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ABSTRACT 

To improve the thermal stability and adsorption performance, xanthan gum was 

modified with acrylamide and trimethylolpropane triglycidyl ether (TTE). The 

modified xanthan gum (XGTTE) was characterized by Fourier transform infrared 

(FT-IR) spectroscopy, X-ray diffractogram (XRD), differential scanning calorimetry 

(DSC) and scanning electron microscopy (SEM). The characteristic peaks at 3449, 

1655, 1611 and 1420 cm-1 in the FT-IR confirm the modification. The XGTTE crystal 

grew well upon addition of TTE. The XRD and DSC data revealed that the XGTTE 

enhanced its thermal stability. Analysis of SEM revealed that the grafting introduced 

major changes on the microstructure making it porous and resulting in the adsorption 

of crystal violet (CV) with flocculation. The CV adsorption capacity of the hydrogel 

with different dosages of TTE (XGTTE2, XGTTE3, XGTTE4, XGTTE5 and 

XGTTE6) were between 28.13 with 35.12 mg/g. In addition, the adsorption capacity, 

thermal stability, and swelling property of XGTTE4 were the best. 

Key word Xanthan gum, modification, Acrylamide, Trimethylolpropane triglycidyl 

ether 
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1. Introduction 

Xanthan gum (XG) is a polysaccharide secreted by the bacterium Xanthomonas 

campestris. It primarily consists of a primary chain of β-D-(1, 4)-glucose, which has a 

branching trisaccharide side chain composed of β-D-(1,2)-mannose attached to β-D-(1, 

4)-glucuronic acid, which terminates in a final β-D-mannose (Gils, Ray, & Sahoo, 

2009). It is widely used as a food additive and rheology modifier and is commonly 

used in oral and topical formulations as a suspending and stabilizing agent and as a 

release sustaining agent in hydrophilic matrix tablets and pellets (Katzbauer, 1998). It 

is low cost, biodegradable, broadly available, and non-toxic (Bhardwaj, Kanwar, Lal, 

& Gupta, 2000). 

There are many hydrophilic groups in the molecular chains of XG. Its property 

can be customized and extended by hybridization with synthetic polymers. Acrylic 

acid (Abhijit Pal, Majumder, & Bandyopadhyay, 2016), 

2-acrylamido-2-methyl-1-propane sulfonic acid (Aflaki, Dadvand, & Sheykhan, 2016), 

ethylacrylate (Pandey & Mishra, 2011), acrylamide (AM) (Behari, Pandey, Kumar, & 

Taunk, 2001) and N-vinylpyrrolidone (Ding, Yiming, Yanjie, Bao, & Yongfu, 2016) 

have been grafted onto XG. The chemical amalgamation of natural and synthetic 

polymer resulted in a yield of new materials with superior properties. 

AM is one of the most important grafting materials. Kumar et al. (2009) 

synthesized matrix XG-g-poly(AM) that could be used as drug delivery system with a 

fast release of the active substance (Kumar, Singh, & Ahuja, 2009). Behari et al. (2001) 

grafted AM onto XG to improve the thermal stability (Behari, Pandey, Kumar, & 

http://www.google.com/patents/CN101321517A?cl=en
http://www.google.com/patents/CN101321517A?cl=en
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Taunk, 2001). Biswas et al. (2015) reported the grafted copolymer XG-graft-poly(AM) 

could be used as a corrosion inhibitor (Biswas, Pal, & Udayabhanu, 2015). Mundargi 

et al. (2007) investigated the utilization of XG-grafted copolymer of AM as a 

controlled release matrix for antihypertensive drugs (Mundargi, Patil, & Aminabhavi, 

2007). Trimethylolpropane triglycidyl ether (TTE) was used as a cross linking agent 

in the modification of macromolecule. Xiong et al. (2015) grafted sodium 

polyacrylate on guar gum and the polymers were then surface-crosslinked using TTE 

to improve its swollen property (Xiong, Zhang, & Liu, 2015). Huang et al. (2005) 

utilized TTE and acrylic acid to synthesize a novel photosensitive prepolymer (Huang, 

Wang, Liao, &Yuan, 2015). However, grafting AM and TTE on XG simultaneously 

had not been reported. 

