456 research outputs found

    Nursing Innovation: Step to Full Practice Licensure

    Get PDF
    Background/local problem With the inception of the Affordable Care Act in 2010 the healthcare system was challenged to be efficient, effective, and patient centered. This transformation has challenged the nursing profession to work to the highest level of the nursing licensure. Nurses hold the distinction of being the largest profession working in healthcare, providing not only much of the direct patient care but also leadership. The Institute of Medicine 2010 The Future of Nursing Report called for nurses to reach for higher education and to become collaborative leaders in implementing change in the healthcare arena. Diabetes is a complex and expensive clinical problem, that requires nursing leadership to create innovations to efficiently and effectively meet patient needs. The purpose of this presentation is to provide an exemplar project that illustrates an advanced practice nurse utilizing research, theory and practice to create a quality improvement project and thus practice to the fullest extent of the nursing licensure to solve a local problem of ineffective diabetic education. Lessons learned and evidence that supports an innovative video diabetic educational program will be discussed to enable others to peruse similar work and/or similar process. Methods After observing and validating a clinical problem, related theories and research were evaluated to create an intervention aimed at improving healthcare quality. Garrand’s Matrix Method was used to guide a search of the literature. A database search resulted in 1219 articles for a preliminary review with 12 articles found to be specific to video education and diabetes. Within these articles themes were identified and a quality improvement project using the plan, do, study, act process was planned. Interventions This presentation will discuss 1) the research process including: formation of clinical questioning, PICO formulation, searching for the best evidence, and translating evidence into practice using theory and 2) evidence guiding a quality improvement project for individuals with Type II diabetes in a primary care setting. The broad focus is on utilization of technology to improve the knowledge of individuals with Type II diabetes. Conclusion/Implications This presentation will help nurses formulate clinical questions and proceed to quality improvement projects. It will highlight the leadership that is available in nursing profession and serve as an example of how nursing knowledge is generating practice improvements and thus provide an example of working at the fullest extent of the nursing license to create solutions to local problem

    Educating Effective Science Teachers: Preparing and Following Teachers Into the Field

    Get PDF
    This chapter focuses on: (a) our development of a research-based, graduate- level science TPP for teachers with a degree in science; (b) an analysis of teachers’ subject matter knowledge (SMK) as it relates to their subsequent use of inquiry-based instruction; and (c) results of a longitudinal study of beginning science teachers who graduated from a master’s level TPP in comparison with the instructional practices of science teachers prepared through a traditional undergraduate program. We offer what we consider to be a typical case of an undergraduate and less typical case of a graduate science teacher preparation program that occur at a large, land-grant, 4-year state university in a Great Plains state in the United States. The undergraduate and graduate programs have some overlapping coursework and clinical experiences, but provided different entry points, depth of coursework, culminating degrees, and rates of completion

    Measuring and Modelling How and When Effective Science Teaching Occurs

    Get PDF
    With new national science education standards, we must understand how to prepare science teachers capable of advancing reform initiatives. In a 3-year longitudinal study we adopted a multi-method approach to investigate beginning science teachers’ instructional practices. We analyzed transcripts, administered a teaching self-efficacy survey, observed science lessons, and documented weeks of lessons. Using this large dataset, we posed research questions about the use of NGSS scientific practices in teachers’ science lessons (Paper #1) and teacher- and student-level characteristics as it relates to teachers’ use of inquiry in the classroom (Paper #2). In order to expand our coding capability of science teaching data for use in our structural equation modelling efforts (Paper #4) we also completed an initial validation of the DiISC instrument (Paper #3). Findings included: (a) differential use of scientific practices by physical and life science teachers in their lessons; (b) beginning teachers had lower levels of assessment use and there was little evidence to suggest that assessment varied greatly by classroom diversity; (c) evidence for the validity of the DiISC with factor analyses, correlations with the EQUIP instrument, and think-aloud and semi-structured interviews with DiISC raters; and (d) an SEM showed master’s level teachers exhibited greater initial use of inquiry-based instruction and growth over time than undergraduate certified teachers with many contributing factors

    Discourse in Inquiry Science Classrooms, DiISC Version 2.0 (User’s manual for an observation research instrument)

    Get PDF
    This is a user\u27s manual for the externally validated Version 2.0 of the Discourse in Science Inquiry Classrooms (DiISC) instrument. The instrument is best suited for use in conducting research in secondary (grades 6-12) science classrooms that focuses on teachers\u27 instructional practices, but can also be used as a professional development tool for teacher self-reflection and identifying goals for instructional change. The DiISC Version 2.0 is aligned with a model of a scientific classroom discourse community and articulated characteristics of social constructivist lessons in the categories of inquiry, oral and written discourse, and academic language development and essential learning principles

