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Aim and outline

Aim and outline

This thesis describes the results of biochemical and structural analyses of thermostable 

esterases. The aim of this research project was to isolate and produce new esterases from 

hyperthermophilic microorganisms, to gain insight in their catalytic properties and to 

investigate their potential as biocatalysts in food-related conversions. 

	 Many processes in industry are operated under conditions, which are unfavorable for 

many biocatalysts. In this regard, enzymes from hyperthermophiles are promising candidates 

since they generally have a high intrinsic stability. The initial project aimed also at investigating 

the behavior of thermostable enzymes under high pressure or microwave irradiation. These 

methods may open new ways for the tuning of enzyme reactions, and thus offers the possibility 

of expanding the area of biocatalysis in the food industry. However, after disappointing pilot 

experiments, technical problems and better insight into high pressure theory, this approach 

was abandoned. Therefore, the main focus in this thesis is on the isolation, and biochemical 

and structural characterization of distinct esterases from the bacterium Thermotoga maritima 

(chapter 2-6) and a lipase from the archaeon Archaeoglobus fulgidus (chapter 7). The 

information obtained in this study provides fundamental knowledge, which may be useful for 

an industrial application.

Chapter 1 - Introduction

The first chapter gives a general overview of all currently characterized carboxylic ester 

hydrolases from hyperthermophilic bacteria and archaea. The biochemical properties, 

structures and classification of these enzymes are discussed. In addition, approaches for the 

discovery of new carboxylic ester hydrolases are described. 

Chapter 2 - Characterization and structural modeling of a new type of thermostable esterase 

from Thermotoga maritima 

The second chapter describes the identification, heterologous production, purification and 

biochemical characterization of an esterase (EstD) from T. maritima. A structural model was 

constructed based on threading and provided insight into the active site and substrate binding. 

Residues involved in catalysis were verified by site-directed mutagenesis and inhibition studies. 

Phylogenetic analysis of EstD suggested a new family of esterases.

Chapter 3 - Crystallization and preliminary crystallographic analysis of an esterase with a 

novel domain from the hyperthermophile Thermotoga maritima 

The third chapter describes the cloning, purification, crystallization and preliminary X-ray 

analysis of an esterase (EstA) from T. maritima. Native and selenomethionine-substituted 

EstA was crystallized by the hanging-drop vapour-diffusion method. Multiple wavelength 

anomalous data sets were collected to 2.6 Å resolution and an initial analysis is described. 
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Chapter 4 - Crystal structure and biochemical properties of a novel thermostable esterase 

containing an immunoglobulin-like domain 

After obtaining its preliminary crystallographic data, as described in Chapter 3, EstA was 

investigated further, in order to provide insight into the function of the immunoglobulin-like 

domain and reveal the molecular basis of substrate recognition and catalysis. The structure 

of EstA, native and in complex with the competitive inhibitor paraoxon, is described and the 

quaternary structure was investigated using dynamic light scattering, mass-spectrometry and 

electron microscopy. At present, this is the only esterase that has been described to have an 

immunoglobulin-like domain.

Chapter 5 - The crystal structures of a thermostable acetyl esterase / cephalosporin C 

deacetylase from Thermotoga maritima in complex with PMSF and paraoxon reveal an 

altered conformation of the catalytic serine

Chapter five reports on the crystal structure of an acetyl esterase, presumably  involved in xylan 

degradation. Insight into substrate binding was obtained from co-crystal structures with the 

inhibitors PMSF and paraoxon. Various biochemical properties and the positional specificity of 

the esterase was investigated. 

Chapter 6 - Purification and partial characterization of a thermostable esterase from 

Thermotoga maritima

The sixth chapter describes the cloning, purification, crystallization and partial biochemical 

characterization of an esterase (EstB) from T. maritima. EstB was crystallized by hanging-drop 

vapour-diffusion and a dataset was collected to ~2.8 Å resolution. Its structure solution is 

ongoing.

Chapter 7 - Characterization of a lipase from the hyperthermophilic archaeon Archaeoglobus 

fulgidus

No true lipases, hydrolyzing long chain fatty acid esters, have thus far been identified in 

hyperthermophiles. The seventh chapter describes the identification, cloning, purification and 

partial characterization of a lipase (LipA) from A. fulgidus. Lipase activity on triacylglycerol 

esters was determined using qualitative plate assays. LipA was crystallized by hanging-drop 

vapour-diffusion and a dataset was collected to ~2.6 Å resolution. Its structure solution is 

ongoing.

Chapter 8 - Summary and general discussion

This final chapter is a brief summary of the findings described in this thesis. Discussed are 

the physiological role of esterases, the use of microwave irradiation and high pressure for 

biocatalysis, and the general aspects of the enzymes described in this thesis, with some 

concluding remarks. 
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1Chapter

Introduction

This chapter has been adapted from:
Levisson, M., van der Oost, J. & Kengen, S.W.M. (2009) Carbohydrate ester hydrolases 
from hyperthermophiles. Extremophiles 13 (4), p. 567 - 581.
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Figure 1.1: Reactions catalyzed by carboxylic ester hydrolases: a) hydrolysis, b) esterification and c) 
transesterification.

Introduction

The synthesis of specific products by enzymes is a fundamental aspect of modern biotechnology. 

This biocatalytic approach has several advantages over traditional chemical engineering, such 

as higher product purity, fewer waste products, lower energy consumption and more selective 

reactions due to the high regio- and stereo-selectivity of enzymes 1. One of the industrially 

most exploited and important groups of biocatalysts are the carboxylic ester hydrolases (EC 

3.1.1.X) 2; 3. 

Carboxylic ester hydrolases are ubiquitous enzymes, which have been identified in all 

domains of life (Bacteria, Archaea and Eukaryotes), and in some viruses. In the presence of 

water, they catalyze the hydrolysis of an ester-bond resulting in the formation of an alcohol 

and a carboxylic acid. However, in an organic solvent they can catalyze the reverse reaction or a 

trans-esterification reaction (Figure 1.1) 4. Most carboxylic ester hydrolases belong to the α/β-

hydrolase family and share structural and functional characteristics, including a catalytic triad, 

an α/β-hydrolase fold, and a co-factor independent activity. The catalytic triad is conserved 

and is usually composed of a nucleophilic serine in a GXSXG pentapeptide motif (where X 

is any residue), and an acidic residue (aspartate or glutamate) that is hydrogen-bonded to a 

histidine residue 5; 6; 7; 8. 

There are two well-known groups within the family of carboxylic ester hydrolases: 

lipases and esterases. Esterases differ from lipases in that they show a preference for short-

chain acyl esters (shorter than 10 carbon atoms) and that they are not active on substrates 

that form micelles 9. Other groups include, for instance, arylesterases and phospholipases. 

The physiological role of carboxylic ester hydrolases is often not known, but nevertheless, 

many have found applications in industry; amongst other in medical biotechnology, detergent 
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production, organic synthesis, biodiesel (methyl-ester) production, flavor and aroma synthesis, 

and other food related processes 10; 11.

The use of enzymes in industrial processes also has its restrictions. Many processes are 

operated at elevated temperatures or in the presence of organic solvents. These conditions are 

detrimental to most enzymes and therefore there is a growing demand for enzymes with an 

improved stability. In this regard, especially, enzymes from hyperthermophiles are promising 

candidates because these enzymes generally display a high intrinsic thermal and chemical 

stability 12. In recent years, many new hyperthermophiles have been isolated and the genomes 

of a rapidly increasing number have been completely sequenced. Hyperthermophiles have 

proven to be a good source of new enzymes 13; 14; 15, including many putative esterases and 

lipases. 

At this moment, most esterases and lipases used in industry are from mesophiles, 

basically, because they were the first to be identified and characterized. Esterases and lipases 

have only been isolated from a small number of hyperthermophiles (Table 1.1). An excellent 

review on thermostable carboxylesterases from hyperthermophiles appeared in 2004 16. 

However, since then, many new hyperthermophilic carboxylic ester hydrolases have been 

described. Therefore, in this review we aim to present an overview of the currently characterized 

carboxylic ester hydrolases from hyperthermophiles. We will focus on the identification of new 

carboxylic ester hydrolases, the biochemical properties and 3D-structures of characterized 

enzymes, and their classification. For details on the application of these enzymes, we refer to 

other reviews that cover this aspect extensively 2; 11; 13. 

Hyperthermophiles

Hyperthermophiles are generally defined as micro-organisms that grow optimally at 

temperatures above 80°C 17. They have been isolated from both terrestrial and marine 

environments, such as sulfur-rich solfataras (pH ranging from slightly alkaline to extremely 

acidic), hot-springs, oil field waters and hydrothermal vents at the ocean floor. Consequently, 

they show a broad physiological diversity, ranging from aerobic respirers to methanogens and 

saccharolytic heterotrophs 17; 18. Hyperthermophiles can be found in both prokaryotic domains, 

viz. the Bacteria and the Archaea. In phylogenetic trees based on 16SrRNA they occupy the 

shortest and deepest lineages, suggesting they might be closely related to the common 

ancestor of all extant life 19. For this reason and because they are a potential source of new 

biocatalysts, the genomes of several hyperthermophiles have been completely sequenced 

(Table 1.1).

