed = 2.225 MeV is re-
produced. We fixed CT = 0 in all cases.

Λ[fm−1] CS[GeV−2]

3.0 -34.2225
4.0 48.1751
5.0 562.089
10.0 -50.9683
20.0 -92.1179

5.2 Dependence of the π-2H scattering length on the
deuteron binding energy

Following up on the discussion in Sec. 2, we now study the
energy dependence of the ratios of few-nucleon contribu-
tions. If Q–counting were operative, the relative scaling of
Diagrams Figs. 1(a) and 1(b)+1(c) would strongly depend
on the binding momentum. A straightforward analysis of
Eqs. (6) and (7) shows that Diagram (a) of Fig. 1 scales
as

a
(1a)
πA ∼ m2

π/q
2 ,

while the sum of Diagram (b) and (c) scales as

a
(1bc)
πA ∼ q2/m2

π .

Thus, for the binding energy dependence of the ratio of
these two contributions we find

a
(1bc)
πA

a
(1a)
πA

∝
{

const. (Weinberg)

Ed
2 (Q–counting)

, (21)

where we used the Q–counting relation q ∼ γ together
with Eq. (2). Analogously one gets

a
(2)
πA

a
(1a)
πA

∝
{

const. (Weinberg)√
Ed (Q–counting)

, (22)

using the explicit expression for the contributions of the
individual diagrams.

We have studied the binding energy dependence of
both classes of diagrams based on the leading chiral NN in-
teraction. To this aim, we have adjusted the contact inter-
action acting in the deuteron channel so that the deuteron
was bound with unphysically large and small binding en-
ergy (see Table 4). It was then an easy exercise to cal-
culate the contributions of Figs. 1(a), 1(b)+1(c) and 2
to the scattering length depending on the binding energy
and explicitly compare to the expectations from Q– and
Weinberg counting.

Based on this observation, we are now in the position
to look in more detail at the dependence of the various
contributions on the binding energy. For this, we arbitrar-
ily choose Λ = 20 fm−1, which is in the region where the
results are almost independent of the cutoff. We start dis-
playing the binding energy dependence of the individual
contributions to the scattering length in Fig. 8. We ob-
serve that, independent of the binding energy, the contri-
bution of the Coulombian diagram is the most important

Table 4. Values for CS depending on the chosen binding en-
ergy of the deuteron Ed. For these fits, we fixed CT = 0 and
Λ = 20 fm−1.

Ed[MeV] CS[GeV−2]

0.002 -71.7689
0.005 -72.1400
0.01 -72.5574
0.02 -73.1460
0.05 -74.3088
0.1 -75.6126
0.2 -77.4471
0.5 -81.0703
1.0 -85.1564
5.0 -103.225
10.0 -118.793
20.0 -147.032
30.0 -178.149
40.0 -217.147
50.0 -271.056

two-nucleon contribution. In contrast to the naive power
counting estimates, the amplitude of Eq. (8) — the triple
scattering diagram, depicted in Fig. 2 — is the next im-
portant one. Still, it is suppressed by one order of mag-
nitude compared to the leading Coulombian two-nucleon
diagram. The contribution of this diagram will be dis-
cussed in detail in Sec. 5.3. The amplitude Eq. (7) —
shown in Fig. 1(b)+1(c) — gives an extraordinarily small
shift of the scattering length. From the observation that
this suppression is not strongly depending on the bind-
ing energy, we conclude that this suppression is unrelated
to the binding momentum as suggested in Ref. [20], but
probably accidental.

In order to be more quantitative on the relative sup-
pression of these contributions, we show in Fig. 8(d) the
ratios of the shifts of the scattering lengths due to Eqs. (7)
and (8) and the one due to Eq. (6). Based on Q–counting,
the ratio for Eq. (7) should scale like E2

d (c.f. Eqs. (21) for
small energies, the one for Eq. (8) should scale like

√
Ed

(c.f. Eqs. (22)). Our explicit calculation, however, shows
a much weaker dependence on the binding energy. This
is in strong contrast to the expectation from Q–counting.
Therefore, we conclude that Q–counting is not realized for
pion scattering on light nuclei, i.e. 2H.

It is instructive to investigate further the source of
the residual binding energy dependence reported above.
From this we will find that the ratios of contributions to
the scattering length has a logarithmic and not a power
law dependence. In addition, we will be able to show that
the physical deuteron binding energy is already beyond
the range of applicability of heavy pion effective field the-
ory. To this aim, we study the ratios within an analyti-
cal model of the deuteron wave function. To get there we
start from pionless EFT to obtain the deuteron based on a
zero range approximation of the NN interaction. However,
from different investigations it became clear that the bind-
ing momentum cannot be the only scale affecting the wave
functions of the deuteron in a model independent way: π-
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Fig. 9. Comparison of the Hulthén deuteron wave function to the S-wave part of several LO wave functions at the physical
deuteron binding energy (a) and at Ed = 0.01 MeV (b). The Hulthén wave function is shown for β = 1.7mπ . We also show the
deuteron wave functions based on contact interactions (β → ∞).

2H scattering at threshold was studied based on the per-
turbative treatment of pions in [53] and using heavy pion
EFT in Refs. [54,55] with the result that a counter term is
required in leading order where two-nucleon diagrams con-
tribute. In practice, this would imply that an extraction
of a(+) is unfeasible based on π-2H atoms. However, it was
realized that this problem is tamed once pions are treated
non-perturbatively [50,51,52,56]. In this case, the short
distance 2H wave function is affected by 1π–exchange in
such a way, that counter terms are not required to obtain
cutoff independent results. No contradiction to the naive

power counting of Weinberg is observed. Obviously, the
pion introduced scales into the wave function beyond the
binding momentum. Therefore, we add a range factor to
the vertex function, so that we are able to introduce the
intrinsic non-perturbative scale that enters through pion
exchange. In momentum space, the wave function then
reads

Ψ(p) = N(γ, β)
1

p 2 + β2

1

p 2 + γ2
, (23)
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where the normalization factor N is fixed to

N(γ, β)2 = 8πγβ(γ + β)3

by the normalization condition for the deuteron wave func-
tion. This is a wave function of the Hulthén type [57]. In
Refs. [56,50,58], it was shown that for radii larger than
0.6 fm the LO chiral wave functions are basically inde-
pendent of the regulator used for their construction. We
therefore fix β by fitting to the tail of the wave function
at Ed = 0.01 MeV. This way we find

β = 1.7mπ . (24)

It is reassuring that β turns out to be of the order
of the pion mass. If the proposed picture is correct, the
scale β should be independent of the deuteron binding en-
ergy. We confirmed that this is indeed the case as long
as we do not go to very large binding energies above the
physical one. Fig. 9 shows the S-wave deuteron wave func-
tions compared to the Hulthén ansatz. For both binding
energies, we use the same β. As one can see, the Hulthén
and chiral wave functions nicely agree for larger distances.
In Fig. 9(a) one can also see that this long range part is
independent of the cutoff used.