Aquatic products constitute a main part of food (Ashraf, 2005). According to the 

latest statistics released by the FAO (Food and Agriculture Organization) database, the 

global aquaculture is 110.2 million tons in 2016. Crystal violet (CV) is widely used as 

bacteriostatic agent in aquaculture (Mani & Bharagava, 2016). Moreover, CV can be 

detected from aquaculture water samples (Huang, Wang, Liao &Yuan, 2015) and 

processed fish products (Lee, Kim, Jang, Song, Woo, Park, Lee, Lee & Kim, 2010). 

CV is a toxic, genotoxic and carcinogenic substance (Mani & Bharagava, 2016), 

because of its toxicity, dye removal from aquaculture water and reducing residual 

dose in food is essential. Many approaches to the removal of CV have been studied 

including adsorption (Chen, Chen, Chiou, Chen, Chen, & Fan, 2011; Lin, He, Han, 

Tian, & Hu, 2011), photocatalytic degradation (Sahoo, Gupta, & Pal, 2005) and 
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biological methods (Chen, Chen, Chiou, Chen, Chen, & Fan, 2011; Lin, He, Han, 

Tian, & Hu, 2011), etc. Of these, adsorption seems to be the most promising (Aysu & 

Küçük, 2015; Mahdavinia, Aghaie, Sheykhloie, Vardini, & Etemadi, 2013; Monash & 

Pugazhenthi, 2009; Anjali Pal, Pan, & Saha, 2013).  

This work is aimed to prepare a novel hydrogel base on AM and TTE grafted XG, 

for the first time. The modified XG was characterized by Fourier transform infrared 

(FT-IR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry 

(DSC) and scanning electron micrograph (SEM). The effect of hydrogel for removal 

of CV from aqueous solution was studied. This finding might be contribute to reduce 

the CV pollution in aquaculture and improve food safety of aquatic products. 

2. Experimental 

2.1. Materials 

 Xanthan gum (XG, USP, PubChem CID: 7107) was purchased from Aladdin 

Industrial Corporation. The CAS is 11138-66-2, the molecular formula is C35H49O29, 

and it is moisture sensitive. Acrylamide (AM, AR, 99.0%, PubChem CID: 6579; 

C3H5NO) was purchased with a molar mass of 71.08. Trimethylolpropane triglycidyl 

ether (TTE, Tech, PubChem CID: 103015) was purchased from Sigma-Aldrich. All 

other chemical reagents were of analytical grade. 

2.2. Modification of Xanthan Gum 

The modified XG was prepared in a four-necked flask equipped with a 

mechanical stirrer, a reflux condenser, a thermometer, and a N2 gas inlet and outlet 

tube. The XG (1 g) was dissolved in 150 mL distilled water under constant stirring for 
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60 min at room temperature. Then, AM (15 g) and 260, 390, 520, 650 and 780 µL 

TTE were added into the XG solution sequentially and stirred, saturated with N2 to 

remove dissolved oxygen. The temperature was held at 70°C, and 0.3 g of KPS was 

added and reacted for 4 h to initiate the graft copolymer. The modified XG was 

precipitated using ethanol. The precipitate was filtered, washed thoroughly with 

ethanol/water mixture (4:1, v/v) 3 times under high-speed stirring, and then soaked in 

an ethanol/water mixture (4:1, v/v) for 24 h. The modified XG was collected by 

filtration and dried at 50°C. Finally, the dried modified XG was ground and milled 

and then sieved through a 250 µm membrane. This was used as XGTTE. For the 

modified XG, TTE dosage of 260 µL (2%, w/w), 390 µL (3%, w/w), 520 µL (4%, 

w/w), 650 µL (5%, w/w) and 780 µL (6%, w/w) were recorded as XGTTE2, XGTTE3, 

XGTTE4, XGTTE5, and XGTTE6, respectively. We now provide some basic 

terminologies and notations that are necessary to understand the results. The 

percentage of grafting (G, %) and the percentage of monomer grafting (E, %) were 

calculated with equation (1) and (2), respectively. 

G (%) = (W1-W0)/W0×100%                            (1) 

Here, W0 is the weight in grams of the XG, W1 is the weight in grams of XGTTE. 