All biomolecules of hyperthermophiles must be stabilized against thermal denaturation. 

The simplest approach for DNA stabilization would be to increase the GC-content of the DNA. 

However, it has been established that the GC-content of hyperthermophiles does not correlate 
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Table 1.1: List of completely sequenced hyperthermophiles (T-optimum > 80oC) and extreme 
thermophiles (no growth  < 50oC)

Information concerning completely sequenced genomes and on-going sequence projects can be obtained at the GOLD 
Genomes Online Database (http://www.genomesonline.org) 23. 
a Extreme thermophiles that are related to hyperthermophiles.

Organism
Genome 

size (bp)

Number 

of ORFs 

GC content 

(%)

Optimal 

growth (°C)

Esterases 

isolated

Bacteria
Aquifex aeolicus VF5 1551335 1529 43.5 90
Caldicellulosiruptor saccharolyticus DSM 8903 2970275 2679 35.3 70a

Thermoanaerobacter tengcongensis MB4T / JCM 11007 2689445 2588 37.6 75a +
Thermotoga lettingae TMO 2135342 2040 38.7 65a

Thermotoga maritima MSB8 1860725 1858 46.2 80 +
Thermotoga petrophila RKU-1 1823511 1785 46.1 80
Thermotoga sp. RQ2 1877693 1819 46.2 76-82
Thermus thermophilus HB8 1849742 1973 69.4 75a +
Thermus thermophilus HB27 1894877 1982 66.6 68a +

Archaea
Aeropyrum pernix K1 1669695 1700 56.3 90 +
Archaeoglobus fulgidus VC-16 2178400 2420 48.6 82 +
Desulfurococcus kamchatkensis 1221n 1365223 1475 - 85
Hyperthermus butylicus DSM 5456 1667163 1602 53.7 95-106
Methanocaldococcus jannaschii DSM 2661 1739933 1729 31.4 85
Methanopyrus kandleri AV19 1694969 1687 61.2 98
Methanothermobacter thermoautotrophicus Delta H 1751377 1873 49.5 65-70a

Nanoarchaeum equitans Kin4-M   490885   536 31.6 90
Pyrobaculum aerophilum IM2 2222430 2605 51.4 100
Pyrobaculum arsenaticum PZ6 2121076 2298 58.3 95
Pyrobaculum calidifontis JCM 11548 2009313 2149 57.2 90-95 +
Pyrobaculum islandicum DSM 4184 1826402 1978 49.6 100
Pyrococcus abyssi GE5 1765118 1896 44.7 103 +
Pyrococcus furiosus DSM 3638 1908256 2125 40.8 100 +
Pyrococcus horikoshii OT3 1738505 1955 41.9 98
Staphylothermus marinus F1 1570485 1570 35.7 92
Sulfolobus acidocaldarius DSM 639 2225959 2292 36.7 70-75a +
Sulfolobus tokodaii 7, JCM 10545 2694756 2825 32.8 80 +
Sulfolobus solfataricus P2 2992245 2977 35.8 80 +
Thermococcus onnurineus NA1 1847607 1976 51.3 80
Thermococcus kodakaraensis KOD1 2088737 2306 52.0 85
Thermofilum pendens Hrk 5 1781889 1824 57.7 88
Thermoproteus neutrophilus V24Sta 1769823 1966 59.9 85

with the optimal growth temperatures (Table 1.1). Instead, other mechanisms are used to 

stabilize DNA, such as an increased intracellular electrolyte concentration, cationic DNA binding 

proteins, and DNA supercoiling 15. Thus far, all completely sequenced hyperthermophiles have 

a reverse gyrase catalyzing a positive supercoiling of their DNA. A reverse gyrase is however 

not a prerequisite for hyperthermophilic life, but it can be seen as a marker for growth at high 

temperatures 20. 

Proteins from hyperthermophiles have also been optimized for functioning at 

elevated temperatures. There is no single mechanism responsible for the stability of these 

hyperthermophilic proteins, rather, it can be attributed to multiple features. Features that 
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contribute to the stability of hyperthermophilic enzymes include (i) changes in amino acid 

composition, such as a decrease in the thermolabile residues asparagine and cysteine (ii) 

increased hydrophobic interactions, (iii) an increased number of ion pairs and salt bridge 

networks, (iv) reduction in the size of surface loops and of solvent-exposed surface, (v) as well 

as increased intersubunit interactions and oligomeric state 15; 18; 21. Besides these structural 

adaptations proteins can also be stabilized by intracellular solutes, metabolites and sugars 22.

Biomining for new enzymes

Traditionally, new biocatalysts were discovered by a cumbersome screening of a wide variety 

of organisms for the desired activity. A modern variant is the metagenomics approach, which 

involves the extraction of genomic DNA from environmental samples, its cloning into suitable 

expression vectors and subsequent screening of the constructed libraries 24. This approach 

has been successfully applied to isolate new biocatalysts, including carboxylic ester hydrolases 

from hyperthermophiles 25; 26. This approach can potentially result in unique enzymes (no 

sequence similarity), but obviously depends on functional expression. At present, with many 

complete genome sequences available, bioinformatics has become an important tool in the 

discovery of new biocatalysts. This is a high-throughput approach for the identification, and 

in silico functional analysis, of more or less related sequences encoding potential biocatalysts. 

Sequence similarity, based on sequence alignments and motif searches, is most commonly 

used for assigning a function to new proteins 27. 

Many sequences in the available databases have already been annotated as putative 

esterase or lipase. However, even more carboxylic ester hydrolases can be identified when 

BLAST and Motif searches, in combination with pair-wise comparison with sequences of known 

carboxylic ester hydrolases, are used. The advantage of this approach compared to traditional 

activity screening is the direct identification of new and diverse carboxylic ester hydrolases, 

which would otherwise not have been detected due to a low level of expression. 

Such a bioinformatics approach has been successfully applied to identify new carboxylic 

ester hydrolase sequences in the completely sequenced genomes of several selected 

hyperthermophiles. In order to have as many possible candidates, also sequences that were 

assigned a different function, but did have the characteristics of carboxylic ester hydrolases, 

were included, such as acylpeptide hydrolases. The results can be found in Table 1.2. A typical 

strategy includes: BLAST-P searches 28 using sequences of known carboxylic ester hydrolases 

as template. In parallel, searching InterPro 29 for potential candidates. The resulting sequences 

can then be further analyzed (for conserved motifs and domains) using the NCBI Conserved 

Domain Search 30; 31. 
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Microorganism Locus tag Genbank Annotation (NCBI) Residues GxSxG

Aeropyrum pernix APE1244 BAA80234 Hypothetical protein 583 GVSMG
APE1832 BAA80835 Acylpeptide hydrolase/Esterase 659 GGSYG
APE2361 BAA81374 Hydrolase, putative 279 GFSLG
APE2441 BAA81456 Acylpeptide hydrolase/Esterase 595 GGSYG

Hyperthermus butylicus Hbut_1071 ABM80914 Hypothetical protein 226 GLSVG

Pyrobaculum aerophilum PAE2936 AAL64548 Hypothetical protein 194 GPSAS
PAE3573 AAL65014 Hypothetical protein 196 GHSMG

Pyrobaculum calidifontis Pcal_1307 ABO08731 Alpha/beta hydrolase 313 GDSAG
Pcal_1997 ABO09412 Hypothetical protein 198 GHSMG

Pyrococcus abyssi PAB1050 CAB50498 Lysophospholipase, putative 259 GHSLG
PAB2176 CAB49187 Hypothetical esterase 286 GFSMG

Sulfolobus solfataricus SSO0102 AAK40458 Esterase, tropinesterase 231 GHSIG
SSO2262 AAK42427 Hypothetical protein 197 GASMG
SSO2518 AAK42649 Esterase, putative 353 GESFG
SSO2521 AAK42652 Lipase 311 GDSAG
SSO2979 AAK43083 Hypothetical protein 320 GHSSG
SSO3052 AAK43152 Hypothetical protein 210 GISGN

Thermoanaerobacter tengcongensis TTE0035 AAM23348 Hypothetical protein 237 GDSIS
TTE0419 AAM23703 Lysophospholipase 314 GHSFG
TTE0552 AAM23828 Predicted hydrolase 279 GVSMG
TTE0556 AAM23832 Predicted hydrolase 298 GWSMG
TTE1809 AAM25001 Alpha/beta hydrolase 258 GLSMG
TTE2321 AAM25462 Alpha/beta hydrolase 414 CHSMG
TTE2547 AAM25672 Alpha/beta hydrolase 285 AHSFG