The limit of a point like vertex is achieved by the limit
β → ∞. In this limit the wave function of Eq. (23) be-
comes identical to the one used in theories with perturba-
tive pions [53] as well as the one used when treating the
pion as heavy field [54,55]. For completeness, we also show
this wave function in Fig. 9(a). It is obvious that such a
simplistic wave function is not a good approximation to
complete chiral wave functions. The most important ef-
fect is a reduction of the long range part, which becomes
necessary to insure the correct normalization of the wave
function.

The wave function of Eq. (23) is still sufficiently simple
that analytic calculations can be performed for the various
matrix elements discussed in this section. In particular we
find

a
(1a)
π−2H = κx

(1 + x)

(1− x)2
ln

(

4x

(1 + x)2

)

, (25)

where we introduced the dimensionless parameter x =
γ/β and

κ = β
1

8π2 (1 +mπ/2mN)

m2
π

f4
π

.

In addition, we find

a
(1bc)
π−2H = κx

(1 + x)

(1− x)2
g2A
12

×
{

ln

(

(1 + x+ m̄π)
2

(2x+ m̄π)(2 + m̄π)

)

− m̄π(1− x)2

(1 + x+ m̄π)(2x+ m̄π)(2 + m̄π)

}

, (26)

with m̄π = mπ/β and

a
(2)
π−2H = κx

(1 + x)

(1 − x)2

×
(

mπβ

4πf2
π

){

ln

(

2

x+ 1

)

+ x ln

(

2x

x+ 1

)}

,(27)

We used these analytic results, found with the Hulthén
wave functions, to predict the ratio

r =

∣

∣

∣

∣

∣

a
(1bc)
π−2H

a
(1a)
π−2H

∣

∣

∣

∣

∣

. (28)

In Fig. 10(a), this analytical result is compared to a LO
calculation for which we neglect the D-wave contribution
of the wave function. Although the results do not agree
quantitatively, it is obvious that the simplified calcula-
tion based on the Hulthén ansatz is able to describe the
energy dependence qualitatively. The inclusion of the D-
wave changes the result for Diagram 1(a) only marginally,
however, the full contribution for Diagram 1(b)+1(c) even
changes its sign. Let us now focus on the contributions
from only the deuteron S-wave. From Eqs. (25) and (26) it
follows directly that the suppression of Diagram 1(b)+1(c)
compared to the Coulombian 1(a) is only logarithmic, in
line with Weinberg counting, and not power law (γ4) as
predicted by Q–counting. Close inspection reveals that the
bulk of the suppression of (1bc) with respect to (1a) comes
from spin-isospin factors leading to the factor of 1/12

in a
(1bc)
π−2H. Such kind of accidental suppression, a power

counting can not capture.
It is also very interesting to investigate various limits of

Eqs. (25) and (26). As mentioned above the expressions for
the wave functions relevant for theories with perturbative
pions, as used e.g. in Ref. [53], are recovered when taking
the limit β → ∞. Then the above expressions collaps to

a
(1a)

π−2H,LO = κx ln(4x) , (29)

and

a
(1bc)

π−2H,LO = −κx g
2
A

12

×
{

ln (2(2x+ m̄π)) +
m̄π

(2x+ m̄π)

}

. (30)

Identifying β/2 with Λ∗, the given equations agree with
those of Ref. [53]. In addition we find

a
(2)

π−2H,LO
= κx

(

mπβ

4πf2
π

)

ln (2) .

Contrary to the theory with perturbative pions, in the
heavy pion effective field theory the Diagrams 1(b)+1(c)
do not appear explicitly but are absorbed in local counter
terms. A comparison of the given leading order expressions
with the full result reveals that, for Diagrams 1(b)+1(c),
there is no regime of binding energies where the given for-
mula well represents the full result. Contrary to this, the
leading order expression for Diagram 1(a) works well for
very small values of the binding energy (see Fig. 10(b)).
This is to be expected since there must be a kinematical
regime where the heavy pion effective field theory is appli-
cable. However, we find that the expressions break down
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Fig. 10. Comparison of the ratio r =
∣

∣

∣
a
(1bc)
π−

2H
/a

(1a)
π−

2H

∣

∣

∣
(a) and of a

(1a)
π−

2H
(b) obtained from the Hulthén deuteron wave function

and the S-wave part of the LO wave function for Λ = 20 fm−1 depending on the deuteron binding energy Ed. The Hulthén
result is shown for β = 1.7mπ . In (b) the results are also compared to the expansion of Eq. (29).

already for very low values of the binding energy. Already
for a binding energy of 0.1 MeV the leading order expres-
sions show a significant deviation from the full result. We
therefore conclude that for accurate calculations of π-2H
scattering neither the treatment with perturbative pions
nor heavy pion effective field theory are applicable for the
physical deuteron.

5.3 Analysis of the triple scattering diagram

The observation that the diagram shown in Fig. 2 is sig-
nificantly enhanced compared to the expectation based on
Weinberg counting was taken as a further support for Q–
counting [20]. In this subsection, we will demonstrate that
the triple scattering diagram is not enhanced as a result
of the smallness of the deuteron binding momentum but
because of the special topology of its loop diagram.

The loop that appears in the triple scattering diagram
may be written as

I0(ω, v ·Q,Q2) =
1

i

∫

ddl

(2π)d
1

(v · l − ω − iǫ)

× 1

(m2
π − l2 − iǫ)(m2

π − (l −Q)2 − iǫ)
, (31)

where v = (1, 0, 0, 0). In Ref. [59] a general solution for
this integral is given. In the kinematics relevant for π-A
scattering at threshold we find

I0(mπ, 0,−q2) =
1

8|q| + δI0, (32)

with

δI0 =
1

8π2|q|

∫ π

0

dx

(

arctan

(

2mπ

sin(x)|q|

)

− π

2

)

. (33)

In Ref. [20] only the first term on the right hand side was
included. Note that in the limit of heavy pions, as used
in Ref. [55], the contribution of δI0 vanishes. Dimensional
analysis, which is the basis of Weinberg counting, allows

us to estimate integrals. In case of I0 this analysis gives
(assuming q ∼ mπ)

I0 ∼ 1/((4π)2mπ) . (34)

Clearly, the first term on the right hand side of Eq. (32)
is enhanced by a factor of 2π2 compared to this estimate.
The remainder, δI0, on the other hand is numerically fully
in line with the estimate (34). The power counting can
only capture parametric suppressions. We therefore con-
clude that the fact that δI0 behaves in accordance with
Weinbergs power counting is a further support for its ap-
plicability. However, in a high accuracy calculation for
pion-nucleus scattering the first term of Eq. (32) is to
be kept and it is this piece that we have in the list of
operators to be included in the calculation — c.f. Eq. (8).

How can we understand the large enhancement of a
part of I0? To see this, we first observe that the enhanced
part of I0 can be directly calculated from the full Feynman
integral by only keeping the term that corresponds to the
nucleon pole. For this piece we get

Inucl. pole
0 =

∫

d3l

(2π)3
1

l2(l − q)2

=
1

8π2|q|

∫ ∞

0

dx

x
ln

(

(

x+ 1

x− 1

)2
)

. (35)

The implicit assumption behind any dimensional analysis
is that integrals, once converted into dimensionless expres-
sions, are of order 1. And indeed, if the given integral were
of order 1, the full expression would be perfectly in line
with power counting. However, one finds

∫ ∞

0

dx

x
ln

(

(

x+ 1

x− 1

)2
)

= π2 .

