145 research outputs found
vanI : a novel D-Ala-D-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense
Peer reviewe
Biochemical and structural analysis of thermostable esterases
Biocatalysts play an important role in modern biotechnology because of their specificity, selectivity, efficiency and sustainability. One of the industrially most exploited and important groups of biocatalysts are the esterases. These enzymes catalyze, in the presence of water, the hydrolysis of an ester-bond resulting in the formation of an alcohol and a carboxylic acid. The use of enzymes in industrial processes also has its restrictions. Many processes are operated at elevated temperatures or in the presence of organic solvents. These conditions are detrimental to most enzymes and therefore there is a growing demand for enzymes with an improved stability. In this regard, there is a special interest from industry in enzymes of thermophilic origin since these enzymes generally display a high intrinsic thermal and chemical stability. This thesis describes the results of biochemical and structural analyses of thermostable esterases. Bioinformatics was used to identify new ester-hydrolyzing enzymes in the genomes of the hyperthermophilic bacterium Thermotoga maritima and the hyperthermophilic archaeon Archaeoglobus fulgidus. These potential esterases were cloned and heterologously expressed in Escherichia coli. Different types of ester hydrolyzing enzymes were found, including carboxylesterases, an acetyl esterase and a lipase. The biochemical properties of these enzymes were studied in detail. In addition, crystallization trials were performed, resulting in the three-dimensional structures of several of these enzymes. New structural features were revealed, such as the combination of an esterase domain with an immunoglobulin-like domain. The information obtained in this study provides fundamental knowledge, which may act as a basis for modern methods of enzyme engineering, with the aim to improve the applicability of these enzymes. <br/
Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site
A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain pnitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold 2 enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions.This work was supported by the Hotzyme project (grant agreement no. 265933) financed by
the European Union 7th Framework Programme FP7/2007-2013. WF is funded by a BBSRC
PhD studentship. MI would like to thank the BBSRC funded ERA-IB grant BB/L002035/1
and the University of Exeter for support. The authors would like to thank the Diamond
Synchrotron Light Source for access to beamline I03 (proposals No. MX8889 and No.
MX11945) and the beamline scientists for assistance. The work of ML was funded by the
Graduate School VLAG Wageningen, the Netherlan
Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches
Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (KD). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.
Environmental factors modulating the stability and enzymatic activity of the Petrotoga mobilis Esterase (PmEst)
Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required
vanI: a novel d-Ala-d-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense
The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A chromosomal vancomycin resistance gene cluster was previously described for the anaerobic Desulfitobacterium hafniense Y51. We demonstrate that this gene cluster, characterized by its d-Ala-d-Lac ligase-encoding vanI gene, is present in all strains of D.¿hafniense, D.¿chlororespirans and some strains of Desulfosporosinus spp. This gene cluster was not found in vancomycin-sensitive Desulfitobacterium or Desulfosporosinus spp., and we show that this antibiotic resistance can be exploited as an intrinsic selection marker for Desulfitobacterium hafniense and D.¿chlororespirans. The gene cluster containing vanI is phylogenetically only distantly related with those described from soil and gut bacteria, but clusters instead with vancomycin resistance genes found within the phylum Actinobacteria that include several vancomycin-producing bacteria. It lacks a vanH homologue, encoding a D-lactate dehydrogenase, previously thought to always be present within vancomycin resistance gene clusters. The location of vanH outside the resistance gene cluster likely hinders horizontal gene transfer. Hence, the vancomycin resistance cluster in D.¿hafniense should be regarded a novel one that we here designated vanI after its unique d-Ala-d-Lac ligas
