46 research outputs found

    The ALMA view of GMCs in NGC 300 : Physical Properties and Scaling Relations at 10 pc Resolution

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for published in The Astrophysical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aaad60We have conducted a 12CO(2-1) survey of several molecular gas complexes in the vicinity of H ii regions within the spiral galaxy NGC 300 using the Atacama Large Millimeter Array (ALMA). Our observations attain a resolution of 10 pc and 1 , sufficient to fully resolve giant molecular clouds (GMCs) and the highest obtained to date beyond the Local Group. We use the CPROPS algorithm to identify and characterize 250 GMCs across the observed regions. GMCs in NGC 300 appear qualitatively and quantitatively similar to those in the Milky Way disk: they show an identical scaling relationship between size R and linewidth ΔV (ΔV ∝ R 0.48±0.05), appear to be mostly in virial equilibrium, and are consistent with having a constant surface density of about 60 pc -2. The GMC mass spectrum is similar to those in the inner disks of spiral galaxies (including the Milky Way). Our results suggest that global galactic properties such as total stellar mass, morphology, and average metallicity may not play a major role in setting GMC properties, at least within the disks of galaxies on the star-forming main sequence. Instead, GMC properties may be more strongly influenced by local environmental factors such as the midplane disk pressure. In particular, in the inner disk of NGC 300, we find this pressure to be similar to that in the local Milky Way but markedly lower than that in the disk of M51, where GMCs are characterized by systematically higher surface densities and a higher coefficient for the size-linewidth relation.Peer reviewedFinal Accepted Versio

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. © 2015. The American Astronomical Society

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society

    UNVEILING THE MILKY WAY: A NEW TECHNIQUE FOR DETERMINING THE OPTICAL COLOR AND LUMINOSITY OF OUR GALAXY

    No full text
    We demonstrate a new statistical method of determining the global photometric properties of the Milky Way (MW) to an unprecedented degree of accuracy, allowing our Galaxy to be compared directly to objects measured in extragalactic surveys. Capitalizing on the high-quality imaging and spectroscopy dataset from the Sloan Digital Sky Survey (SDSS), we exploit the inherent dependence of galaxies' luminosities and colors on their total stellar mass, M⋆\mathrm{M}_\star, and star formation rate (SFR), M˙⋆\mathrm{\dot{M}}_\star, by selecting a sample of MilkyMilky WayWay analoganalog galaxiesgalaxies designed to reproduce the best Galactic M⋆\mathrm{M}_\star and M˙⋆\mathrm{\dot{M}}_\star measurements, including all measurement uncertainties. Making the Copernican assumption that the MW is not extraordinary amongst galaxies of similar stellar mass and SFR, we then analyze the photometric properties of this matched sample, constraining the characteristics of our Galaxy without suffering interference from interstellar dust. We explore a variety of potential systematic errors that could affect this method, and find that they are subdominant to random uncertainties. We present both SDSS ugrizugriz absolute magnitudes and colors in both rest-frame zz=0 and zz=0.1 passbands for the MW, which are in agreement with previous estimates but can have up to ∌\sim3×\times lower errors. We find the MW to have absolute magnitude 0 ⁣Mr−5log⁥h=−21.00−0.37+0.38^0\!M_r-5\log h=-21.00_{-0.37}^{+0.38} and integrated color 0(g−r)=0.682−0.056+0.066^0(g-r)=0.682_{-0.056}^{+0.066}, indicating that it may belong to the green-valley region in color-magnitude space and ranking it amongst the brightest and reddest of spiral galaxies. We also present new estimates of global stellar mass-to-light ratios for our Galaxy. This work will help relate our in-depth understanding of the Galaxy to studies of more distant objects.Comment: 20 pages, 9 figures, 5 tables of Milky Way photometric propertie
    corecore