We trace the appearance of this large result to the presence
of an integrable singularity at x = 1 in the expression
given above. Indeed, 80 % of the exact result originate
from values of x ≤ 2.

It is interesting to note that enhancements by fac-
tors of π were already observed to emerge also in pion
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Table 5. Values for CS and CT depending on the cutoff Λ of
the LO potential.

Λ[fm−1] CS [GeV−2] CT [GeV−2]

2.0 -83.6941 2.63787
3.0 -29.0931 16.3942
4.0 86.3303 52.6427
5.0 -435.354 -122.611
10.0 -39.8356 6.36715
20.0 -66.2861 -4.03158

loop contributions to the NN potential [60], the scalar nu-
cleon form–factor [61] and the π0 photoproduction ampli-
tude [62] from similar topologies as those discussed here.
A deeper understanding, when these dimensionless factors
appear, would be very desireable.

It is also important to note that integrals of the same
topology are also relevant for the reaction NN → NNπ,
though in different kinematics. For a discussion of how to
treat these large momentum transfer reactions in ChPT,
see Refs. [63,45]. Loops for this reaction were studied in
Refs. [59,64,65,66]. It is conceivable that the problems in
understanding quantitatively especially the reaction pp→
ppπ0 are connected to the same enhancement of loops as
discussed in this section.

6 Few-nucleon wave functions

Before we can give results for the scattering lengths, we
need to specify the input going into our calculations of the
few-nucleon wave functions in more detail. We will again
study the results for LO wave functions. In contrast to 2H,
we restrict to interactions in 3S1-

3D1 and
1S0 partial waves

requiring fits of the strength of both contact interactions,
CS and CT . We determined these constants fitting to the
binding energy of 2H and the 1S0 neutron-proton phase
shift at a laboratory energy of 1 MeV. The potential was
given already in Eq. (18). For the new fits, we used for
historical reasons a different, more sharp regulator

f(p) = exp

(

−
( p

Λ

)8
)

, (36)

gA = 1.29 (utilizing the Goldberger-Treiman relation [67])
and mπ = 138.0 MeV. The results for CS and CT are
summarized in Table 5.

Based on these fits, it is a straightforward task to cal-
culate the binding energies of 3He and 4He. To this aim,
we have solved Faddeev/Yakubovsky equations in momen-
tum space following [36]. Thereby, we subtracted the poles
of unphysical spurious NN bound states from the 2N t-
matrix as outlined in [37]. As was already shown in the
same reference, the binding energies become rather inde-
pendent of Λ for large Λ. However, in LO, the binding
energies of 3He and 4He do not well reproduce the ex-
perimental values. Table 6 shows our results for the var-
ious NN potentials used. In LO, the 3He binding energy
is varying for the different cutoffs by almost 6 MeV. Such

Table 6. Summary of the 3He and 4He binding energy results
for the LO, NLO, and N2LO chiral interactions, AV18 and CD-
Bonn. For the LO interaction, the cutoff Λ is given in [fm−1].
For the chiral interaction, the Lippmann-Schwinger cutoff Λ
and spectral function cutoff Λ̃ is given in MeV [28]. The binding
energies are given in MeV. For 4He, we have not performed
calculations for all cutoffs in LO.

Λ / Λ̃ B(3He) B(4He)

LO 2.0 / – 11.042 39.88
LO 3.0 / – 6.878 20.25
LO 4.0 / – 6.068 17.08
LO 5.0 / – 5.987 16.48
LO 10.0 / – 5.611 15.05
LO 20.0 / – 5.429 —

NLO 400/500 7.678 28.57
NLO 550/500 6.991 24.38
NLO 550/600 7.051 24.72
NLO 400/700 7.699 28.77
NLO 550/700 7.090 24.94

N2LO 450/500 7.717 28.04
N2LO 600/500 7.740 28.11
N2LO 550/600 7.722 28.28
N2LO 450/700 7.726 27.65
N2LO 600/700 7.808 28.57

CD-Bonn — 7.719 28.28
AV18 — 7.736 28.36

Expt. — 7.718 28.30

a large variation can be expected in low orders, since the
binding energies are specifically sensitive to changes of the
potential [68]. Note that we did not include the Coulomb
interaction in these LO calculations, whereas we did in-
clude the Coulomb interaction for the other orders and
the phenomenological NN forces. In NLO, for a smaller
range of cutoffs, the variation is reduced, but still visi-
ble. In NLO, again, there is an appreciable deviation from
the experimental values. It is only in N2LO, that three-
nucleon forces (3NF’s) contribute [29,69], which ensure by
construction that the binding energies are close to the ex-
perimental results. For the phenomenological interactions,
it is by now standard to augment the Hamiltonians by
phenomenological 3NF’s [70,36,71] mostly based on the
Urbana [72] or Tucson-Melbourne [73] models. Also here,
the 3NF’s are then adjusted so that the binding energies
of 3He and 4He are close to the experimental values. Based
on these adjustments, we are now in the position to calcu-
late shifts of the pion-nucleus scattering length due to the
few-nucleon contributions based on LO, NLO, and N2LO
chiral wave functions and on state-of-the-art phenomeno-
logical ones.

7 Two- and three-nucleon contributions to

π-3He scattering

We now study the few-nucleon contributions to π-3He
scattering in more detail with the goal to get a better,
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Table 7. Summary of the shifts of the π-3He scattering length due to the few-nucleon corrections a
(1a)
π−

3He
, a

(1bc)
π−

3He
, a

(2is)
π−

3He
,

a
(2iv)
π−

3He
, a

(3)
π−

3He
, and a

(14 )

π−
3He

. For LO, the cutoff Λ is given in fm−1, for NLO and N2LO, both cutoffs (Λ/Λ̃) are given in MeV.

Central values and standard deviation for the scattering length results are given in units of
[

10−3 m−1
π

]

.

Λ/Λ̃ a
(1a)
π−

3He
a
(1bc)
π−

3He
a
(2is)
π−

3He
a
(2iv)
π−

3He
a
(3)
π−

3He
a
(14 )

π−
3He

CD Bonn — −25.08(6) −0.329(1) 2.769(2) 0.890(1) −4.020(73) −0.789(6)
AV18 — −24.13(9) −0.884(1) 2.286(3) 0.788(1) −3.536(36) −0.728(4)

LO 2.0/ – −30.20(5) 1.711(1) 4.418(1) 1.935(1) −6.755(123) −2.339(6)
LO 3.0/ – −23.76(13) −0.053(1) 2.445(1) 1.553(1) −4.493(38) −1.762(4)
LO 4.0/ – −20.70(25) −0.327(1) 1.077(3) 1.581(1) −3.620(25) −1.556(15)
LO 5.0/ – −20.33(13) −0.120(1) 0.868(3) 1.812(1) −3.830(93) −1.740(15)
LO 10.0/ – −21.92(99) 0.128(3) 0.770(11) 2.576(5) −4.283(302) −1.872(57)
LO 20.0/ – −19.22(146) 0.296(18) −0.392(98) 4.005(76) −3.835(894) −1.743(158)