Thermococcus kodakaraensis TK0522 BAD84711 Carbohydrate esterase 449 GSSLG

Thermotoga maritima TM1022 AAD36099 Esterase 253 GLSMG
TM1160 AAD36236 Esterase 306 GLSAG
TM1350 AAD36421 Lipase, putative 259 GHSLG

Table 1.2: Identified sequences of potential carboxylic ester hydrolases in selected genomes

Properties of characterized esterases

The first carboxylic ester hydrolase isolated and characterized from a hyperthermophile 

was a carboxylesterase from Sulfolobus acidocaldarius 32; 33. Since then, many new esterases 

have been characterized. At this moment, most carboxylic ester hydrolases described from 

hyperthermophiles are esterases and only recently the first lipase from a hyperthermophile 

was identified (Levisson et al., manuscript in preparation). Esterases have been characterized 

from Thermoanaerobacter tengcongensis, Thermotoga maritima, Thermus thermophilus, 

Aeropyrum pernix, Archaeoglobus fulgidus, Picrophilus torridus, Pyrobaculum calidifontis, 

Pyrococcus abyssi, Pyrococcus furiosus, Sulfolobus acidocaldarius, Sulfolobus shibatae, 

Sulfolobus solfataricus, Sulfolobus tokodaii and from metagenomic libraries (Table 1.3). 
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Substrate preference

Enzymes are classified and named according to the type of reaction they catalyse (Enzyme 

Commission). The carboxylic ester hydrolases all catalyse the hydrolysis of carboxylic acid esters, 

but they can be further clustered into different groups based on their substrate of preference. 

Two well-known members of this family are the esterases and true lipases. The majority 

of the characterized hyperthermophilic carboxylic ester hydrolases are esterases. Lipases 

have been described for many mesophiles, mainly microbial and fungal, and are exploited 

for biotechnological applications 2; 34. However, until recently no true lipase, hydrolyzing 

long chain fatty acid esters, had been identified in hyperthermophiles. The first lipase was 

characterized from the archaeon A. fulgidus (Levisson et al., manuscript in preparation) (Table 

1.3). This lipase shows maximal activity at a temperature of 95°C and has a half-life of 10 hours 

at 80°C. It displays highest activity with p-nitrophenyl-decanoate (pNP-C10) and is capable 

of hydrolyzing triacylglycerol esters of butyrate (C4), octanoate (C8), palmitate (C16) and 

oleate (C18). Two lipases from the thermophile Thermosyntropha lipolytica, LipA and LipB, 

have been characterized and are very stable at high temperatures 35. Both enzymes show 

maximal activity at 96°C and have the highest activity with the triacylglycerol ester trioleate 

and pNP-C12. LipA and LipB retained 50% of their activity after 6 and 2h incubation at 100°C, 

respectively, indicating that these two lipases are the most thermostable ones so far reported. 

Unfortunately, attempts to clone the two lipases were unsuccessful. A few mesophilic lipases 

may operate at temperatures above 80°C, but they usually have short half-lifes. An exception is 

a mesophilic lipase that was isolated from a Pseudomonas sp., which showed a half-life of over 

13h at 90°C 36. In comparison, the well-known lipase B from Candida antartica (CALB, Novozym 

435) has a half-life of only 2 hours at 45°C 37.

Esterases have a preference for short to medium acyl-chain esters (Table 1.3). Several 

enzymes from hyperthermophiles have been tested for activity toward esters with various 

alcoholic moieties other than the standard pNP-esters or 4-methylumbelliferyl (4MU) esters 

(Figure 1.2). The esterase from P. calidifontis displays activity towards different acetate esters 

and showed highest activity on iso-butyl acetate 38. Furthermore, it was able to hydrolyze 

sec- and tert-butyl acetate. At present, only few enzymes can catalyze the hydrolysis or the 

synthesis of tertiary esters. This is because known esterases and lipases cannot hydrolyse 

esters containing a bulky substituent near the ester carbonyl group. 

Other esterases have been characterized for their ability to resolve mixtures of chiral 

esters. The kinetic resolution of the esterase Est3 from S. solfataricus P2 was investigated using 

(R,S)-ketoprofen methyl ester (Figure 1.2) 39. The enzyme hydrolyzed the (R)-ester of racemic 

ketoprofen methylester and showed an enantiomeric excess of 80% with a conversion rate of 

20% in 32h. In another study, the esterase SSo-Est1 from S. solfataricus P1 40 was identified 

as homologue to the mesophilic Bacillus subtilis ThaiI-8 esterase (CNP) 41 and Candida rugosa 

lipase (CRL) 42, which are used for the chiral separation of racemic mixtures of 2-arylpropionic 
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Figure 1.2: Substrates commonly used to test for esterase activity: a) p-nitrophenyl butyrate, b) 4-methylumbelliferyl 
butyrate, c) (R/S)-ketoprofen methyl ester and d) p-nitrophenyl diethyl phosphate.

methyl esters. The enzyme was characterized biochemically for its ability to resolve mixtures 

of (R,S)-naproxen methyl ester under a variety of reaction environments 43; 44. Sso-Est1 showed 

a specific reaction toward the (S)-naproxen ester in co-solvent reaction conditions with an 

enantiomeric excess of ≥90%. 

In addition to esterases and lipases, other ester hydrolase types have been identified 

in hyperthermophiles, including two phosphotriesterases and an arylesterase that were found 

in S. acidocaldarius, S. solfataricus MT4 and P1, respectively 45; 46; 47. The phosphotriesterases 

showed maximal activity on the organophosphate methyl-paraoxon (dimethyl p-nitrophenyl 

phosphate) and the arylesterase showed maximal activity on paraoxon (diethyl p-nitrophenyl 

phosphate) (Figure 1.2) (Table 1.3). Besides this phospho-esterase activity, also esterase 

activity (on pNP-esters) was observed for both enzymes. Stable organophosphate-degrading 

enzymes are of great interest for the detoxification of chemical warfare agents and agricultural 

pesticides.   

Stability against chemicals

Stability and activity in the presence of organic solvents and detergents is an important 

property of an enzyme if it is to be used as a biocatalyst in industry. Several hyperthermophilic 

carboxylic ester hydrolases have been tested. The esterase from P. calidifontis 38 displays high 

stability in water-miscible organic solvents, and exhibited activity in 50% solutions of DMSO, 

methanol, acetonitrile, ethanol and 2-propanol. In addition, the enzyme retained almost full 

activity after 1 hour incubation in the presence of the above mentioned organic solvents at a 

concentration of 80%. In comparison, the lipases from the mesophiles Pseudomonas sp. B11-1 
48 and Fusarium heterosporum 49 were completely inactivated after incubation with acetonitrile. 
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In addition to stability against solvents the Pyrobaculum enzyme also has high thermal 

stability, with a half-life of approx. 1h at 110°C (Table 1.3). The esterase from S. solfataricus 

P1 50 also displayed good stability against organic solvents, comparable to the enzyme from P. 

calidifontis. In addition, addition of 5% non-ionic detergents, such as Tween 20, stabilized the 

Sulfolobus enzyme. Moreover, the enzyme retained 45% and 98% activity in the presence of 

5% SDS and 8M urea, respectively. The lipase from the mesophile Penicillium expansum shows 

a much lower stability against detergents or organic solvents 51. The esterase EstD from T. 

maritima 52 does not display resistance to detergents and only retained 0% and 43% activity in 

the presence of 1% (v/v) SDS and 1% (v/v) Tween 20, respectively. However, EstD does show 

good resistance against organic solvents since it remained actity in the presence of 10% (v/v) 

solvents, which is comparable to the esterase from P. calidifontis. The esterase Est3 from S. 

solfataricus P2 displayed good resistance against mild detergents 39, it retained 51% and 99% 

activity in the presence of respectively 10% (w/v) Tween 60 and 10% (w/v) Tween 80, but 

displayed lower stability against organic solvents than the other three esterases described 

above. 

Thermal stability

The most thermostable carboxylic ester hydrolase described to date is an esterase from P. 

furiosus 53 (Table 1.3). It is extremely stable with half-life’s of 34 and 2 hours at 100 and 120°C, 

respectively. The enzyme has optimal activity at a temperature of 100°C, which is in good 

agreement with the optimal growth temperature of Pyrococcus (100°C). Highest activity was 

obtained with the substrate MU-C2, however, also little activity toward pNP-C18 was detected 

indicating it has a very broad substrate tolerance. Another very stable esterase was detected in 

crude extracts of P. abyssi 54. This enzyme has a half-life of 22h and 13 minutes at 99 and 120°C, 

respectively. Maximal esterase activity was observed at least 65-74°C, however, temperatures 

above 74°C were not investigated due to instability of the substrate. The enzyme is active on 

a broad range of substrates, capable of hydrolyzing triacylglycerol esters and aromatic esters, 

but is restricted to short acyl chain esters of C2-C8 with an optimum for C5 fatty acid esters. 

Unfortunately, no sequence information has been reported for both Pyrococcus esterases. 