E (%) = (W1-W0)/W2×100%                              (2) 

Here, W0 is the weight in grams of the XG, W1 is the weight in grams of XGTTE, and 

W2 is the weight in grams of the AM. 

2.3. Crystal Violet Adsorption 

The XGTTE (0.05 g) was transferred into 100 mL 30 mg/L CV with desired pH 
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and equilibrated for 24 h at 25°C. The CV was prepared by diluting the stock solution, 

which was prepared in distilled water. The aqueous solutions were decanted. The 

concentration of CV in the initial solution and the residual solutions were determined 

by recording the absorbance values at 590 nm. The equilibrium adsorption capacity 

(qe, mg/g) was calculated with equation (3). 

qe = (Ci −Ce) ×V/m                                    (3) 

Here, Ci is the initial CV concentration (mg/L), Ce is the residual CV concentration at 

equilibrium (mg/L), V is the volume of solution (L), and m is the amount of XGTTE 

(g) taken for adsorption measurements. 

2.4. Flocculation Properties 

The flocculation properties of XGTTE were investigated using an 

ultraviolet-visible spectrophotometer (T6, Beijing General Instrument Co., Ltd). The 

XGTTE (0.01 g) was added to 50 mL 5 g/L kaolin suspension liquid with constant 

stirring for 2 min at room temperature. This was allowed to stand for 10 min before 

being monitored via absorbance at 550 nm. The flocculation rate (Q, %) of XGTTE 

was calculated with equation (4). 

Q (%) = (A-B)/A ×100%                                (4) 

Here, A is the absorbance value of supernatant fluid of kaolin, and B is the absorbance 

value of the XGTTE sample. 

2.5. Characterization of XGTTE 

2.5.1. FT-IR Analysis 

The FT-IR spectra of XGTTE and XG were recorded in solid state using KBr 
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pellets with a VERTEX 70 series FT-IR spectrometer (BRUKER OPTICS Co., GER) 

from 400 to 4000 cm-1 at 2 cm-1 resolution. 

2.5.2. XRD Analysis 

The structures of XGTTE and XG were investigated using Empyrean XRD 

instrument (Rigaku, Miniflex 600) with Cu Ka radiation source. The X-ray generator 

was operated at 40 kV and 15 mA; the reflection angle 2θ was monitored from 5 to 60° 

at a scanning speed of 10°/min and a step size of 0.02 (λ=1.5406 nm). 

2.5.3. DSC Analysis 

DSC measurements were carried out under N2 flow (20 mL/min) using 

NETZSCH DSC 200F3 instruments from 45 to 500°C at a heating rate of 10°C/min. 

The sample mass was 14 mg. 

2.5.4. Microstructure Analysis 

The microstructure of XGTTE and XG were examined with a SEM 

(JSM-6380LV, JEOL), operating with secondary electrons under low vacuum at 15.0 

kV. The samples were coated with Au prior to SEM examination. 

The microscopic images were analyzed using Image J 1.42 q and plug-in 

FracLac-2.5 Release 1 d software programs according to Dàvila (Dàvila, Toldrà, 

Saguer, Carretero, & Parés, 2007). The fractal dimension (Df) is based on the 

calculation of the scaling rule given by equation (5) and (6). 

D = - log Nε / log ε                                    (5) 

Here, Nε is the number of boxes at a certain scale containing part of the image, and ε is 

the corresponding scale. 
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Since the determination of Df by image analysis is based on a two-dimensional 

space, it is necessary to add an extra dimension to the calculated D-value to represent 

the three-dimensional characteristics of the collagen system per equation (6). 

Df  = D + 1                                          (6) 

The average pore diameter was calculated using equation (7) based on the 

threshold binary images with the public domain software ImageJ 1.42 q (Dàvila, 

Toldrà, Saguer, Carretero, & Parés, 2007). 

d = √4 A / π                                          (7) 

Here, d is the average pore diameter, and A is the average pore area. 

A = s × k / n                                         (8) 

Here, s is the total area of image, and k is the pore fraction. 

