135 research outputs found

    Analysis of Microplastics in Food Samples

    Get PDF
    This chapter presents a compilation of the analytical techniques used to detect and analyze microplastics in food. A detailed description of microplastics found in different samples is provided as well as an estimate of the annual intake of these particles. A total of 22–37 milligrams of microplastics per year was found. The factors that can influence the presence of particles in food, especially table salt, are discussed, showing that a background presence of microplastics in the environment can explain a large amount of experimental data.Support for this work was provided by the CTQ2016-76608-R project from the Ministry of Economy, Industry and Competitiveness (Spain) and by the University of Alicante under the project UAUSTI18-06

    Predictors of invertebrate biomass and rate of advancement of invertebrate phenology across eight sites in the North American Arctic

    Get PDF
    Average annual temperatures in the Arctic increased by 2–3 °C during the second half of the twentieth century. Because shorebirds initiate northward migration to Arctic nesting sites based on cues at distant wintering grounds, climate-driven changes in the phenology of Arctic invertebrates may lead to a mismatch between the nutritional demands of shorebirds and the invertebrate prey essential for egg formation and subsequent chick survival. To explore the environmental drivers afecting invertebrate availability, we modeled the biomass of invertebrates captured in modifed Malaise-pitfall traps over three summers at eight Arctic Shorebird Demographics Network sites as a function of accumulated degree-days and other weather variables. To assess climate-driven changes in invertebrate phenology, we used data from the nearest long-term weather stations to hindcast invertebrate availability over 63 summers, 1950–2012. Our results confrmed the importance of both accumulated and daily temperatures as predictors of invertebrate availability while also showing that wind speed negatively afected invertebrate availability at the majority of sites. Additionally, our results suggest that seasonal prey avail ability for Arctic shorebirds is occurring earlier and that the potential for trophic mismatch is greatest at the northernmost sites, where hindcast invertebrate phenology advanced by approximately 1–2.5 days per decade. Phenological mismatch could have long-term population-level efects on shorebird species that are unable to adjust their breeding schedules to the increasingly earlier invertebrate phenologies.publishedVersio

    Guidance on Monitoring of Marine Litter in European Seas

    Get PDF
    This publication is a Reference Report by the Joint Research Centre of the European Commission.The MSFD Technical Subgroup on Marine Litter was tasked to deliver guidance so that European Member States could initiate programmes for monitoring of Descriptor 10 of the MSFD. The present document provides the recommendations and information needed to commence the monitoring required for marine litter, including methodological protocols and categories of items to be used for the assessment of litter on the Beach, Water Column, Seafloor and Biota, including a special section on Microparticles

    POTENTIAL EFFECTS OF CLIMATE CHANGE ON ELEVATIONAL DISTRIBUTIONS OF TROPICAL BIRDS IN SOUTHEAST ASIA

    Get PDF
    Environmental conditions during the neonatal period can affect the growth, physiology, behavior, and immune function of birds. In many avian studies the nestling environment includes investigator handling of young, which may be stressful. While neonatal handling is known to affect the adult phenotype in rats, the effects of handling on development have rarely been examined in wild birds. We examined the effect of short, repeated periods of neonatal handling on avian growth and immune system development. We subjected American Kestrels (Falco sparverius) and European Starlings (Sturnus vulgaris) to 15 min of daily investigator handling throughout the nestling period, while controls remained undisturbed. Immediately prior to fledging we assessed cutaneous immunity, humoral immunity, mass, and degree of fluctuating asymmetry. Daily handling did not significantly affect any of these measurements. We also addressed the possibility that treatment differences would appear only when birds were challenged with a more substantial stressor by bringing birds into captivity for 24 hr. Captivity did not affect mass, but significantly lowered the cutaneous immune response, although this was independent of treatment. Therefore, brief periods of investigator handling did not appear to affect immune or morphological development in these species, whereas 24 hr of captivity resulted in suppressed cutaneous immune responses

    Eggs in the Freezer: Energetic Consequences of Nest Site and Nest Design in Arctic Breeding Shorebirds