NLO 400/500 −25.36(4) 0.828(1) 3.117(1) 0.984(1) −3.934(29) −0.695(1)
NLO 550/500 −24.33(4) −0.061(1) 2.714(1) 0.645(1) −3.431(141) −0.374(1)
NLO 550/600 −24.05(2) −0.037(1) 2.637(1) 0.671(1) −3.245(22) −0.397(4)
NLO 400/700 −25.23(3) 0.847(1) 3.085(2) 1.002(1) −3.898(21) −0.720(2)
NLO 550/700 −24.05(5) −0.020(1) 2.564(1) 0.692(1) −3.311(15) −0.435(4)

N2LO 450/500 −25.76(4) 0.642(1) 3.189(2) 0.987(1) −3.979(7) −0.721(2)
N2LO 600/500 −25.60(5) −0.021(1) 3.039(3) 0.779(1) −3.826(58) −0.496(4)
N2LO 550/600 −25.55(2) 0.233(1) 3.104(3) 0.952(1) −4.057(75) −0.708(4)
N2LO 450/700 −25.25(4) 0.611(1) 3.104(1) 1.052(1) −4.038(15) −0.806(1)
N2LO 600/700 −25.51(7) 0.094(1) 3.022(2) 0.985(1) −4.056(53) −0.734(2)

quantitative understanding of the relative importance of
N - and (N + 1)-nucleon operators.

The results for 3He are summarized in Table 7. To ob-
tain these values, we have used the Monte Carlo scheme
introduced in Sec. 4. The table gives the averaged results
together with the estimate of the standard deviation. In
all cases, we have performed several independent runs and
checked that the spread of the different results is in rea-
sonable agreement with the expectations from our esti-
mates of the standard deviation. The table distinguishes

the shifts of the π-3He scattering due to Eqs. (6) (a
(1a)
π−3He),

(7) (a
(1bc)
π−3He), (8) (isoscalar part a

(2is)
π−3He and isovector part

a
(2iv)
π−3He, respectively), and (12) (a

(3)
π−3He), and due to the

sum of the contributions listed in Appendix B (a
(14 )
π−3He).

Based on reasonable assumptions for a(±), the one-
nucleon contribution to the scattering length was found to

be a
(1N)
π−3He = (92 ± 15) × 10−3m−1

π [74]. The uncertainty

in this result is mainly due to the uncertainty in a(+) mul-
tiplied by 3 as follows from Eq. (1). On the other hand,
it was realized in Refs.[4,14,75] that the inclusion of the
leading IV effects in π-N scattering leads to the replace-
ment of a(+) by ã(+) in Eq.(1). In addition to this, at the
same order there is also an isospin violating electromag-
netic correction to π-3He scattering: −αf2/2/(1 + mπ

3mN
)

with α = 1/137 and LEC f2 = (−0.97 ± 0.38)GeV−1

[7]. The latter, however, gives a relatively small shift of
the scattering length by (0.5 ± 0.2)× 10−3m−1

π . A recent
systematic analysis of isospin violating effects in π-N scat-

tering up to NLO [5,6] resulted in updated values for ã(+)

and a(−) [76] from a combined analysis of pionic hydrogen
and deuterium data:

ã(+) = (1±1)×10−3m−1
π , a(−) = (86.5±1.2)×10−3m−1

π .
(37)

In the same works numerically significant subleading IV
corrections were identified. Those may be included here
by changing

ã(+) → ã(+) +∆ã(+) and a(−) → a(−) +∆a(−) ,

with ∆ã(+) = (−3.35± 0.28) and ∆a(−) = (1.39 ± 1.33),
both values again in units of 10−3m−1

π . Equipped with
these numbers we get an updated value for the one-nucleon

contribution a
(1N)
π−3He = (88± 4)× 10−3m−1

π .

Also in Ref. [74], the contribution of the two-nucleon
diagrams was estimated based on approximated wave func-

tions for CD-Bonn. Their result is a
(2N)
π−3He = −26×10−3m−1

π

which is in acceptable agreement with our full calculation.
In this work, we aim at the theoretical improvement of the
result of Ref. [74] in several aspects. First, using chiral
nuclear wave functions up to N2LO allows us to analyze
systematically the model dependence of our results. Sec-
ond, the empirical enhancement of the triple scattering
diagram, discussed in subsection 5.3, calls for an inclu-
sion of this two-nucleon operator also in π-3He scattering.
We find that the isoscalar part of the triple scattering
diagram reduces the leading double scattering contribu-
tion by about 12% which is fully in line with the corre-
sponding contribution to π-2H scattering. Moreover, the
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Fig. 11. Leading few-nucleon contributions a
(1a)

π−
3He

and

a
(3)

π−
3He

to the π-3He scattering length. The crosses denote the

results obtained by using the LO chiral wave function (triangle
up: AV18, triangle down: CD-Bonn).

triple scattering diagram is even further enhanced to a
quite sizable 15% contribution once the isovector part is
included. In addition, for the first time, we investigate the
role of the leading three-nucleon contributions. From Ta-
ble 7 it becomes clear that three-nucleon contributions are
suppressed compared to the two-nucleon ones. Again, the

Coulombian contributions a
(1a)
π−3He, a

(2)
π−3He and a

(3)
π−3He are

a lot more important than the non- or half-Coulombian
ones although the binding momentum is larger for 3He
than for 2H.

It was already discussed in Sec. 2 that, in case of isovec-
tor nuclei, counter terms start to contribute from lower
orders than in isoscalar nuclei. Due to this fact the theo-
retical accuracy of the extraction of the πN low energy pa-
rameters from π-3He is, unfortunately, significantly lower
than from π-2He or π-4He. The contribution of the isovec-
tor counter term in π-3He scattering can be estimated

using dimensional analysis to be ∼ mπ/mN · a(1a)
π−3He ≈

4 × 10−3m−1
π . On the other hand, the isovector contact

term is expected to be enhanced by mN/mπ compared to
its isoscalar counter part, which was estimated above (see
sec. 5.1) to be of order 1 × 10−3m−1

π . This would provide
us with an estimate of 7 × 10−3 m−1

π . Both numbers are
consistent and we use the latter uncertainty below.

To support our uncertainty estimates it is important
to study the cutoff dependence of the various scattering
length shifts and to compare it to the counter term con-
tribution. The cutoff dependence is shown in Figs. 11 and
12. We noticed that the results depend strongest on the
cutoff of the Lippmann-Schwinger equation Λ. Therefore,
we plotted the results depending on this cutoff for NLO
and N2LO neglecting the mild dependence on the spectral
function cutoff Λ̃ (see [28] for more details on the definition
of this cutoff). We also included the results for CD-Bonn
and AV18 in these figures, which we arbitrarily positioned
left of the other data.

Fig. 11 shows the most important two- and three-
nucleon contributions, the Coulombian ones. It becomes
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clear that most of the dependence on the cutoff is for cut-
offs below 5 fm−1. The suppressed contributions for the
non- or half-Coulombian diagrams are shown in Fig. 12.
Also here, we observe that the cutoff dependence becomes
mild for larger Λ. But the results based on the LO wave
functions are not always in good agreement with the ones
for phenomenological and higher order wave functions.
Apparently, the cutoff dependence is not as strong as other
higher order contributions for these diagrams. Obviously,
the small size of the contributions amplifies small effects.
Especially, the counter term contribution is significantly
larger than the few-nucleon terms presented in Fig.12.