3 Results and Discussion 

3.1 Adsorption Capacity 

The qe of XGTTE2, XGTTE3, XGTTE4, XGTTE5, and XGTTE6 for CV are 

28.13±0.528, 33.09±0.397, 35.12±0.820, 34.03±0.576, and 30.39±0.916 mg/g. These 

data were investigated at 25°C for 24 h, and the maximum qe was 35.12±0.820 mg/g 

with XGTTE4. The qe obtained here is somewhat higher than the Jalshakti polymer 

(12.90 mg/g) (Dhodapkar, Rao, Pande, Nandy, & Devotta, 2007), orange peel (14.30 

mg/g) (Annadurai, Juang, & Lee, 2002) and coniferous pinus bark powder (32.78 

mg/g) (Ahmad, 2009). Compared to the other materials like mino silica (40.00 mg/g) 

(Zhou, 2014), activated carbons (60.42 mg/g) (Senthilkumaar, Kalaamani, & 
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Subburaam, 2006), chitosan-graphite oxide-modified polyurethane (64.39 mg/g) (Qin, 

Qiu, Rong, Yan, Zhao, & Yang, 2015), and Nb2O5/SiO2 (116.00 mg/g) (Umpierres, 

Prola, Adebayo, Lima, Dos Reis, Kunzler, et al., 2016), our method shows lower qe 

values suggesting that the hydrogel developed here is a promising material for CV 

adsorption.  

3.2. Flocculation Properties 

The flocculation rate of XGTTE in a kaolin suspension liquid is shown in Table 

1. The kaolin suspension was flocculated more efficiently with XGTTE. The 

maximum flocculation rate reached 85.63% with XGTTE2. As flocculation time 

proceeded, the flocculation rate of XGTTE increased and was over 90% within 24 h. 

3.3. FT-IR Analysis 

The FT-IR spectra of XG and XGTTE are shown in Fig. 1. There were no 

obvious changes in XGTTE2, XGTTE3, XGTTE4, XGTTE5, and XGTTE6. Some 

differences were observed in the spectra of XGTTE2 versus XG. The XG had a broad 

peak at 3443 cm-1 due to stretching vibrations of O-H group. The peak at 1730 cm-1 

due to stretching vibrations of C=O. The peaks at 1624 cm-1 and 1414 cm-1 due to the 

asymmetrical and symmetrical vibrations of COO- groups. The peak at 1055 cm-1 was 

C6-OH absorption. 

The XGTTE2 had a broad peak at 3449 cm-1 due to stretching vibrations of O-H 

and N-H. The peaks at 1655 cm-1 and 1611 cm-1 are attributed to amide-I (the 

stretching vibrations of C=O) and amide-II (the bending vibrations of N-H) of the 

AM’s amide group. Similar observations were also reported in cashew gum (Silva, 
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Paula, & Feitosa, 2007) and chitosan (Zhu, Yuan, Li, Yang, & Feng, 2004). The 

XGTTE2 had a peak at 1655 cm-1 due to the characteristic absorption of CONH2, but 

the bending vibrations peak of C6-OH at 1055 cm-1 decreased at XGTTE2. There are 

some new peaks in XGTTE2, and the peak at 1420 cm-1 is due to stretching vibrations 

of C-N. The peaks at 1117 cm-1 and 721 cm-1 are due to the wagging vibration of NH2. 

In conclusion, these data confirmed the grafting of AM and TTE onto the XG. 

3.4. XRD Analysis 

    XRD spectra of XG and XGTTE are shown in Fig. 2. There is a wide diffraction 

peak at 2θ=20.105˚showing the amorphous nature of XG, the crystalline interplanar 

spacing is 4.4129 nm. Similar results have also been reported by other authors (Chen, 

Chen, Chiou, Chen, Chen, & Fan, 2011). There is a wide diffraction peak roughly at 

2θ=22˚of XGTTE. The 2θ of XGTTE2, XGTTE3, XGTTE4, XGTTE5 and XGTTE6 

are 22.287˚, 21.890˚, 22.085˚, 22.281˚, and 22.474˚, respectively. The crystalline 

interplanar spacing of XGTTE2, XGTTE3, XGTTE4, XGTTE5, and XGTTE6 are 

3.9855, 4.0570, 4.0215, 3.9867, and 3.9533 nm, respectively. Fig. 2 takes XGTTE4 

and XGTTE6 for example. The crystalline interplanar spacing of XGTTE is smaller 

than that of XG. The peak width, peak intensity and the ratio of peak area to curve 

area of XGTTE4 and XGTTE6 were bigger than that of XG, suggesting that the 

crystalline state changed. The diffraction peak intensity of XGTTE increased with the 

increasing dosage of TTE and reached maximum at the dosage of 4% TTE. The TTE 

higher dosage decreased the diffraction peak intensity. Low levels of TTE can 

promote the crystallization of XGTTE, but high levels of TTE restrained the 
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crystallization of XGTTE. This then reduced the degree of crystallization of XGTTE. 