Most of the characterized carboxylic ester hydrolases from hyperthermophiles are optimally 

active at temperatures between 70 and 100°C (Table 1.3), which is often close to or above 

the host organism’s optimal growth temperature. Furthermore, it is interesting to note that 

some carboxylic ester hydrolases, such as the esterase from S. shibatae 55 and the acetyl 

esterase from T. maritima (Levisson et al., manuscript in preparation), after heterologous 

expression in Escherichia coli, show a transient activation during stability incubations, 

indicating they probably need a high temperature in order to fold properly. Compared to their 

mesophilic counterparts they perform similar functions, however due to intrinsic differences 
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hyperthermophilic enzymes are stable and can operate at higher temperatures. It is difficult 

to indicate exactly which factors contribute to this higher thermal stability since (as discussed 

before) many different factors are involved. 

Structures

Most carboxylic ester hydrolases conform to a common structural organization: the α/β-

hydrolase fold, which is also present in many other hydrolytic enzymes like proteases, 

dehalogenases, peroxidases and epoxide hydrolases 56. The canonical α/β-hydrolase fold 

consists of an eight-stranded mostly parallel β-sheet, with the second strand anti-parallel. The 

parallel strands β3 to β8 are connected by helices, which pack on either side of the central 

beta-sheet. The sheet is highly twisted and bent so that it forms a half-barrel. The active site 

contains the catalytic triad consisting of the residues serine, aspartate and histidine (Figure 

1.3a) 6; 7; 8. The substrate-binding site is located inside a pocket on top of the central β-sheet 

that is typical of this fold. The size and shape of the substrate-binding cleft have been related 

to substrate specificity 57.

The three-dimensional structures of several hyperthermophilic esterases have been 

solved (Table 1.3) (Figure 1.3). The first reported structure of an hyperthermostable esterase 

was for the esterase AFEST of A. fulgidus (PDB: 1JJI) 58. AFEST is an esterase that belongs to 

the hormone-sensitive lipase (HSL) group of esterases and lipases. The structure was refined 

to 2.2 Å resolution and showed that AFEST has the typical α/β-hydrolase fold. The active site is 

shielded by a cap region composed of five α-helices. Access to the active site of many lipases 

and some esterases is shielded by a mobile lid, whose position (closed or open) determines 

whether the enzyme is in an inactive or active conformation. AFEST is an esterase that prefers 

pNP-C6 as a substrate and shows maximal activity at 80°C. It is stable at high temperatures 

with a half-life of 1 hour at 85°C 59. A comparison of the AFEST structure with its mesophilic 

and thermophilic homologues, Brefeldin A from Bacillus substilus (BFAE) (PDB: 1JKM) 60 and 

EST2 from Alicyclobacillus acidocaldarius (PDB: 1EVQ) 61, showed which structural features 

contribute to its thermal stability. The comparison revealed an increase in the number of 

intramolecular ion pairs, and a reduction in loop extensions and ratio of hydrophobic to 

charged surface residues 58; 62. 

The structure of the esterase EstE1 was solved to 2.1 Å resolution (PDB: 2C7B) 63. This 

enzyme, which was isolated from a metagenomic library, also belongs to the HSL group and 

is closely related with AFEST. EstE1 has the canonical architecture of the α/β-hydrolase fold 

and also contains a cap domain like other members of the HSL group 58. It exhibits highest 

esterase activity on short acyl chain esters of length C6 and has a half-life of 20 minutes at 

90°C 25. The thermal stability of EstE1 seems to be achieved mainly by its dimerization through 

hydrophobic interactions and ion-pair networks that both contribute to the stabilization of 
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Figure 1.3 (in color on p.144): Canonical fold of α/β-hydrolases. In a) Topology diagram, with the strands indicat-
ed by red arrows and the helices by cyan cylinders. The positions of the catalytic residues are indicated. In b-d) the 
structures of three hyperthermophilic esterases: b) the carboxylesterase AFEST from A. fulgidus (pdb 1JJI), c) the 
esterase EstA from T. maritima (pdb 3DOH), and d) the acylpeptide hydrolase apAPH from A. pernix (pdb 1VE6).

EstE1 64. This strategy for thermostabilization is different from AFEST and shows that there are 

a variety of structural possibilities to acquire stability. 

The crystal structure of an acylpeptide hydrolase (apAPH) from the archaeon A. pernix 

was solved to 2.1 Å resolution (PDB: 1EV6) 65. Acylpeptide hydrolases are enzymes that 

catalyze the removal of an N-acetylated amino acid from blocked peptides. The enzyme shows 

an optimal temperature at 90°C for enzyme activity and is very stable at this temperature with 

a half-life of over 160 hours. It is active on a wide range of substrates, including p-nitroanilide 

(pNA) amino acids, peptides, and also pNP-esters with varying acyl chain lengths with an 

optimum for pNP-C6 66. The structure of the acylpeptide hydrolase / esterase apAPH belongs to 

the prolyl oligopeptidase family 65. The structure is comprised of two domains, the N-terminal 

domain is a regular seven-bladed β-propeller and the C-terminal domain has the canonical α/β-

hydrolase fold that contains the catalytic triad consisting of a serine, aspartate and histidine. 

It was shown that a single mutation (R526E), completely abolished the peptidase activity on 

Ac-Leu-p-nitroanilide of this enzyme while esterase activity on pNP-C8 was only halved 67. Any 

mutation at the 526 site resulted in decreased peptidase activity due to loss of the ability 

of R526 to bind the peptidase substrate, while most of the mutants had increased esterase 
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activity due to a more hydrophobic environment of the active site. This result shows that 

enzymes can evolve such that they discriminate between substrates only by a single mutation.

The most recently elucidated structure belongs to an esterase, EstA, from T. 

maritima (PDB: 3DOH) 68. The enzyme displayed optimal activity with short acyl chain esters 

at temperatures equal or higher than 95°C. Its structure was solved to 2.6 Å resolution 

and revealed a classical α/β-hydrolase domain, which contained the typical catalytic triad. 

Surprisingly, the structure also revealed the presence of an N-terminal immunoglobulin (Ig)-

like domain. The combination of these two domains is unprecedented among both mesophilic 

and hyperthermophilic esterases. The function of this Ig-like domain was investigated and 

it was shown that it plays an important role in multimer formation, and in the stability and 

activity of EstA. 

A high-resolution structure of an enzyme leads to a better understanding of its reaction 

mechanism, how it interacts with other proteins, what contributes to its stability, and may 

provide a basis for enzyme optimization and drug design. Because it is nowadays relatively easy 

to setup crystallization trials using commercially available screens and also because the current 

high-throughput crystallization projects are responsible for a large increase in the number of 

solved structures 69, it is expected that more structures of hyperthermophilic esterases will 

become available in future.

Classification

Enzymes can be classified on basis of their substrate preference, sequence homology and 

structural similarity. Classification of enzymes based on sequence alignments provides an 

indication of the evolutionary relationship between enzymes. Still, structural similarity is 

preserved much longer than sequence similarity during evolution. On the other hand, sequence 

homology and structural similarity are not always correlated with the substrate preference of 

an enzyme. All-in-all, classification of enzymes is not straightforward.

Several classifications of esterases and lipases into distinct families have been completed. 

In one such study, 53 bacterial esterases and lipases were classified into eight families based 

on their sequence similarity and some of their fundamental biological properties 110. Many 

new esterases and lipases have since then been identified, including several, such as EstD from 

T. maritima 52, which could not be grouped into one of these eight families. Therefore, new 

families for these enzymes have been proposed. However, this early classification has provided 

a good basis for more refined classification of the esterases and lipases. Most of the recent 

studies are based on sequence and structural similarity and are accessible at online databases. 

Some relevant databases will be briefly discussed: The Lipase Engineering Database (LED), 

the Microbial Esterase and Lipase Database (MELDB), the Carbohydrate Active Enzyme (CAZy) 

database and the ESTHER database. 
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Introduction

The LED (http://www.led.uni-stuttgart.de) combines information on sequence, structure 

and function of esterases, lipases and related proteins sharing the same α/β-hydrolase fold 111; 

112. The database contains more than 800 prokaryotic and eukaryotic sequences, which have 

been grouped into families based on multi-sequence alignments. The functionally relevant 

residues of each family have been annotated. The database was developed as a tool for protein 

engineering. The LED will be updated coming year (personal communication with Prof. dr. 