Quantitatively more significant is the cutoff depen-
dence of the Coulombian diagrams for small Λ. We found
that for these contributions the cutoff dependence is driven
by the binding energy of 3He. This is shown explicitly in
Fig. 13, where the results of Fig. 11 are plotted again,
this time depending on the binding energy. Basically, the
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smaller is the cutoff the larger is the binding energy (see
Table 6) and the larger is the scattering length for the
dominant two- and three-nucleon contributions. Whereas
this fact does not change our conclusion on the power
counting below, it will be interesting for the extraction
of π-N scattering lengths from data on light nuclei. Ob-
viously, the uncertainty due to higher order contributions
to the wave function can be reduced by the requirement
that the binding energy is correctly described. In this way,
the effective dependence of the scattering length shifts on
the order of the interaction is reduced to approximately
1 ×10−3m−1

π . This uncertainty is smaller than the esti-
mated contribution of the contact term and therefore ir-
relevant for the estimation of total theoretical accuracy.

The net contribution of two- and three-nucleon terms
to π-3He scattering length can be read off from Table 7
(the numbers are in 10−3m−1

π )

a
(2N+3N)
π−3He =(−25.6 + 4.0 + 0.3) + (−4.0− 0.7)± 7

= −26.0± 7 . (38)

Here the numbers in the first(second) bracket correspond
to the average results for two(three)-nucleon contributions
calculated with N2LO wave functions. The uncertainty
due to the use of different wave functions is not shown,
for it is much smaller than the estimated contact term
contribution. In addition, we argued in Sec. 3.1 that we
do not expect large corrections to the π-3He scattering
length due to the net effect of the dispersive and the ∆
contributions. Thus, our prediction for the π-3He scatter-
ing length is

a
(1N+2N+3N)
π−3He = (62± 4± 7)× 10−3m−1

π (39)

where the first uncertainty is due to ambiguities in π-
N scattering lengths whereas the second one represents
the uncertainty in the few-nucleon effect. This result does
not include isospin violating few-nucleon effects. Those are
found to be sizable for π-2H scattering [77] although signif-
icantly smaller than the theoretical uncertainty of π-3He
calculation. The result of Eq.(39) is to be compared to the

Table 8. Experimental results for the π-3He scattering length.
The entries contain measured energy level shifts of π-3He
atomic bound states together with corresponding scattering
lengths.

ǫ1s [eV] aπ−
3He

[

10−3 m−1
π

]

R. Abela et al. [78] 44 ± 5 56 ± 6
G. R. Mason et al. [79] 34 ± 4 43 ± 5
I. Schwanner et al. [80] 32 ± 3 41 ± 4

experimental results for the π-3He scattering lengths given
in Table 8. Those are extracted from the measurements of
the 1s level shifts in π−-3He atom due to the strong inter-
actions [78,79,80] by using DGBT-type formulae [81] and
including logarithmic corrections of Ref. [82]. The table

Table 9. Numerical results for the relative scalings of the few-
nucleon contributions.

Λ/Λ̃ a
(2N)

π−
3He

/a
(1N)

π−
3He

a
(3N)

π−
3He

/a
(2N)

π−
3He

CD-Bonn — 0.220 0.221
AV18 — 0.222 0.194

NLO 400/500 0.206 0.227
NLO 550/500 0.212 0.181
NLO 550/600 0.210 0.175
NLO 400/700 0.205 0.228
NLO 550/700 0.210 0.180

N2LO 450/500 0.212 0.222
N2LO 600/500 0.220 0.194
N2LO 550/600 0.215 0.224
N2LO 450/700 0.207 0.236
N2LO 600/700 0.216 0.224

demonstrates that the results of the first measurement are
in contradiction with the others even within the large ex-
perimental uncertainties. It is getting even more intriguing
because it is only the first measurement that agrees with
our theoretical prediction (39) based on ChPT. Clearly,
a new measurement of this quantity recently performed
at PSI [83] is of high importance to resolve the existing
discrepancies.

In Table 9, we have compiled the relative contribu-
tions of one-nucleon, two-nucleon, and three-nucleon dia-

grams (a
(1N)
π−3He, a

(2N)
π−3He, and a

(3N)
π−3He). We omitted the re-

sults of the LO wave functions here, since their description
of the binding energies is generally poor. It sticks out that,
numerically, the suppression of few-nucleon corrections is
less than expected by Weinberg’s power counting. Based
on these findings, we are led to the conclusion that the
power counting gives reasonable guidance in identifying
the most important contributions, however, for a quan-
titative understanding, explicit calculations for the lead-
ing few-nucleon contributions are necessary to estimate
the contribution of the class of N -nucleon contributions.
Qualitatively, more-nucleon diagrams are still sufficiently
suppressed so that the series of one- , two-, ... nucleon con-
tributions can be truncated at sufficiently low complexity
of the problem — we find a factor of 5 suppression when
going from an N -nucleon operator to an (N + 1)-nucleon
operator. It is important to note in this context that we
find the same suppression factor for N = 1, N = 2, and, as
will be shown in the next section, N = 3. Due to this, the
four-nucleon diagrams turn out to be already insignificant.

In summary, we have calculated π-3He scattering length
including leading three-nucleon terms and two-nucleon op-
erators. Due to the presence of the large contact term
in the isovector channel the present calculation basically
reaches the edge of the theoretical accuracy. We also find
that the results are in qualitative agreement with Wein-
berg’s counting.
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Table 10. Summary of the shifts of the π-4He scattering length due to the few-nucleon corrections a
(1a)
π−

4He
, a

(1bc)
π−

4He
, a

(2)
π−

4He
,

and a
(4)
π−

4He
. For NLO and N2LO, both cutoffs (Λ/Λ̃) are given in MeV. Central values and standard deviation for the scattering

length results are given in 10−3m−1
π .

Λ/Λ̃ a
(1a)
π−

4He
a
(1bc)
π−

4He
a
(2)
π−

4He
a
(4)
π−

4He

AV18 — -49.5(7) -1.29(2) 5.00(5) 2.73(84)
NLO 400/500 -56.1(15) 3.02(1) 7.18(1) 2.79(11)
NLO 550/500 -51.0(8) 0.41(1) 6.04(2) 2.18(22)
NLO 550/600 -51.4(5) 0.53(1) 5.95(1) 2.02(22)
NLO 400/700 -54.5(3) 3.10(1) 7.13(2) 3.92(42)
NLO 550/700 -51.6(12) 0.58(1) 5.72(1) 2.54(59)

N2LO 450/500 -54.4(4) 1.92(1) 6.98(2) 3.00(20)
N2LO 600/500 -52.0(8) -0.09(2) 6.16(3) 2.13(11)
N2LO 550/600 -52.7(6) 0.50(1) 6.42(3) 2.31(31)
N2LO 450/700 -52.7(7) 1.81(1) 6.68(3) 2.56(10)
N2LO 600/700 -53.9(8) 0.36(1) 6.34(2) 2.81(17)

8 Two- and four-nucleon contributions to

π-4He

Finally, we want to discuss the few-nucleon contributions
to π-4He scattering. Because of the isovector character of
the leading three-nucleon contributions, we here only need
to study two- and four-nucleon ones. Our results are sum-
marized in Table 10. Qualitatively, the results for the two-
nucleon operators are similar to the ones for π-2H and for

π-3He scattering. The leading two-nucleon term a
(1a)
π−4He is

the by far most important contribution depending on a(−).