This suggested that AM and TTE changed the structure of XG. It could be inferred 

that the rearrangement in the morphology of the XGTTE strengthened the XG 

intra-molecular and inter-molecular hydrogen bond forces and improved the regularity 

of the molecular arrangements. This confirmed the success of hydrogel synthesis. This 

result is consistent with values obtained from the FT-IR spectra, which indicate that 

the chemical modifier reacts with -OH of XG and interferes with the regularity of the 

polymer chain making it difficult for XGTTE to crystallize. 

3.5. Thermal Analysis 

The DSC thermogram of XG and XGTTE are shown in Fig. 3. An endothermic 

curve within 50-70°C and an exothermic peak at 292.4°C were formed in the XG 

thermogram. The endothermal lower temperature and exothermal higher temperature 

are indicative of moisture loss and thermal decomposition of XG. Multiple 

endothermic peaks were observed in the thermal curve of XGTTE. The first broad 

endothermic peak is seen at 75-90°C and is due to loss of moisture. The melting of the 

XGTTE molecule occurs at 218.5°C and forms a second peak. Furthermore, the loss 

of ammonia exhibits a third peak at 330.1°C. The peak at 345°C resulted from the 

decomposition of the imide group formed via cyclisation. The last peak at 430°C 

represents decomposition of the cyclized imide groups. Similar observations were 

also reported during graft polymerization of AM onto cashew gum (Silva, Paula, & 

Feitosa, 2007). Thus, we concluded that the thermal stability of XG was improved by 

modification with AM and TTE. 
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3.6. SEM surface morphology 

The morphological features of XG, XGTTE2, and XGTTE4 are shown in Fig. 4 

and demonstrated that the microstructures of XGTTE were affected by TTE dose. The 

microstructure of the control group, XG, was less porous and more compact than 

XGTTE2 and XGTTE4. As TTE dose increased, the microstructure of the treated 

samples became more porous. The changes in surface morphology suggested graft 

copolymerization. This also supported in the FT-IR and XRD data. 

To quantitatively describe the microstructure, the Df and pore diameter were 

characterized. The Df is a quantitative approach to measure pore characteristics and 

microstructure changes. The Df value increased from 2.615 to 3.378 and d decreased 

from 5.701 to 2.756 μm as the dose of TTE increased from 2% to 4%, which resulted 

in a porous microstructure and higher Df values. This was consistent with the SEM 

microstructure trend shown in Fig. 4, which confirmed increased porosity with higher 

TTE dose. Lacunarity is expressed as average pore diameter measurement 

complemented fractal analysis. 

3.7. Mechanism of XGTTE Production 

The XGTTE was prepared by graft copolymerization of AM onto XG in the 

presence of crosslinking agent TTE with KPS as a free radical initiator. Fig. 5 outlines 

the proposed mechanism for grafting and chemical crosslinking. During 

polymerization, the KPS initiator was decomposed under heating to generate sulfate 

anion-radicals. Sulfate radicals then reacted with the XG chain, breaking the ring 

structure of D-glucose in the XG resulting in the formation of more active groups 
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such as the alkoxy radicals. The FT-IR data showed that the bending vibrations peak 

of C6-OH at 1055 cm-1 has a significant decrease at XGTTE indicating C6-OH 

participation in reaction. Meanwhile, sulfate radicals attacked AM and TTE molecules, 

which led to the formation of AM and TTE-based radicals. Monomers of XG, AM, 

and TTE near the reaction site became acceptors of radicals resulting in chain 

initiation; they thereafter became free radical donors to neighboring molecules, which 

caused the graft chain to grow indefinitely. The polymer chains reacted with the end 

vinyl groups of the cross-linker, TTE, during chain propagation. The main chain of 

XG was then extended with the reaction between the hydroxyl groups of XG react 

with AM. The TTE was connected to the polymer chain and become the cross-linking 

point because the amino of AM and the epoxy of TTE showed a ring-opening reaction 

upon heating. The copolymer was comprised of a cross-linked and network structure 

that gradually formed XGTTE. 