Juergen Pleiss).  The classification will not change, but the number of proteins and families will 

increase substantially. MELDB (http://www.gem.re.kr/meldb) is a database that contains more 

than 800 microbial esterases and lipases 113. The sequences in MELDB have been clustered 

into groups according to their sequence similarities and are divided in true esterase and 

lipase clusters. The database was developed in order to identify, conserved but yet unknown, 

functional domains/motifs and relate these patterns to the biochemical properties of the 

enzymes. According to the authors, new enzymes of other completely sequenced microbial 

strains will be added on a regular basis. CAZy (www.cazy.org) is a database that contains 

enzymes involved in the degradation, modification, or creation of glycosidic bonds 114. One 

class of activities in this database is the carbohydrate esterases (CE). These enzymes remove 

ester-based modifications from carbohydrates. Carbohydrate esterases have been clustered 

into 15 families. These families have been created based on experimentally characterized 

proteins and sequence similarity. The database is continuously updated based on the available 

literature and structural information. The ESTHER database (http://bioweb.ensam.inra.fr/

esther) contains more than 3500 sequences of enzymes belonging to the α/β-hydrolase fold 
115. These enzymes have been clustered into families based on sequence alignments. This 

database is updated regularly and furthermore contains information about the biochemical, 

pharmacological and structural properties of the enzymes. 
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2 Characterization and structural modeling of a new type of thermostable esterase from T. maritima

Abstract

A bioinformatic screening of the genome of the hyperthermophilic bacterium Thermotoga 

maritima for ester-hydrolyzing enzymes revealed a protein with typical esterase motifs, 

though annotated as a hypothetical protein. To confirm its putative esterase function the gene 

(estD) was cloned, functionally expressed in E. coli and purified to homogeneity. Recombinant 

EstD was found to exhibit significant esterase activity with a preference for short acyl chain 

esters (C
4-C8). The monomeric enzyme has a molecular mass of 44.5 kDa and optimal activity 

around 95˚C and at pH 7. Its thermostability is relatively high with a half-life of 1 h at 100˚C, 

but less stable compared to some other hyperthermophilic esterases. A structural model was 

constructed with the carboxylesterase Est30 from Geobacillus stearothermophilus as template. 

The model covered most of the C-terminal part of EstD. The structure showed an α/β-hydrolase 

fold and indicated the presence of a typical catalytic triad consisting of a serine, aspartate and 

histidine, which was verified by site-directed mutagenesis and inhibition studies. Phylogenetic 

analysis showed that EstD is only distantly related to other esterases. A comparison of the 

active site pentapeptide motifs revealed that EstD should be grouped into a new family of 

esterases (Family 10). EstD is the first characterized member of this family.
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Introduction

Enzymes play an important role in modern biotechnology because of their specificity, 

selectivity, efficiency and sustainability. One of the industrially most frequently used groups 

of biocatalysts are the esterases and lipases, which are exploited in various processes, such as 

the stereospecific hydrolysis of drugs and ester synthesis for food ingredients (flavors) 3; 4; 5; 7. 

Esterases and lipases catalyse the hydrolysis of an ester bond resulting in the formation of an 

alcohol and a carboxylic acid. Both types of enzymes belong to the family of serine hydrolases 

and share structural and functional characteristics, including a catalytic triad, an α/b hydrolase 

fold and a cofactor independent activity. The catalytic triad usually consists of a nucleophilic 

serine in a GXSXG pentapeptide motif and an acidic residue (aspartic acid or glutamic acid) that 

is hydrogen bonded to a histidine residue 4; 7. 

	 In the presence of water, esterases and lipases may be used for specific ester hydrolysis, 

but in anhydrous solvents the reverse reaction or a transesterification reaction becomes 

possible. The use of organic co-solvents, however, puts high constraints on the enzymes’ 

stability, resulting in a growing demand for esterases with improved stability for industrial 

application. Enzymes from extremophiles and thermophiles in particular are promising in this 

respect because these enzymes have a high intrinsic thermal and chemical stability 18. The 

hyperthermophilic archaea Archaeoglobus fulgidus, Pyrococcus furiosus and Pyrobaculum 

calidifontis have been shown to contain such thermostable esterases 38; 53; 59. From the 

hyperthermophilic bacteria only few esterases have been described to date, viz. two acetyl xylan 

esterases from a Thermoanaerobacterium species 116, an esterase from Thermoanaerobacter 

tengcongensis 72 and recently a carboxylesterase from Thermotoga maritima 71. 

	 Traditionally, active biocatalysts have been discovered by screening for the desired 

activity, but because of the availability of an ever increasing number of complete genome 

sequences, bioinformatics has become an important tool in the discovery and identification 

of novel industrial biocatalysts 16; 27. In order to extract a maximal amount of information from 

the available genome sequences, conserved genes have been classified according to their 

homologous relationships, which resulted in the delineation of clusters of orthologous groups 

(COGs) 117; 118. The purpose of the COG system is to facilitate the annotation of newly sequenced 

genomes and to functionally characterize individual proteins. 

	 Here a bioinformatic analysis of the genome of the hyperthermophilic bacterium 

Thermotoga maritima was performed to find new thermostable esterases. Several open 

reading frames that potentially encode esterases or lipases were identified, including one 

(estD, TM0336) that has been annotated as a conserved hypothetical protein, although it does 

possess characteristics of an ester hydrolyzing enzyme. Interestingly, EstD belongs to a COG 

(1073) that comprises proteins only predicted to have an α/β hydrolase fold, whose function 

has not yet been experimentally determined. To confirm the anticipated function of EstD and 

to support COG1073 with experimental evidence, estD was cloned and expressed in E. coli. 
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2 Characterization and structural modeling of a new type of thermostable esterase from T. maritima

The recombinant enzyme was characterized, including structural modeling and experimental 

analysis of the catalytic triad. 

Results

Identification and in silico analysis

T. maritima is a bacterium growing optimally at a temperature of 80°C. Its genome has been 

sequenced 119 and revealed 1,877 predicted coding regions, of which approximately 40% 

are still of unknown function. While performing BLAST searches with sequences of known 

esterases from other hyperthermophilic microorganisms against the T. maritima genome an 

amino acid sequence (accession code: TM0336) has been identified that had a pentapeptide 

consensus sequence, Gly-Xaa-Ser-Xaa-Gly, typical for serine hydrolases. The ORF was 

annotated as a conserved hypothetical protein 119. The gene encodes a protein of 412 amino 

acids and has a calculated molecular mass of 46.5 kDa. BLAST-P analysis revealed the highest 

similarity to other hypothetical proteins and putative hydrolases. The most significant hits of 

a BLAST search analysis include a hypothetical protein of Solibacter usitatus (36% identity), a 

hypothetical protein of Bacteroides fragilis (33% identity) and putative hydrolases of several 

Bacillus species (up to 34% identity). 

		  Analysis using Prosite InterProScan revealed a possible esterase domain 

(IPR000379) and lipase active site (IPR008262). A KEGG SSDB Motif Search showed that EstD 

is composed of two possible domains: an N-terminal domain (AA 17-121) which has homology 

to a MecA_N domain and a C-terminal domain (AA 150-400) which showed predicted domains 

for esterase or general hydrolase. The MecA gene is involved in bacterial resistance to 

antibiotics, however the N-terminal domain of MecA seems unlikely to have enzymatic activity 

and its role remains unknown 120. The conserved domains present in the encoded protein were 

analyzed using the NCBI Conserved Domain Search. EstD belongs to the COG1073, comprising 

hydrolases of the alpha/beta superfamily. Furthermore, the C-terminal part of this protein is 

also related to COG1506 (Dipeptidyl aminopeptidases / acylaminoacyl-peptidases), COG1647 

(Esterase/lipase) and COG2267 (Lyso-phospholipases), which are all subfamilies of the serine 

hydrolase family 121. The characteristics of serine hydrolases include a tertiary structure called 

the α/β-hydrolase fold and a catalytic triad consisting of a serine, aspartate and histidine 

residue. A comparison of TM0336 with the amino acid sequences of the most significant hits 

in the BLAST search, as well as with the carboxylesterase Est2 of Alicyclobacillus acidocaldarius 

and the carboxylesterase Est30 of Geobacillus stearothermophilus, identified the three amino 

acids that potentially constitute the catalytic triad (Ser243, Asp347 and His378) (Figure 2.1). 
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T.mar EstD : --------------------------------------------------------------------------- :   -
S.usi      : --------------------------------------------------------------------------- :   -
B.fra      : -----------------------------------------------------------------------MIKK :   4
B.cer      : MKGESMNMSTKKRIGNKLILISAICAIAIPSVSYAEEIISPENFASSSNLYEGQNTDILKSSLYPDTYKNPFNHQ :  75
B.thu      : MKGESISMGKKRRTSNKLLLVSAIFSITIPSVSYAEEVILPENFTSSSSLYEGRNTEVLKTGLYPDTYNYPFNHQ :  75
B.aci 1EVQ : --------------------------------------------------------------------------- :   -
G.ste Est30: --------------------------------------------------------------------------- :   -
                                                                                              