Just based on the symmetry arguments a
(1a)
π−4He should be

approximately twice as large as the one in π-3He scatter-
ing. As one can see from Tables 7 and 10, this is indeed
supported by our results. In addition, the contribution

a
(1a)
π−4He is approximately twice as large as for the deuteron

although the number of NN pairs is six. This can be ex-
pected from the isospin structure of this amplitude leading
to opposite signs for the contributions of neutron-proton
pairs and proton-proton (or neutron-neutron) pairs [84].
Trivially, the one-nucleon terms in π-4He and in π-2H scat-
tering also scale with a factor 2, as seen from Eq. (1).
Unfortunately, this implies that the correlation of a(−)

and a(+) due to experimental results for π-4He scatter-
ing is very similar to the one based on a π-2H analysis.
The most important correction to the leading two-nucleon
term originates from the triple scattering diagram. Again,
it is enhanced compared to the estimate of naive dimen-
sional analysis. In full analogy with π-2He and π-3He scat-

tering the ratio a
(2)
π−4He/a

(1a)
π−4He is about 0.1-0.13 and is

only smoothly dependent on the cutoff.
From the cutoff variation of the N2LO results, we es-

timate that missing counter terms should contribute of
the order of 2 × 10−3m−1

π . This is approximately 4 %
and in line with our expectations from Weinberg count-

ing. a
(1bc)
π−4He is again suppressed and negligible compared

to the cutoff dependence of a
(1a)
π−4He. Similar to the results

for π-3He, even the sign of this contribution is not fixed

clearly indicating the sensitivity to the short distance part
of the wave functions.

Let us now turn to the contribution of the four-nucleon
operator a

(4)
π−4He. Its contribution is opposite in sign to the

leading two-nucleon contribution, but similar in size as the

cutoff variation of a
(1a)
π−4He and, therefore, comparable to

the contribution of the first isoscalar two-nucleon counter
terms. The relative suppression of the a

(4)
π−4He compared

to a
(1a)
π−4He is approximately 0.06. FromWeinberg counting,

however, we naively expect a much larger suppression of
(mπ/mN)4 ≃ 4× 10−4. On the other hand, this deviation
was expected and in line with the results of our calcula-
tions for π-3He where we also observed a significant overes-

timation of the calculated ratio a
(3)
π−3He/a

(1a)
π−3He compared

to the dimensional analysis. In fact we find numerically
a suppression of about 1/52 for the four-nucleon operator
compared to the two-nucleon operator, completely in line
with the pattern of successive suppression found in case
of π-3He scattering. As a result of this, the contribution
of the four-nucleon operators can be, in principle, omit-
ted, for it coincides in the magnitude with the estimated
counter term contribution. This is the reason why we do
not take into account the other four-nucleon topologies
analogous to those given in Fig. 14 for π-3He scattering:
Based on the study of the π-3He process, we expect their
contribution to be suppressed as compared to the leading
four-nucleon operator.

Thus, we conclude that pion scattering on 4He can
not provide any additional constraints on a(+) and a(−)

although this process will be helpful to study the system-
atic uncertainties of experiment and theoretical calcula-
tions. Again we find that Weinberg counting is not able
to capture quantitatively the relative suppression of oper-
ators with a different number of active nucleons.
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9 Conclusions and Outlook

In this paper, we have systematically studied the few-
nucleon contributions to pion-nucleus scattering. We com-
pared our numerical findings to power counting estimates
of two power-counting schemes, Weinberg counting and
Q–counting. Our numerical results do qualitatively sup-
port Weinberg’s power counting but not Q–counting. An
evidence for this was provided by studying the dependence
of different contributions on the binding energy of the
deuteron. This dependence is expected to be significantly
different in these two counting schemes varying from a
constant (up to logarithmic corrections) for the ratio of
relevant two-nucleon contributions in Weinberg counting
to a power law behavior in Q–counting. It is shown both
numerically and analytically that the ratio is indeed very
weakly depending on the binding energy in clear favour
of Weinberg counting. In the course of the analytic analy-
sis, we found that wave functions based on a perturbative
treatment of pions should not be used for the calculation
of pion-nucleus scattering. Especially, a treatment of the
pion as a heavy field would be justified only for unphysi-
cally small deuteron binding energies below 0.1 MeV.

Numerical results for some particular diagrams are not
in line with the estimates based on Weinberg counting.
This was resolved when we could trace back enhancement
or suppression of the pertinent diagrams either to acciden-
tal spin-isospin factors or to specific properties of the loop
function of the triple scattering diagram, which can not
be, of course, taken into account in the counting scheme.
Especially, the last insight might be of relevance for the
treatment of pion production and also NN forces.

Generally, our results point to a smaller suppression
of more-nucleon terms than expected by naive dimen-
sional analysis. To be specific, our results demonstrate
that the ratio of one-nucleon to two-nucleon to three-
nucleon to four-nucleon contributions scales roughly as
100:25:5:1 as compared to the pattern 503:502:50:1 which
can be expected from Weinberg counting. Apparently, the
additional integral measures that enter when nucleons are
added and that provide most of the suppression in the di-
mensional analysis are partially canceled by other mecha-
nisms. It should be stressed that even the relatively mild
suppression found is still quantitatively sufficient to allow
for controlled calculations for pion-nucleus scattering. Es-
pecially, for the π-4He scattering length the four-nucleon
operator is already numerically insignificant.

We performed explicit calculations up to four-nucleon
contributions to pion-nucleus scattering. Based on these
calculations, we conclude that three-nucleon contributions
might still be relevant. On the other hand, it turned out
that the most important three-nucleon diagram is isovec-
tor. Therefore, for the important case of 4He, only one-
nucleon and two-nucleon diagrams will contribute signifi-
cantly. It turned out that the relative contribution of one-
and two-nucleon diagrams is very similar for π-2H and π-
4He. Therefore we expect that the corresponding bands
a(+) vs a(−) for π-2H and π-4He will be almost on top
of each other. Thus, we tend to conclude that pion scat-
tering on 4He can not provide any additional constraints

on a(+) and a(−), however, an improved measurement of
the π−-4He atom will provide an additional cross check
of the systematics of the analysis. On the other hand, π-
3He does contain a new non-trivial dependence on a(−).
That is why we have studied this process in more de-
tail. For the first time three-nucleon contributions were
included. Based on the latest numbers for ã(+) — which
denotes the isoscalar scattering length including the lead-
ing, isoscalar isospin violating corrections — and a(−) we
obtained aπ−3He = (62±4±7)×10−3m−1

π where the uncer-
tainties are due to ambiguities in π-N scattering lengths
and in the unknown isovector two-nucleon contact opera-
tor, respectively. Unfortunately, the large theoretical un-
certainty related to the contact term in the isovector chan-
nel precludes one from considering π-3He scattering on the
same footing with π-H and π-2H processes to extract ã(+)

and a(−). On the other hand, the results of a new measure-
ment of π-3He at PSI [83] which are currently analyzed,
are of high interest to check the predictions of ChPT, espe-
cially since the theoretical value lies above the most recent
experimental value (we find a 2σ discrepancy), while it is
consistent with an earlier measurement.