    Hardware in the Loop Testing of an Iodine-Fed Hall Thruster

    Get PDF
    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload,1 providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cm cu and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high delta v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature ( less than100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the vacuum chamber (it is under 10(exp -6) torr at -75 C), making it possible to 'cryopump' the propellant with lower-cost recirculating refrigerant-based systems as opposed to using liquid nitrogen or low temperature gaseous helium cryopanels. In the present paper, we describe testing performed using an iodine-fed 200 W Hall thruster mounted to a thrust stand and operated in conjunction with MSFCs Small Projects Rapid Integration and Test Environment (SPRITE) Portable Hardware In the Loop (PHIL) hardware. This work is performed in support of the iodine satellite (iSAT) project, which aims to fly a 200-W iodine-fed thruster on a 12-U CubeSat. The SPRITE PHIL hardware allows a given vehicle to do a checkout of its avionics algorithm by allowing it to monitor and feed data to simulated sensors and effectors in a digital environment. These data are then used to determine the attitude of the vehicle and a separate computer is used to interpret the data set and visualize it using a 3D graphical interface. The PHIL hardware allows the testing of the vehicles bus by providing 'real' hardware interfaces (in the case of this test a real RS422 bus) and specific components can be modeled to show their interactions with the avionics algorithm (e.g. a thruster model). For the iSAT project the PHIL is used to visualize the operating cycle of the thruster and the subsequent effect this thrusting has on the attitude of the satellite over a given period of time. The test is controlled using software running on an Andrews Space Cortex 160 flight computer. This computer is the current baseline for a full iSAT mission. While the test could be conducted with a lab computer and software, the team chose to exercise the propulsion system with a representative CubeSat-class computer. For purposes of this test, the "flight" software monitored the propulsion and PPU systems, controlled operation of the thruster, and provided thruster state data to the PHIL simulation. Commands to operate the thruster were initiated from an operator's workstation outside the vacuum chamber and passed through the Cortex 160 to exercise portions of the flight avionics. Two custom-designed pieces of electronics hardware have been designed to operate the propellant feed system. One piece of hardware is an auxiliary board that controls a latch valve, proportional flow control valves (PFCVs) and valve heaters as well as measuring pressures, temperatures and PFCV feedback voltage. An onboard FPGA provides a serial link for issuing commands and manages all lower level input-output functions. The other piece of hardware is a power distribution board, which accepts a standard bus voltage input and converts this voltage into all the different current-voltage types required to operate the auxiliary board. These electronics boards are located in the vacuum chamber near the thruster, exposing this hardware to both the vacuum and plasma environments they would encounter during a mission, with these components communicating to the flight computer through an RS-422 interface. The auxiliary board FPGA provides a 28V MOSFET switch circuit with a 20ms pulse to open or close the iodine propellant feed system latch valve. The FPGA provides a pulse width modulation (PWM) signal to a DC/DC boost converter to produce the 12-120V needed for control of the proportional flow control valve. There are eight MOSFET-switched heating circuits in the system. Heaters are 28V and located in the latch valve, PFCV, propellant tank and propellant feed lines. Both the latch valve and PFCV have thermistors built into them for temperature monitoring. There are also seven resistance temperature device (RTD) circuits on the auxiliary board that can be used to measure the propellant tank and feedline temperatures. The signals are conditioned and sent to an analog to digital converter (ADC), which is directly commanded and controlled by the FPGA

    Potentiality in Biology

    Get PDF
    We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology

    Prospectus, May 8, 1996

    Get PDF
    https://spark.parkland.edu/prospectus_1996/1015/thumbnail.jp

    Nucleosynthetic osmium isotope anomalies in acid leachates of the Murchison meteorite