Regulacija puta razgradnje pentoza s pomoću gena izoliranih iz plijesni Aspergillus niger
The aim of this study was to obtain a better understanding of the pentose catabolism in Aspergillus niger and the regulatory systems that affect it. To this end, we have cloned and characterised the genes encoding A. niger L-arabitol dehydrogenase (ladA) and xylitol dehydrogenase (xdhA), and compared the regulation of these genes to other genes of the pentose catabolic pathway. This demonstrated that activation of the pathway depends on two transcriptional regulators, the xylanolytic activator (XlnR) and an unidentified L-arabinose specific regulator (AraR). These two regulators affect those genes of the pentose catabolic pathway that are related to catabolic conversion of their corresponding inducers (D-xylose and L-arabinose, respectively).Istraživanje je provedeno radi boljeg razumijevanja puta razgradnje pentoza plijesni Aspergillus niger i regulacijskih sustava koji na njega utječu. Klonirani su i karakterizirani geni koji kodiraju L-arabitol dehidrogenazu (ladA) i ksilitol dehidrogenazu (xdhA) plijesni A. niger, te uspoređeni s ostalim genima koji reguliraju put razgradnje pentoza. Otkriveno je da aktivacija puta razgradnje ovisi o dva regulatora transkripcije gena, tj. aktivatoru razgradnje D-ksiloze (XlnR) i regulatoru ekspresije gena pri razgradnji L-arabinoze (AraR)
Novel routes towards bioplastics from plants: elucidation of the methylperillate biosynthesis pathway from <i>Salvia dorisiana </i>trichomes
Novel routes towards bioplastics from plants: elucidation of the methylperillate biosynthesis pathway from <i>Salvia dorisiana </i>trichomes
Plants produce a large variety of highly functionalized terpenoids. Functional groups such as partially unsaturated rings and carboxyl groups provide handles to use these compounds as feedstock for biobased commodity chemicals. For instance, methylperillate, a monoterpenoid found in Salvia dorisiana, may be used for this purpose, as it carries both an unsaturated ring and a methylated carboxyl group. The biosynthetic pathway of methylperillate in plants is still unclear. In this work, we identified glandular trichomes from S. dorisiana as the location of biosynthesis and storage of methylperillate. mRNA from purified trichomes was used to identify four genes that can encode the pathway from geranyl diphosphate towards methylperillate. This pathway includes a (–)-limonene synthase (SdLS), a limonene 7-hydroxylase (SdL7H, CYP71A76), and a perillyl alcohol dehydrogenase (SdPOHDH). We also identified a terpene acid methyltransferase, perillic acid O-methyltransferase (SdPAOMT), with homology to salicylic acid OMTs. Transient expression in Nicotiana benthamiana of these four genes, in combination with a geranyl diphosphate synthase to boost precursor formation, resulted in production of methylperillate. This demonstrates the potential of these enzymes for metabolic engineering of a feedstock for biobased commodity chemicals
Novel routes towards bioplastics from plants: elucidation of the methylperillate biosynthesis pathway from Salvia dorisiana trichomes
Plants produce a large variety of highly functionalized terpenoids. Functional groups such as partially unsaturated rings and carboxyl groups provide handles to use these compounds as feedstock for biobased commodity chemicals. For instance, methylperillate, a monoterpenoid found in Salvia dorisiana, may be used for this purpose, as it carries both an unsaturated ring and a methylated carboxyl group. The biosynthetic pathway of methylperillate in plants is still unclear. In this work, we identified glandular trichomes from S. dorisiana as the location of biosynthesis and storage of methylperillate. mRNA from purified trichomes was used to identify four genes that can encode the pathway from geranyl diphosphate towards methylperillate. This pathway includes a (–)-limonene synthase (SdLS), a limonene 7-hydroxylase (SdL7H, CYP71A76), and a perillyl alcohol dehydrogenase (SdPOHDH). We also identified a terpene acid methyltransferase, perillic acid O-methyltransferase (SdPAOMT), with homology to salicylic acid OMTs. Transient expression in Nicotiana benthamiana of these four genes, in combination with a geranyl diphosphate synthase to boost precursor formation, resulted in production of methylperillate. This demonstrates the potential of these enzymes for metabolic engineering of a feedstock for biobased commodity chemical
- …