Our results also showed that we are able to predict
few-nucleon contributions for pion scattering off isoscalar
(isovector) nuclei up to a level of 5 % (30 %3) of the leading
two-nucleon contributions before additional counter terms
enter. Since isospin violation is predicted to contribute at
the few-percent level as well, it will be required to further
work on IV contributions, before we finally extract a(+)

and a(−) from the available data on pionic atoms. Work
in this direction is in progress [77].
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Part of the numerical calculations have been performed on the
super computer cluster of the NIC, Jülich, Germany.

A Independence of three-nucleon diagrams

on the parameterization of the pion field

In this appendix, we explicitly show the independence of
the sum of Feynman diagrams depicted in Fig. 14 on the
parametrization of the pion field. For this, we closely fol-
low the recipe outlined in [85]. We start with the most
general expression for the chiral matrix U (π)

U (π) = exp

(

i

fπ
(τ · π) g

(

π 2/f2
π

)

)

. (40)

where the function g is an arbitrary regular function with
the property g (0) = 1. After expansion up to second order

3 This is 10% of the full scattering length, since for isovector
targets, contrary to their isoscalar counter terms, the scattering
length is dominated by the one-nucleon term.
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in the pion fields it can be written as

g
(

π 2/f2
π

)

= 1 +

(

α+
1

6

)

π 2

f2
π

+ . . . . (41)

For α = − 1
6 this equals the expression for the chiral matrix

U in the so-called exponential gauge, U = exp
(

i
fπ

(τ · π)
)

.

In the σ-gauge we have U =
√

1− π2

f2
π
+ i

fπ
τ · π, which is

reproduced up to terms of fourth order in the pion fields
by using α = 0 (for details see [85,49]).

Based on this ansatz for the chiral matrix U , it is easy
to derive the corresponding Feynman rules for the NNπ,
NN2π, NN3π, NN4π, and 4π vertices. The first two of the
vertices, turn out to be independent of α:

VNNπ = − gA
2fπ

(σ · q) τa (42)

VNN2π =
1

4f2
π

v · (q2 − q1) ǫ
abcτc (43)

The third, fourth, and fifth one depend on α. They are
given by

VNN3π = − gA
4f3

π

σ

·
{

δabτc [q1 + q2 + 4α (q1 + q2 + q3)]

+δacτb [q1 + q3 + 4α (q1 + q2 + q3)]

+δbcτa [q2 + q3 + 4α (q1 + q2 + q3)]
}

(44)

VNN4π =
1

8f4
π

(1 + 8α) v

·{δabǫfcd (q4 − q3) + δbcǫfad (q4 − q1)
+δcdǫfab (q2 − q1) + δacǫfbd (q4 − q2)

+δadǫfbc (q3 − q2) + δbdǫfac (q3 − q1)}τf(45)

V4π =
i

f2
π

{

[

(q1 + q2)
2 −m2

π + 2α

4
∑

i=1

(

q2i −m2
π

)

]

δabδcd

+

[

(q1 + q3)
2 −m2

π + 2α

4
∑

i=1

(

q2i −m2
π

)

]

δacδbd

+

[

(q1 + q4)
2 −m2

π + 2α

4
∑

i=1

(

q2i −m2
π

)

]

δadδbc

}

(46)

For these expressions, we assume that all momenta are
going out of the vertices.

Here, we are not interested in the expressions for the
amplitudes, but only in the α dependence. Therefore, for
simplicity, we only keep the α-dependent terms and show
that these vanish for the sum of the diagrams in Fig. 14.

We identified seven α-dependent diagrams in leading
order, which we summarize in Fig. 14. Choosing v =

(1, 0, 0, 0), it is easy to derive for the α-dependent part
of the threshold amplitude shown in Diagram (a)

iM(14a) = −α g2Amπ

4f6
π

1

(q21 −m2
π) (q

2
3 −m2

π)

(σ1 · q1) (σ3 · q3) τ
f
2

×
{

ǫadf
(

τb1τ
d
3 + τd1 τ

b
3

)

+ ǫdbf
(

τa1 τ
d
3 + τd1 τ

a
3

)

+2ǫabf (τ 1 · τ 3)} (47)

Similarly, for Diagram (b)-(g) one finds

iM(14b) = α
g2Amπ

4f6
π

(σ1 · q1) (σ3 · q3) τ
f
2

{

ǫdbf
(

τa1 τ
d
3 + τd1 τ

a
3

)

+ ǫabf (τ 1 · τ3)
}

×
[

1

(q21 −m2
π) (q

2
3 −m2

π)
+

1

(q21 −m2
π) (q

2
2 −m2

π)

+
1

(q22 −m2
π) (q

2
3 −m2

π)

]

(48)

iM(14c) = α
g2Amπ

4f6
π

(σ1 · q1) (σ3 · q3) τ
f
2

{

ǫadf
(

τb1τ
d
3 + τd1 τ

b
3

)

+ ǫabf (τ 1 · τ3)
}

×
[

1

(q21 −m2
π) (q

2
3 −m2

π)
+

1

(q21 −m2
π) (q

2
2 −m2

π)

+
1

(q22 −m2
π) (q

2
3 −m2

π)

]

(49)

iM(14d) = −α g2Amπ

4f6
π

1

(q21 −m2
π) (q

2
2 −m2

π)

(σ1 · q1) (σ3 · q3) τ
f
2

×
{

ǫdbf
(

τa1 τ
d
3 + τd1 τ

a
3

)

+ ǫabf (τ 1 · τ 3)
}

(50)

iM(14e) = −α g2Amπ

4f6
π

1

(q21 −m2
π) (q

2
2 −m2

π)

(σ1 · q1) (σ3 · q3) τ
f
2

×
{

ǫadf
(

τb1τ
d
3 + τd1 τ

b
3

)

+ ǫabf (τ 1 · τ 3)
}

(51)

iM(14f) = −α g2Amπ

4f6
π

1

(q22 −m2
π) (q

2
3 −m2

π)

(σ1 · q1) (σ3 · q3) τ
f
2

×
{

ǫdbf
(

τa1 τ
d
3 + τd1 τ

a
3

)

+ ǫabf (τ 1 · τ 3)
}

(52)

iM(14g) = −α g2Amπ

4f6
π

1

(q22 −m2
π) (q

2
3 −m2

π)
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Fig. 14. Individually α-dependent leading three-nucleon contributions to pion-nucleus scattering.

(σ1 · q1) (σ3 · q3) τ
f
2

×{ǫadf
(

τb1τ
d
3 + τd1 τ

b
3

)

+ ǫabf (τ 1 · τ 3)}(53)

Based on these expressions, it is easy to convince oneself
that the sum of the expressions Eqs. (47) to (53) cancels.
This implies that the sum of the diagrams is independent
of α.