    Full text link
    We present osmium isotopic results obtained by sequential leaching of the Murchison meteorite, which reveal the existence of very large internal anomalies of nucleosynthetic origin. The Os isotopic anomalies are correlated, and can be explained by the variable contributions of components derived from the s, r and p-processes of nucleosynthesis. Much of the s-process rich osmium is released by relatively mild leaching, suggesting the existence of an easily leachable s-process rich presolar phase, or alternatively, of a chemically resistant r-process rich phase. The s-process composition of Os released by mild leaching diverges slightly from that released by aggressive digestion techniques, perhaps suggesting that the presolar phases attacked by these differing procedures condensed in different stellar environments. The correlation between 190Os and 188Os can be used to constrain the s-process 190Os/188Os ratio to be 1.275 pm 0.043. Such a ratio can be reproduced in a nuclear reaction network for a MACS value for 190Os of ~200 pm 22 mbarn at 30 keV. We also present evidence for extensive internal variation of 184Os abundances in the Murchison meteorite. This suggests that p process rich presolar grains (e.g., supernova condensates) may be present in meteorites in sufficient quantities to influence the Os isotopic compositions of the leachates.Comment: 40 pages, 9 figures, 2 tables. Accepted for publication in Earth and Planetary Science Letter

    Connection between the Accretion Disk and Jet in the Radio Galaxy 3C 111

    Full text link
    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4--10 keV), optical (R band), and radio (14.5, 37, and 230 GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuum flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero. This implies that the Fe line is generated within 90 light-days of the source of the X-ray continuum. The power spectral density function of X-ray variations contains a break, with steeper slope at shorter timescales. The break timescale of 13 (+12,-6) days is commensurate with scaling according to the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). The data are consistent with the standard paradigm, in which the X-rays are predominantly produced by inverse Compton scattering of thermal optical/UV seed photons from the accretion disk by a distribution of hot electrons --- the corona --- situated near the disk. Most of the optical emission is generated in the accretion disk due to reprocessing of the X-ray emission. The relationships that we have uncovered between the accretion disk and the jet in 3C 111, as well as in the FR I radio galaxy 3C 120 in a previous paper, support the paradigm that active galactic nuclei and Galactic BHXRBs are fundamentally similar, with characteristic time and size scales proportional to the mass of the central black holeComment: Accepted for publication in ApJ. 18 pages, 17 figures, 11 tables (full machine readable data-tables online in ApJ website

    B-lymphocyte stimulator/a proliferation-inducing ligand heterotrimers are elevated in the sera of patients with autoimmune disease and are neutralized by atacicept and B-cell maturation antigen-immunoglobulin

    Get PDF
    Abstract Introduction B-lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor (TNF) family that regulate B-cell maturation, survival, and function. They are overexpressed in a variety of autoimmune diseases and reportedly exist in vivo not only as homotrimers, but also as BLyS/APRIL heterotrimers. Methods A proprietary N-terminal trimerization domain was used to produce recombinant BLyS/APRIL heterotrimers. Heterotrimer biologic activity was compared with that of BLyS and APRIL in a 4-hour signaling assay by using transmembrane activator and CAML interactor (TACI)-transfected Jurkat cells and in a 4-day primary human B-cell proliferation assay. A bead-based immunoassay was developed to quantify native heterotrimers in human sera from healthy donors (n = 89) and patients with systemic lupus erythematosus (SLE; n = 89) or rheumatoid arthritis (RA; n = 30). Heterotrimer levels were compared with BLyS and APRIL homotrimer levels in a subset of these samples. Results The recombinant heterotrimers consisted mostly of one BLyS and two APRIL molecules. Heterotrimer signaling did not show any significant difference compared with APRIL in the TACI-Jurkat assay. Heterotrimers were less-potent inducers of B-cell proliferation than were homotrimeric BLyS or APRIL (EC50, nMol/L: BLyS, 0.02; APRIL, 0.17; heterotrimers, 4.06). The soluble receptor fusion proteins atacicept and B-cell maturation antigen (BCMA)-immunoglobulin (Ig) neutralized the activity of BLyS, APRIL, and heterotrimers in both cellular assays, whereas B-cell activating factor belonging to the TNF family receptor (BAFF-R)-Ig neutralized only the activity of BLyS. In human sera, significantly more patients with SLE had detectable BLyS (67% versus 18%; P < 0.0001), APRIL (38% versus 3%; P < 0.0002), and heterotrimer (27% versus 8%; P = 0.0013) levels compared with healthy donors. Significantly more patients with RA had detectable APRIL, but not BLyS or heterotrimer, levels compared with healthy donors (83% versus 3%; P < 0.0001). Heterotrimer levels weakly correlated with BLyS, but not APRIL, levels. Conclusions Recombinant BLyS/APRIL heterotrimers have biologic activity and are inhibited by atacicept and BCMA-Ig, but not by BAFF-R-Ig. A novel immunoassay demonstrated that native BLyS/APRIL heterotrimers, as well as BLyS and APRIL homotrimers, are elevated in patients with autoimmune diseases
    • …
    corecore