                                                                                              
T.mar EstD : -----MRLTVFLSLFLGVMVFGAFDQEAFLFVQHLTSENFESALNMCSNQVKAQLSVQSLSNIWNSL--KAQLSD :  68
S.usi      : MFTRVLKLLPLLSFLLVAQQAQDPVATARKALDLLLAGSYPEFLQMSTADVQKGIPLPELAKLGAGI--KGYGAV :  73
B.fra      : NLLKGICLLWLLLAVTPVLQAQDRAQQASELLDRLIAGQGDSVYVHLDDNIRKMLSVEMLNGLFKQL--EQQAGK :  77
B.cer      : FISTLKETNKNIKKIDNTEDENPVIATTLSFIRYMDTEDYKSAIDLISRSLKKVISEEWLKSYWKGLPAQLQAGF : 150
B.thu      : FISKLKEANTTIKKVDNSDDENPIISTTLSFIRHMNSEDYKSAFDLTSRSLQKIISEEWLKSYWEGLPVQLQAGS : 150
B.aci 1EVQ : -----MPLDPVIQ-----QVLDQLNRMPAPDYKHLSAQQFRSQQSLFPPVKKEPVA--EVREFDXDLP------- :  56
G.ste Est30: --------------------------------------------------------------------------- :   -
                                                                                              
                                                                                              
T.mar EstD : FRE-IAGYEKIIQAEYEIYNFTLKFDRGEISALVTMDREGKVAGLFFKQATKTEYELPDYVDPESFEEKDITVN- : 141
S.usi      : EKI-SDPQ-VMKSGPNTIATFPVKFANQSINFRIVINSSGLVAG-IFQLPGAVNWTRPEYSKPDTFKEREVTVGE : 145
B.fra      : YQS-HGEWKTEPINGMTVYYCDVKFERLPLRFLTAFNPDGKVNTIRFVPVPPEKTTPPTTSVQDKIKETDIQVCT : 151
B.cer      : FMGIGEVTQKDTNSVHTNVEIKLVFEQITVPLLIKLDPSGKIDDFQLSMPFSPVAERPSYSRPESFVDKEVVVGS : 225
B.thu      : FIEIGEVTQKETNPVHTNVEIQLVFEKMTVPLLIKLDPSGKIDDFQLSMSFSPVAERPSYSKPESFVDKEVVVGS : 225
B.aci 1EVQ : --------------------------------------------------------------------------- :   -
G.ste Est30: --------------------------------------------------------------------------- :   -
                                                                                              

                                                                                             
T.mar EstD : ---GLPGKITI--PKG-SGPFPAVVLVHGSGPNDMDETIGPNKIFKDIAY-GLSSKG-IIVLRYHKRTFVEKVDP : 208
S.usi      : GEWKLPGTLTLPNGAG---PFPAAVLVHGSGPNDRDETVGGAKVFKDLAE-GLASRG-IAVLRFEKRTRQYGAR- : 214
B.fra      : GNFKLPGTLTLPKN-GK--DLPVVILVHGSGASDRDETVGANKPFRDLAY-GLAERG-IAVIRYDKRTKVYGADS : 221
B.cer      : GAFPLPGTFSVPKGKG---PFPAVILVHADGAADQDETAYALKPFRDLAEG-LASKG-IAVLRYNKRTYEHGLK- : 294
B.thu      : GAFPLPGTLSVPKGNG---PFPAVILVQGSGATDQDETAFALKPFRDLAE-GLASKG-IAVLRYNKRTYEHGLK- : 294
B.aci 1EVQ : ---GRTLKVRXYRPEGVEPPYPALVYYHGGG-----WVVGDLETHDPVCR-VLAKDGRAVVFSVDYRL------- : 115
G.ste Est30: MMKIVPPKPFFFEA-GER----AVLLLHGF--------TGNSADVRMLGR-FLESKG-YTCHAPIYKGHGVPPE- :  59
                                                                                              
                                                   * * *                                         
T.mar EstD : TTLTVEK-EVIEDALEAVKILKERK-----DVSRVYVLGHSLGAMLTPEIA---ERSKADGVVMIA--------- : 265
S.usi      : VAAVKEFSVEQETVEDAVKAAALLRTLPEIDGKRVFVIGHSLGGYVAPRIAE--QDGKLAGLVLMAAN------- : 280
B.fra      : APAGKEITFDEESVDDALSAIKLARSIPTINPERIYILGHSLGGTLAPRIVQ--RSDKVPAGIILLAG------- : 287
B.cer      : TELSPFYTVDKGTTDDALLVTHFLQNEPMIDKNQIYILGHSLGGMMIPKMIEKDQNQNIAGAIVMGG-------- : 361
B.thu      : TQFSPFYTVDKETTDDALLVTQFLKNEPLINKNQIYILGHSQGGMMLPKMIEKDQNKNIAGAIVMGG-------- : 361
B.aci 1EVQ : -APEHKFPAAVEDAYDALQWIAERAADFHLDPARIAVGGDSAGGNLAAVTS---ILAKERGGPALAFQLLIYPST : 186
G.ste Est30: ELVHTGPDDWWQDVMNGYEFLKN----KGY--EKIAVAGLSLGGVFSLKLG---YTVPIE------GIVTMCAPM : 119
                                                                                              

                                                                                              
T.mar EstD : ----------PPARPLEEVMEDQLKYLQ-----SLGLASNV-EETL--NILEKLKRKEIP-PDEFVLGAP--AKY : 319
S.usi      : ------------VRPMEDLLVEQAQYLG-----ATGTPLENAKIMQ--AKVKKLETGDEDNPAIG--GVP--VTY : 332
B.fra      : -----------AARPLEDLFISQVKFLASALPSTKDIEKEIAELQKQVDNVKRLGTDTFDITTPLPMNLS--QAY : 349
B.cer      : -----------AARAFTESVLDQLEYRLS----IGAMKPEEYKFYKSQFEL--LNDPNFSSQNPPKDFQLGSPVF : 419
B.thu      : -----------PARTIQDVVLDQFEYLFS----IGAMNQEQYKFYKSQFEL--LNDPNFSGQNPPKDFYLGSAIF : 419
B.aci 1EVQ : G--------YDPAHPPASIEENAEGYLL-----TGGXXLWFRDQYL--NSLEELTHPWFS-P-----------VL : 234
G.ste Est30: YIKSEETMYEGVLEYAREYKKREGKSEE-----QIEQEMEKFKQTPMKTLKALQE--LIADV-----------RD : 176
                                                                                              

                                        *                                 *                     
T.mar EstD : FYDLRERDPASIAKRLTIPMLLIFGGRDYQVTEKDQE-IWLKELSGREN--VKILVFDDLNHLMISGE--GKSTP : 389
S.usi      : WLDLKGYNPTVLAKTLAIPILILQGERDYQVTMTDFA-MWKSAIGAQKG--VVMKSYPALNHLFVPGE--GKSLP : 402
B.fra      : WMLANQYKPLEVVRKLTLPILVLQGERDYQVTMQDFE-LWQSALAKHPN--AIFKSYPRLNHLFQEGE--GKSTP : 419
B.cer      : WDSIRKINAAEMSKEQKTPLLILQGERDFQVQSKIEIPFWKEQLKERDN--VEYRLYPKLNHFFTEGDG-ELSKP : 491
B.thu      : WDSIRKIKAAEMSKEQKTPLLIIQGERDYQVQSKIEIPLWKEQLKERDN--VDYRLYPKLNHFFTEGDG-EISKP : 491
B.aci 1EVQ : YPDLSGLP----------PAYIATAQYD--PLRDVGK-LYAEAL-NKAGVKVEIENFEDLIHGFAQFYSLS-PGA : 294
G.ste Est30: H-LDLIYA----------PTFVVQARHDEMINPDSAN-IIYNEI---ESPVKQIKWYEQSGHVITLD-------- : 228
                                                                                              

                                               
T.mar EstD : VEYMKKGHVDKRVIDEIARWMVK----- : 412
S.usi      : AEYNKPGHVAPQVIADIAAFIKP----- : 425
B.fra      : LEYSRPSSIPSYVTDDIAAFINRPKPGN : 447
B.cer      : DEYYSPTNIPEYVINDIAAWVQGRSK-- : 517
B.thu      : DEYYSPANIPEYVINDIAAWVQGRSQ-- : 517
B.aci 1EVQ : TKALVRIAEKLRDALA------------ : 310
G.ste Est30: -QEKDQLHEDIYAFLESLDW-------- : 247   

Figure 2.1: Amino acid sequence alignment of EstD. Multiple sequence alignment of EstD (T.mar EstD) with the first 
BLAST hits: Solibacter usitatus (S.usi), Bacteroides fragilis (B.fra), Bacillus cereus (B.cer)and Bacillus thuringiensis 
(B.thu) and two characterized esterases: Bacillus acidocaldarius (B.aci 1EVQ) and Geobacillus stearothermophilus 
(G.ste Est30). The conserved GXSXG motif, and the aspartate and the histidine that constitute the catalytic triad 
are marked with an asterisk.
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Cloning and purification of recombinant EstD

N-terminal sequence analysis using SignalP revealed that the first 18 amino acids form a signal 

peptide. The predicted mature gene was cloned into the expression vector pET-26b. The 

enzyme EstD was purified to homogeneity from heat-treated cell extracts of E. coli BL21(DE3)/

pSJS1244/pWUR353 by immobilized metal affinity chromatography. The recombinant protein 

was purified 115-fold with a yield of 66%. Homogeneity of the protein was checked by SDS-

PAGE and confirmed a molecular subunit mass of 44.5 kDa (mature enzyme) (Figure 2.2a). 

