9 research outputs found

    The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel

    Get PDF
    peer-reviewedTo improve the thermal stability and adsorption performance, xanthan gum was modified with acrylamide and trimethylolpropane triglycidyl ether (TTE). The modified xanthan gum (XGTTE) was characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractogram (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The characteristic peaks at 3449, 1655, 1611 and 1420 cm−1 in the FT-IR confirm the modification. The XGTTE crystal grew well upon addition of TTE. The XRD and DSC data revealed that the XGTTE enhanced its thermal stability. Analysis of SEM revealed that the grafting introduced major changes on the microstructure making it porous and resulting in the adsorption of crystal violet (CV) with flocculation. The CV adsorption capacity of the hydrogel with different dosages of TTE (XGTTE2, XGTTE3, XGTTE4, XGTTE5 and XGTTE6) were between 28.13 with 35.12 mg/g. In addition, the adsorption capacity, thermal stability, and swelling property of XGTTE4 were the best

    The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel

    No full text
    To improve the thermal stability and adsorption performance, xanthan gum was modified with acrylamide and trimethylolpropane triglycidyl ether (TTE). The modified xanthan gum (XGTTE) was characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractogram (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The characteristic peaks at 3449, 1655, 1611 and 1420 cm−1 in the FT-IR confirm the modification. The XGTTE crystal grew well upon addition of TTE. The XRD and DSC data revealed that the XGTTE enhanced its thermal stability. Analysis of SEM revealed that the grafting introduced major changes on the microstructure making it porous and resulting in the adsorption of crystal violet (CV) with flocculation. The CV adsorption capacity of the hydrogel with different dosages of TTE (XGTTE2, XGTTE3, XGTTE4, XGTTE5 and XGTTE6) were between 28.13 with 35.12 mg/g. In addition, the adsorption capacity, thermal stability, and swelling property of XGTTE4 were the best

    Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells

    No full text
    Mixed electronic and ionic conductivity (MIEC) perovskite oxides hold promise as cathode with high oxygen reduction reaction (ORR) activity for solid oxide fuel cells (SOFCs) operating at reduced temperatures. However, these MIEC cathodes usually contain lanthanide or alkaline-earth elements at A-site. These elements tend to interact with yttria-stabilized zirconia electrolyte (YSZ) to form unwanted phases such as La2Zr2O7 and SrZrO3 at conventional electrode fabrication conditions (>800 °C). Such unwanted interfacial reaction severely degrades the cell performance. We present a new method to assemble SrCo0.4Fe0.5W0.1O3-δ (SCFW) directly onto YSZ by a highly efficient microwave plasma technique. Intimate contact between SCFW and YSZ phases can be achieved by ten-minute microwave-plasma treatment with no new phase formation. Consequently, the microwave-plasma fabricated interface exhibits a notably high ORR performance, showing an area-specific resistances of 0.11 Ω cm2 at 600 °C, about two orders of magnitude better than the equivalent prepared via the conventional method. Our method is also effective in assembling other MIEC perovskite cathodes such as SrCo0.5Fe0.5O3-δ and SrCo0.8Nb0.1Ta0.1O3-δ on YSZ electrolyte, achieving notable enhancement of the cathode performance. This study thus provides an effective and convenient method for synthesizing reactive and robust interfaces between two incompatible phases with minimized interphase interactions
    corecore