Table 1 summarizes the formulation details used in the synthesis. The 

percentage of grafting varied from 1584 to 1976, and the percentage of monomer 

grafting varied from 106 to 132. This is about 2 to 4 times of the graft copolymer 

synthesized by Raghavendra et al. (Mundargi, Patil, & Aminabhavi, 2007). 

4. Conclusions 

XG was grafted with AM and TTE, and it promotes higher regularity, better 

thermally stability, and a more porous structure. That resulted in the adsorption of 

crystal violet and kaolin flocculation. And XGTTE synthesized from 4% TTE 

displayed the maximum value of qe. The results implied that XGTTE could be an 
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effective adsorbent for removal of CV from aquaculture water and contribute to the 

production of healthy food. 
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Figure caption: 

Fig. 1 The FT-IR spectra of XG, XGTTE2, XGTTE3, XGTTE4, XGTTE5 and 

XGTTE6 from 4000-400 cm-1. 

Fig. 2 X-ray diffraction spectra of XG (black line), XGTTE4 (red line) and XGTTE6 

(blue line). The X-ray generator was operated at 40 kV and 15 mA. The XRD 

chromatograms were recorded over an angular range of 5° to 60° (2θ) at a scanning 

speed of 10°/min and a step size of 0.02 (λ=1.5406 nm). 

Fig. 3 DSC curves of XG (black line), XGTTE2 (red line), XGTTE3 (blue line), 

XGTTE4 (rose red line), XGTTE5 (green line) and XGTTE6 (purple line) from 

45-500°C at a heating rate of 10°C/min under N2 flow (20 mL/min). 

Fig. 4 SEM micrograph of XGTTE2, XGTTE4 and XG at 3000× and 1000×: (a) 
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XGTTE2; (b) XGTTE4; (c) XG; (d) XGTTE2; (e) XGTTE4; and (f) XG. SEM 

analyses were performed using a JSM-6380LV (JEOL) operated with an accelerating 

voltage of 15.0 kV. The samples were coated with Au prior. 

Fig. 5 The mechanism of XGTTE uses TTE as a cross-linker. Sulphate radicals were 

generated under heating, and the sulphate radical abstracts hydrogen atoms from the 

XG molecules producing XG free radicals. The monomer molecules, which are in 

close vicinity to the reaction sites, become acceptors of the XG radicals resulting in 

chain initiation. Thereafter, they become free radical donors to the neighboring 

molecules causing the grafted chains to grow. 

 

 

Table 1  

The synthetic details and flocculation rate of XGTTE. 

Code Wt. of XGTTE (g) * G (%)* E (%)* Q (%)* 

XGTTE2 19.5213±0.0054c 1850.8900±0.9557c 123.4467±0.0410b 85.6300±0.0173a 

XGTTE3 20.0751±0.0025d 1898.1267±2.2478b 127.0767±0.0644ab 43.6133±0.0555e 

XGTTE4 16.9365±0.0260e 1588.5933±3.9657e 106.1933±0.1906c 84.3600±0.0872b 

XGTTE5 17.0826±0.0054b 1607.2333±0.5266d 111.6200±4.4200c 62.5667±0.2505c 

XGTTE6 20.755±0.0278a 1974.4633±3.0082a 131.6900±0.1828a 61.6000±0.2082d 

Values in the Wt. of XGTTE, G, E and Q column followed by letters are significantly different 

(p<0.05). 

*Values are mean ±SD of duplicate runs. 
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Highlights: 

 Xanthan gum was grafted with acrylamide and trimethylolpropane triglycidyl 

ether 

 The grafted xanthan gum indicated a porous honeycomb-like structure. 

 The grafted xanthan gum was evaluated as an adsorbent to remove crystal violet. 

 The thermal stability of the grafted xanthan was improved. 
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