Activity staining of the SDS-PAGE gels using α-naphtyl acetate confirmed the identity of the 

EstD band (Figure 2.2b). Native-PAGE showed a single band that was confirmed to possess 

esterase activity by means of an activity stain. Size exclusion chromatography showed that the 

enzyme existed mainly as a monomer and to some extent as dimer, with estimated masses of 

48 kDa and 93 kDa, respectively.

Figure 2.2: SDS-PAGE of EstD fractions. Samples were separated by SDS-PAGE in duplicate. One gel was stained 
with Coomassie brilliant blue (A) and the other was stained for activity using α-naphtyl acetate after renaturation 
(B). M: molecular weight standards, lane 1: cell free extract, lane 2: heat-stable cell free extract, lane 3: EstD after 
immobilized metal affinity chromatography and lane 4: purified EstD. A second band at approximately 90 kDa is 
corresponding to the EstD dimer.  The dimer is believed to be catalytically active as well.

Substrate specificity and kinetics

The substrate specificity of purified EstD was analyzed using p-nitrophenyl esters. The highest 

specific activity with EstD was found towards short chain p-nitrophenyl esters of butyrate 

(C4) and valerate (C5). Little activity was found towards long chain p-nitrophenyl esters of 

decanoate (C10) to myristate (C14). In general, activity of the enzyme on shorter (≤C10) and 

longer fatty acids (≥C10) is referred to as esterase activity and lipase activity, respectively 7. The 

kinetic properties of EstD were determined for p-nitrophenyl esters of acetate (C2), butyrate 

(C4), valerate (C5), octanoate (C8) and decanoate (C10) (Table 2.1).  The catalytic efficiency 
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represented by the value of kcat/Km indicated that p-nitrophenyl valerate and p-nitrophenyl 

octanoate were the best substrates for EstD among the p-nitrophenyl esters tested. Hence, on 

the basis of its substrate profile EstD should be classified as an esterase.

	 Neither proteolytic activity using casein as substrate, nor peptidase activity when 

assayed with L-leucine p-nitroanilide and L-proline p-nitroanilide was detected. 

p-Nitrophenyl esters Km (mM) kcat (s
-1) kcat/Km

 (s–1 mM–1)

Acetate (C2) 0.148 ± 0.025 1.0 ± 0.05 6.8 ± 1.2

Butyrate (C4) 0.227 ± 0.017 14.9 ± 0.40 65.6 ± 5.2

Valerate (C5) 0.066 ± 0.006 10.2 ± 0.20 154.5 ± 14.4

Octanoate (C8) 0.011 ± 0.003 1.6 ± 0.15 145.5 ± 12.1

Decanoate (C10) 0.072 ± 0.012 1.3 ± 0.06 18.1 ± 0.5

Table 2.1: Kinetic parameters for hydrolysis of various p-nitrophenyl esters. Kinetic assays were 
performed in 50 mM citrate-phosphate buffer pH 7 at 70°C.

Figure 2.3: Effect of temperature on esterase activity. The effect of temperature on esterase activity was studied 
using pNP-valerate as a substrate at temperatures ranging from 45°C to 95°C. The inset shows the temperature 
dependence as an Arrhenius plot.

Effect of temperature and pH on enzyme activity and thermal stability 

The effect of temperature on EstD activity was studied using p-nitrophenyl valerate as a 

substrate. The esterase activity increased from 45°C upwards until 95°C (Figure 2.3). An 

Arrhenius analysis resulted in a linear plot in the temperature range of 45 to 85°C (inset in 

Figure 2.3), with a calculated activation energy for the formation of the enzyme/substrate 

complex of 15 kJ/mol. EstD has a high resistance to thermal inactivation, with a half-life value 

of approximately 1 h at 100°C. To determine the optimal pH for the esterase, the activity of 

EstD was measured in a pH range of 5 to 9. EstD displayed >70% of its maximal activity in the 

pH range of 5 to 9, with an optimal pH at approximately 7.0 (not shown). 
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Effect of metals, detergents, solvents and inhibitors

The effect of metal ions on EstD activity was tested using various metal ions: Ca2+, Ni2+, Co2+, Cu2+, 

Fe2+, Zn2+, Mn2+ and Mg2+ at concentrations of 1 mM. No significant stimulation or reduction 

of activity of EstD was observed. The effect of inhibitors on EstD activity is shown in Table 2.2. 

PMSF, a serine protease inhibitor, strongly inhibited enzyme activity. DPC, a histidine modifier, 

also inhibited the reaction, albeit less pronounced than PMSF. This indicates that serine as 

well as histidine residues are important for EstD activity. Activity was also strongly inhibited 

by mercury chloride and to some extent by N-ethylmaleimide. In contrast, DTT did not affect 

enzyme activity and neither did EDTA, which agrees with the metal tests.

	 The effect of detergents and solvents on EstD activity was tested in the standard assay 

with final concentrations of either 1% or 10% (v/v) (Table 2.3). In the detergents test, activity 

was decreased by more than 50% when 1% Tween 20 was present and was completely inhibited 

by 1% SDS. Addition of the organic solvents methanol, ethanol and iso-propanol resulted in a 

decrease in activity ranging from more than 70% to less than 20% residual activity, respectively. 

On the other hand, addition of glycerol in the assay did not seem to have an effect on activity. 

Inhibitors Relative activity (%)

None

PMSF

DPC

N-ethylmaleimide

HgCl2

EDTA

DTT

β-Mercaptoethanol

100

4

53

83

3

97

99

97

Table 2.2: Effect of inhibitors on EstD activity.

Detergents and solvents Concentration (v/v %) Relative activity (%)

Control

Methanol

Ethanol

2-Propanol

Glycerol

DMSO

Tween 20

SDS

---

10

10

10

1

10

10

1

1

100

73

37

18

87

96

84

43

0

Table 2.3: Effect of detergents and solvents on EstD activity.
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Structural modeling 

In the absence of a three-dimensional structure of EstD, it was decided to build a 3D-model of 

EstD. Since there are no close structural homologs of EstD, modeling was based on threading. 

A model of EstD was made using the 3D-structural threading program PHYRE 122. A threading 

algorithm seeks a template protein in a database that structurally fits well to a query sequence. 

Unlike homology modeling, a certain sequence similarity between the query sequence and 

a template protein is not necessary. Several structural fits were found. The thermophilic 

carboxylesterase Est30 of Geobacillus stearothermophilus (PDB code 1TQH) 123 was used to 

build the model of EstD. Est30 consists of 247 amino acid residues and the crystal structure 

showed a large domain with a modified alpha/beta hydrolase core including a seven-, rather 

than an eight-stranded beta sheet, and a smaller domain comprising three alpha helices. 

Like EstD, Est30 has a preference for short acyl chain substrates, with an optimum for C4-C8. 

The main difference between Est30 and EstD is their amino acid sequence length. The final 

model for EstD covered the C-terminal domain of EstD (amino acid residues 150 to 412). The 

schematic structural model consists of six α-helixes and has one central β-sheet made up of six 

β-strands (Figure 2.4a). The first and second β-strand of the α/β-hydrolase fold have not been 

modeled. 

The quality of the model towards stereochemistry and geometry was analyzed by 

PROCHECK analysis 124. The Ramachandran plot (not shown) indicated that most (92%) of the 

residues are in the core and allowed regions. Bond lengths, bond angles and torsion angles 

were evaluated with the What If program 125 and were considered good (a RMS z-score for a 

normally restrained data set is expected to be around 1.0). Bond lengths were found to deviate 

slightly less than normal from the mean standard bond length (a RMS z-score of 0.7). Bond 

angles and torsion angles were found to deviate normally (RMS z-scores around 1.0). 

A first secondary structural alignment indicated the residues Ser243, Asp347 and 

His378 as the probable catalytic triad. In the obtained model, Ser243, Asp347 and His378 

were indeed located in close proximity, most likely representing the actual active site. Ser243 

is located within a nucleophile elbow connecting strand β5 and helix α3, while Asp347 and 

His378 are located on loops between β7-α7 and β8-α8, respectively (Figure 2.4a). 

