210 research outputs found

    The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68

    Get PDF
    Aims: This study focuses on the isolation and characterization of a peptide with bacteriocin-like properties isolated from Lactobacillus rhamnosus strain 68, previously identified by 16S rRNA gene sequencing and originating from human gastrointestinal flora. Methods and Results: The peptide was isolated from a supernatant of bacteria maintained under restrictive conditions by a combination of ethanol precipitation and reversed-phase chromatography. The molecular mass of the peptide as assessed by mass spectrometry was 6433 center dot 8 Da. An isoelectric point of 9 center dot 8 was determined by 2D-PAGE. The peptide designated rhamnosin A inhibited Micrococcus lysodeikticus ATCC 4698 but did not inhibit Lactobacillus plantarum 8014 or Lact. plantarum 39268. Inhibitory activity against M. lysodeikticus at concentrations used in this study was shown to be bacteriostatic rather than bacteriolytic or bactericidal. Rhamnosin A retained biological activity after heat treatment (95 degrees C, 30 min) but was sensitive to proteolytic activity of pepsin and trypsin. Conclusions: The N-terminal sequence of rhamnosin A, as determined by Edman degradation and in more detail by blast analysis, did not show identity with any currently available Lact. rhamnosus HN001-translated protein sequences, nor any significant similarity with other sequences in the nonredundant protein sequence database. Being a small, heat-stable, nonlanthionine-containing peptide, rhamnosin A should be categorized as a class II bacteriocin. Significance and Impact of the Study: This study describes a partial bacteriocin sequence isolated from Lact. rhamnosus 68 and broadens our understanding of bacteriocins

    Towards Protein Crystallization as a Process Step in Downstream Processing of Therapeutic Antibodies: Screening and Optimization at Microbatch Scale

    Get PDF
    Crystallization conditions of an intact monoclonal IgG4 (immunoglobulin G, subclass 4) antibody were established in vapor diffusion mode by sparse matrix screening and subsequent optimization. The procedure was transferred to microbatch conditions and a phase diagram was built showing surprisingly low solubility of the antibody at equilibrium. With up-scaling to process scale in mind, purification efficiency of the crystallization step was investigated. Added model protein contaminants were excluded from the crystals to more than 95%. No measurable loss of Fc-binding activity was observed in the crystallized and redissolved antibody. Conditions could be adapted to crystallize the antibody directly from concentrated and diafiltrated cell culture supernatant, showing purification efficiency similar to that of Protein A chromatography. We conclude that crystallization has the potential to be included in downstream processing as a low-cost purification or formulation step

    Dependence of Bacterial Chemotaxis on Gradient Shape and Adaptation Rate

    Get PDF
    Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way. In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-Changeux signal processing by mixed chemoreceptor clusters, the adaptation dynamics described by ordinary differential equations, and a detailed model of cell tumbling. Our model dramatically reduces computational costs and allows the highly efficient simulation of E. coli chemotaxis. We use the model to investigate chemotaxis in different gradients, and suggest a new, constant-activity type of gradient to systematically study chemotactic behavior of virtual bacteria. Using the unique properties of this gradient, we show that optimal chemotaxis is observed in a narrow range of CheA kinase activity, where concentration of the response regulator CheY-P falls into the operating range of flagellar motors. Our simulations also confirm that the CheB phosphorylation feedback improves chemotactic efficiency by shifting the average CheY-P concentration to fit the motor operating range. Our results suggest that in liquid media the variability in adaptation times among cells may be evolutionary favorable to ensure coexistence of subpopulations that will be optimally tactic in different gradients. However, in a porous medium (agar) such variability appears to be less important, because agar structure poses mainly negative selection against subpopulations with low levels of adaptation enzymes. RapidCell is available from the authors upon request

    Adaptation and Validation of QUick, Easy, New, CHEap, and Reproducible (QUENCHER) Antioxidant Capacity Assays in Model Products Obtained from Residual Wine Pomace

    Get PDF
    Evaluation of the total antioxidant capacity of solid matrices without extraction steps is a very interesting alternative for food researchers and also for food industries. These methodologies have been denominated QUENCHER from QUick, Easy, New, CHEap, and Reproducible assays. To demonstrate and highlight the validity of QUENCHER (Q) methods, values of Q-method validation were showed for the first time, and they were tested with products of well-known different chemical properties. Furthermore, new QUENCHER assays to measure scavenging capacity against superoxide, hydroxyl, and lipid peroxyl radicals were developed. Calibration models showed good linearity (R2 > 0.995), proportionality and precision (CV < 6.5%), and acceptable detection limits (<20.4 nmol Trolox equiv). The presence of ethanol in the reaction medium gave antioxidant capacity values significantly different from those obtained with water. The dilution of samples with powdered cellulose was discouraged because possible interferences with some of the matrices analyzed may take place.The autonomous government of Castilla y León (Project BU268A11-2

    Escherichia coli as a model active colloid:A practical introduction

    Get PDF
    The flagellated bacterium Escherichia coli is increasingly used experimentally as a self-propelled swimmer. To obtain meaningful, quantitative results that are comparable between different laboratories, reproducible protocols are needed to control, `tune' and monitor the swimming behaviour of these motile cells. We critically review the knowledge needed to do so, explain methods for characterising the colloidal and motile properties of E.coli, cells, and propose a protocol for keeping them swimming at constant speed at finite bulk concentrations. In the process of establishing this protocol, we use motility as a high-throughput probe of aspects of cellular physiology via the coupling between swimming speed and the proton motive force.Comment: 18 pages, 16 figures, 4 table
    corecore