    Get PDF
    Birds construct nests for several reasons. For species that breed in the Arctic, the insulative properties of nests are very important. Incubation is costly there and due to an increasing surface to volume ratio, more so in smaller species. Small species are therefore more likely to place their nests in thermally favourable microhabitats and/or to invest more in nest insulation than large species. To test this hypothesis, we examined characteristics of nests of six Arctic breeding shorebird species. All species chose thermally favourable nesting sites in a higher proportion than expected on the basis of habitat availability. Site choice did not differ between species. Depth to frozen ground, measured near the nests, decreased in the course of the season at similar non-species-specific speeds, but this depth increased with species size. Nest cup depth and nest scrape depth (nest cup without the lining) were unrelated to body mass (we applied an exponent of 0.73, to account for metabolic activity of the differently sized species). Cup depth divided by diameter2 was used as a measure of nest cup shape. Small species had narrow and deep nests, while large species had wide shallow nests. The thickness of nest lining varied between 0.1 cm and 7.6 cm, and decreased significantly with body mass. We reconstruct the combined effect of different nest properties on the egg cooling coefficient using previously published quantitative relationships. The predicted effect of nest cup depth and lining depth on heat loss to the frozen ground did not correlate with body mass, but the sheltering effect of nest cup diameter against wind and the effects of lining material on the cooling coefficient increased with body mass. Our results suggest that small arctic shorebirds invest more in the insulation of their nests than large species

    Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator

    Get PDF
    Selecting high-quality habitat and the optimal time to reproduce can increase individual fitness and is a strong evolutionary factor shaping animal populations. However, few studies have investigated the interplay between land cover heterogeneity, limitation in food resources, individual quality and spatial variation in fitness parameters. Here, we explore how individuals of different quality respond to possible mismatches between a cue for prey availability (land cover heterogeneity) and the actual fluctuating prey abundance.Peer reviewe

    A review of trisomy X (47,XXX)

    Get PDF
    Trisomy X is a sex chromosome anomaly with a variable phenotype caused by the presence of an extra X chromosome in females (47,XXX instead of 46,XX). It is the most common female chromosomal abnormality, occurring in approximately 1 in 1,000 female births. As some individuals are only mildly affected or asymptomatic, it is estimated that only 10% of individuals with trisomy X are actually diagnosed. The most common physical features include tall stature, epicanthal folds, hypotonia and clinodactyly. Seizures, renal and genitourinary abnormalities, and premature ovarian failure (POF) can also be associated findings. Children with trisomy X have higher rates of motor and speech delays, with an increased risk of cognitive deficits and learning disabilities in the school-age years. Psychological features including attention deficits, mood disorders (anxiety and depression), and other psychological disorders are also more common than in the general population. Trisomy X most commonly occurs as a result of nondisjunction during meiosis, although postzygotic nondisjunction occurs in approximately 20% of cases. The risk of trisomy X increases with advanced maternal age. The phenotype in trisomy X is hypothesized to result from overexpression of genes that escape X-inactivation, but genotype-phenotype relationships remain to be defined. Diagnosis during the prenatal period by amniocentesis or chorionic villi sampling is common. Indications for postnatal diagnoses most commonly include developmental delays or hypotonia, learning disabilities, emotional or behavioral difficulties, or POF. Differential diagnosis prior to definitive karyotype results includes fragile X, tetrasomy X, pentasomy X, and Turner syndrome mosaicism. Genetic counseling is recommended. Patients diagnosed in the prenatal period should be followed closely for developmental delays so that early intervention therapies can be implemented as needed. School-age children and adolescents benefit from a psychological evaluation with an emphasis on identifying and developing an intervention plan for problems in cognitive/academic skills, language, and/or social-emotional development. Adolescents and adult women presenting with late menarche, menstrual irregularities, or fertility problems should be evaluated for POF. Patients should be referred to support organizations to receive individual and family support. The prognosis is variable, depending on the severity of the manifestations and on the quality and timing of treatment

    Unexpected diversity in socially synchronized rhythms of shorebirds

    Get PDF
    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within-and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.</p

    Fluxes of biogenic components from sediment trap deployment in circumpolar waters of the Drake Passage

    Get PDF
    Circumpolar surface waters dominate the circulation of the Southern Ocean and sustain one of the ocean's largest standing stocks of biomass thereby producing a significant output of biogenic components, mainly diatoms, to the bottom sediments. Generally transit of biogenic matter from the sea surface to the sea floor affects nutrient regeneration fuels benthic life and transfers signals to the sediment record1–5. Reliable quantification of the relationship between biological production, fractionation of skeletal and tissue components and bottom sediment accumulation depends on direct vertical flux measurements from sediment trap deployments6–9, which have proved to be most scientifically productive10–13. We now present data on vertical mass fluxes from the Southern Ocean and evidence for strong biogeochemical fractionation between organic carbon-, nitrogen- and phosphorus-containing compounds, siliceous and calcareous skeletal remains, and refractory aluminosilicates

    Identifying and Prioritizing Greater Sage-Grouse Nesting and Brood-Rearing Habitat for Conservation in Human-Modified Landscapes

    Get PDF
    BACKGROUND: Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level. METHODOLOGY/PRINCIPAL FINDINGS: We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m(2)), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover. CONCLUSIONS/SIGNIFICANCE: Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments
    corecore