B Explicit expressions for the

half-Coulombian three-nucleon diagrams

In this appendix, we summarize the explicit expressions
for the amplitudes of Fig. 14. The sum of these diagrams
is independent of the parametrization of the pion field as
discussed in Appendix A. We refer to these amplitudes as
half-Coulombian because for most of the diagrams of this
group one of the pion propagators is 1

q2 . They read

iM(14a) = −g
2
Amπ

32f6
π

1

(q 2
1 +m2

π) (q
2
3 +m2

π)

× (σ1 · q1) (σ3 · q3)

×
{

ǫadf
(

τb1τ
d
3 + τd1 τ

b
3

)

+ ǫdbf
(

τa1 τ
d
3 + τd1 τ

a
3

)

+2ǫabf (τ 1 · τ 3)
}

τf2 (54)

iM(14b) =
g2Amπ

8f6
π

1

q 2
2 (q 2

1 +m2
π) (q

2
3 +m2

π)

× (σ1 · q1) (σ3 · q3)

×
{

ǫdbf
(

q 2
1 τ

a
1 τ

d
3 + q 2

3 τ
d
1 τ

a
3

)

+
(

q 2
2 +m2

π

)

ǫabf (τ 1 · τ3)
}

τf2 (55)

iM(14c) =
g2Amπ

8f6
π

1

q 2
2 (q 2

1 +m2
π) (q

2
3 +m2

π)

× (σ1 · q1) (σ3 · q3)

×
{

ǫadf
(

q 2
1 τ

b
1τ

d
3 + q 2

3 τ
d
1 τ

b
3

)

+
(

q 2
2 +m2

π

)

ǫabf (τ 1 · τ3)
}

τf2 (56)
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iM(14d) =
g2Amπ

16f6
π

1

q 2
2 (q 2

1 +m2
π)

(σ1 · q1)

×σ3 · {ǫdbf
(

q1 τ
a
1 τ

d
3 − q3 τ

d
1 τ

a
3

)

+q2 ǫ
abf (τ 1 · τ 3)}τf2 (57)

iM(14e) =
g2Amπ

16f6
π

1

q 2
2 (q 2

1 +m2
π)

(σ1 · q1)

×σ3 · {ǫadf
(

q1 τ
b
1τ

d
3 − q3 τ

d
1 τ

b
3

)

+q2 ǫ
abf (τ 1 · τ 3)}τf2 (58)

iM(14f) =
g2Amπ

16f6
π

1

q 2
2 (q 2

3 +m2
π)

(σ3 · q3)

×σ1 · {ǫdbf
(

−q1 τ
a
1 τ

d
3 + q3 τ

d
1 τ

a
3

)

+q2 ǫ
abf (τ 1 · τ 3)}τf2 (59)

iM(14g) =
g2Amπ

16f6
π

1

q 2
2 (q 2

3 +m2
π)

(σ3 · q3)

×σ1 · {ǫadf
(

−q1 τ
b
1τ

d
3 + q3 τ

d
1 τ

b
3

)

+q2 ǫ
abf (τ 1 · τ 3)}τf2 (60)

The definition of the momenta can again be read off from
the figures. For these expressions, we have assumed α = 0,
which corresponds to the σ-gauge.

C PW decomposition of the two-nucleon

operators

In this appendix, we briefly summarize the PW decom-
posed expressions for the pertinent two-nucleon operators.

The PW states for the NN system read

|α〉 ≡ |p (l s) jm〉 (61)

where p is the magnitude of the NN relative momentum,
l and s are the corresponding orbital angular momentum
and NN spin and j,m are the total angular momentum and
its projection. We abbreviate this set of quantum numbers
by α. Here we only consider π−-2H scattering. Therefore,
the two nucleons are in an |t = 0mt = 0〉 isospin state
and the cartesian components a, b = 1...3 of the pion are
(1/

√
2,−i/

√
2, 0). The pertinent isospin matrix elements

are

〈t = 0mt = 0|δab (τ 1 · τ 2) |t = 0mt = 0〉 = −3

〈t = 0mt = 0|τb1τa2 + τa1 τ
b
2 |t = 0mt = 0〉 = −2

(62)

The spin-orbital part can be expressed in terms of in-
tegrals

gnk (p
′p) = 2π(−)k

√
2k + 1

∫ 1

−1

dxPk(x)
1

qn

g̃fk (p
′p) = 2π(−)k

√
2k + 1

∫ 1

−1

dxPk(x)
1

qf
q2

(q2 +m2
π)

2

(63)

where q =
√

p2 + p′2 − 2pp′x is an internal momentum
transfer and Pk(x) is the degree k Legendre polynomial.

With these definitions the PW decomposition of the
amplitudes Eqs. (6), (7) and (8) read

〈α′|M(1a)|α〉 = − m2
π

8π3f4
π

δll′δss′δjj′δmm′

(−)l√
2l + 1

g2l (p
′p)

(64)

〈α′|M(1bc)|α〉 = g2Am
2
π

32π3f4
π

∑

f k

∑

µ1+µ2=f

(2f + 1)2







1 1 0
1 1 0
f f 0







(11f, 000)

√

(2f + 1)!

(2µ1)!(2µ2)!
p′

µ1(−p)µ2 g̃fk (p
′p)

(2k + 1)







k k 0
µ1 µ2 f
l′ l f







(kµ1l
′, 000) (kµ2l, 000) (−)l

18
√

(2s+ 1)(2s′ + 1)(2j + 1)







s′ s f
1
2

1
2 1

1
2

1
2 1













l′ l f
s′ s f
j′ j 0







(65)

〈α′|M(2)|α〉

=
1

2

(

mπ

4πf2
π

)3

δll′δss′δjj′δmm′

(−)l√
2l+ 1

g1l (p
′p)

(66)

for π−-2H scattering in terms of 9j-coefficients and Clebsch-
Gordan coefficients (j1j2j3,m1m2m3). Here, we normalize
the momentum eigenstates such that the expectation val-
ues read

〈M〉
=
∑

lsj

∑

l′s′j′

∫ ∞

0

dp p2 dp′ p′
2
ψ∗

l′s′j′ (p
′)〈α′|M|α〉ψlsj(p)

(67)

for wave functions normalized to

∑

lsj

∫ ∞

0

dp p2 |ψlsj(p)|2 = 1 . (68)
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17. M. Döring, E. Oset, M.J. Vicente Vacas, Phys. Rev. C70,

045203 (2004), [arXiv:nucl-th/0402086]
18. S. Weinberg, Phys. Lett. B295, 114 (1992),

[arXiv:hep-ph/9209257]

19. S.R. Beane, V. Bernard, T.S.H. Lee, U.G. Meißner, Phys.
Rev. C57, 424 (1998), [arXiv:nucl-th/9708035]

20. S.R. Beane, V. Bernard, E. Epelbaum, U.G. Meißner,
D.R. Phillips, Nucl. Phys. A720, 399 (2003),
[arXiv:hep-ph/0206219]

21. V. Lensky et al., Phys. Lett. B648, 46 (2007),
[arXiv:nucl-th/0608042]

22. V. Baru et al., Phys. Lett. B659, 184 (2008),
[arXiv:0706.4023[nucl-th]]

23. J. Carlson, R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998)
24. S. Weinberg, Phys. Lett. B251, 288 (1990)
25. S. Weinberg, Nucl. Phys. B363, 3 (1991)
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