In the crystal structure of Est30, a covalently bound ligand is present. This ligand, 

propylacetate, was modeled into the active site of the EstD model. The ligand is covalently 

bound to the side-chain of Ser243, His378 acts as proton carrier and Asp347 is the charge relay 

network. The ligand is stabilized by hydrogen bond interactions with the amides of Leu244 

and Gly164, which likely form the oxyanion hole (Figure 2.4b). The putative substrate binding 

pocket extends in a cleft on both sides of Ser243. The alcohol side of the substrate is in a 

groove pointed towards the entrance of the pocket and extends approximately 10 Å from 

Ser243. The acyl-side of the ligand fits in a less exposed pocket of approximately 6 Å wide and 

9 Å long, consistent with the observed activity on substrates with acyl chain length C2-C12. The 
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hydrophobic side-chains in this pocket are Met247, Ala265, Pro267, Ala268, Pro270, Leu271, 

Leu279, Phe320 and Val350. One polar residue Gln349 is located at the edges of the pocket and 

might have a role in substrate recognition. Gln349 and adjacent residues are well conserved in 

the closest homologues (supplementary material), suggesting an important structural role. The 

EstD substrate binding pocket is very similar to that of Est30 and structurally related esterases. 

This comprises an open accessible binding cleft and a relatively large cap domain, consisting of 

one small and two large helices on the N-terminal side of the central β-sheet. This structural 

similarity between EstD and Est30 corresponds with their very similar substrate preference.  

Figure 2.4: 3D model of EstD. (A) The overall structure of the C-terminal domain of EstD. The central β-sheet and 
surrounding α-helixes are shown in black and grey, respectively. Residues of the catalytic triad are indicated. (B) 
The active site region of the EstD model with bound ligand. Interatomic interactions are shown in dashed lines. 
The ligand, propylacetate (PA), is covalently bound to Ser243. The NH groups of Leu244 and Gly164 most likely 
form the oxyanion hole.
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To confirm the predictions of the catalytic triad, these residues were substituted by site-

directed mutagenesis. The mutants Ser243Ala, Asp347Asn and His378Asn were expressed and 

purified using heat-treatment. The enzymes remained stable during heat-treatment. However, 

no activity was observed with the mutants, confirming the importance of these three residues 

for the activity of EstD. 

Discussion

In this contribution the cloning, expression, and characterization of a new type of esterase 

from the hyperthermophilic bacterium T. maritima is described. The encoding gene (estD) 

was originally annotated as a hypothetical protein, but a more detailed sequence analysis 

revealed the presence of an α/β hydrolase fold and a nucleophilic serine in a pentapeptide 

motif, suggesting a possible role in ester hydrolysis. After functional expression in E. coli the 

esterase activity could indeed be confirmed. When EstD was assayed with p-nitrophenyl 

esters it showed a preference for substrates with shorter chain lengths, indicating it should be 

classified as an esterase and not as a lipase. Highest activity was seen on esters of butyrate and 

valerate, which is comparable to esterases from other hyperthermophiles, viz. T. tengcongensis 
72, Sulfolobus solfotaricus 39, Sulfolobus shibatae 100 and Sulfolobus tokodaii 108. The determined 

kcat values of EstD, however, were found to be 100-1000-fold lower when compared to the 

hyperthermophilic esterases. The Km, on the other hand, was relatively low. The low kcat may 

indicate that the artificial p-nitrophenyl substrates differ substantially from the enzyme’s 

natural substrate. However, the physiological function of EstD is not known, as is the case for 

most described esterases. 

As to be expected for a hyperthermophilic enzyme, EstD showed a temperature 

optimum around 95˚C, which is comparable to that of the P. furiosus esterase 53 and the P. 

calidifontis esterase 38. The Arrhenius plot for EstD was linear at temperatures ranging from 45-

85°C, indicating that the conformation of EstD does not change throughout this temperature 

range. The enzyme was very stable at high temperatures, with a half-life of approximately 

one hour at 100°C. EstD is less stable than the esterase from P. furiosus (half-life value of 34 

h at 100˚C 53), but substantially more stable than the esterase from T. tengcongensis (half-life 

value of 15 min at 80˚C 72) or the esterase from T. maritima (half-life value of 30 min at 80°C 
71), which makes EstD the most stable bacterial esterase to date. EstD exhibited activity in 

the presence of 10% organic solvents which is comparable to the activity of the P. calidifontis 

carboxylesterase 38. The high thermal stability and activity in the presence of organic solvents 

makes EstD an attractive catalyst for future applications in industry.

To gain more knowledge on the presence of essential catalytic or structural amino acids, 

EstD activity was tested upon incubation with various chemicals. The inhibition by PMSF and 

DPC indicated that serine and histidine residues might be involved at the catalytic site of the 
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enzyme, in agreement with the anticipated catalytic triad. Different metals and EDTA did not 

inhibit activity indicating that there is no requirement for divalent cations. The inhibition by 

HgCl2 and N-ethylmaleimide suggests that the only free thiol group which is present (Cys42), 

is important for the correct functioning of the enzyme. The presence of a single thiol makes 

oxidation to a disulfide not possible, which is confirmed by the observation that neither 

DTT nor β-mercaptoethanol enhanced the activity of the enzyme. The single cysteine is not 

included in the EstD model; however it may be close to active site residues and as such can 

influence activity when modified with chemicals. Altogether, the inhibition pattern is similar 

to that described for the esterases from P. calidifontis 38, S. solfataricus 39 and T. maritima 71.

Based on the alignment and the site-directed mutagenesis experiments EstD was 

shown to contain the typical catalytic triad, consisting of a serine in a GXSXG pentapeptide, an 

acidic aspartate, and a histidine residue. The structural modeling was expected to be difficult 

due to the lack of 3-D structures of homologous esterases. Despite the very low sequence 

identity (16% identity over the C-terminal part); EstD could be modeled using Est30 from G. 

stearothermophilis as a template. However, modeling was only possible with the C-terminal 

domain of EstD, which also contains all the active site residues. The N-terminal domain of 

EstD has similarity to the MecA N-terminus but could not be modeled. The function of the 

N-terminus remains unclear. It might be involved in selection of the substrates, either by 

binding of the substrate or by narrowing the entrance to the active site. 

The low sequence homology of EstD to characterized proteins was the reason that 

it was initially annotated as a hypothetical protein. Nevertheless, the results described here 

show that EstD has esterase activity and also exhibits the typical structural features of this 

type of enzyme. Bacterial esterases and lipases have been classified into eight families based 

on a comparison of their amino acid sequences and some fundamental biological properties 
110. Enzymes in Family 1 are called true lipases and are further classified into six subfamilies. 

Figure 2.5: Alignment of the esterase/lipase pentapeptide motif of EstD with related enzymes and consensus 
sequences. Consensus sequences of the different lipase and esterase families 110 and the two enzymes discussed 
in the text, PhaZ7 126 and Est30 123, are indicated.
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Enzymes belonging to Family 2 - 8 are esterases. However, a homology search with the EstD 

sequence against public databases revealed the highest similarity to hypothetical proteins and 

putative hydrolases that are not grouped in any of the eight families. Moreover, EstD showed 

no sequence identity to any of the members of the previously classified families of microbial 

lipases and esterases. A phylogenetic analysis showed that EstD is indeed grouped into a new 

separate family (data not shown), which also includes enzymes from several Bacillus species, 

B. fragilis and S. usitatus. This divergence from the current families can be viewed best by 

aligning the pentapeptide consensus sequences (Figure 2.5). EstD and related sequences 

show a high pentapeptide homology (GHSLG), which is different from the consensus of the 

esterase families. These data suggest that EstD is a member of a new family of esterases, 

designated as Family 10. EstD is the third esterase that cannot be grouped into one of the eight 

families. Because of absence of significant amino acid homology, Handrick et al. 126, suggested 

that PhaZ7 of Paucimonas lemoignei should be classified into a new family of esterases 

(Family 9: extracellular PHA depolymerases) and also Liu et al. 123, suggested that Est30 of G. 

stearothermophilus represents a new family of carboxylesterases (Figure 2.5). EstD is the first 

characterized member of the proposed new family, and as such also the first characterized 

enzyme of COG1073, which will contribute to a better understanding of the function of the 

other enzymes in this COG.

Materials and methods

Chemicals

All chemicals were purchased from Sigma-Aldrich (St Louis, MO, USA) or Acros Organics (Geel, 

Belgium). The restriction enzymes were obtained from Invitrogen (Carlsbad, CA, USA). Pfu 

Turbo and T4 DNA ligase were purchased from Invitrogen and Stratagene (La Jolla, CA, USA), 

respectively. 

Strains and plasmids

The vector pGEM-t-easy (Promega, Madison, WI, USA) was used for the cloning of PCR 

products. For heterologous expression, the vector pET-26b (Kanamycin-resistant; Novagen, 

San Diego, CA, USA) and the tRNA helper plasmid pSJS1244 (Spectinomycin-resistant / 127; 128) 

were used. Escherichia coli strain XL1-Blue (Stratagene) was used as a host for cloning. E. coli 

strain BL21(DE3) (Novagen) was used as an expression host. Both strains were grown under 

standard conditions 129 following the instructions of the manufacturers.

Data mining 

The genome of T. maritima MSB8 119 was screened for possible esterases and lipases. 

Sequences coding for esterases and lipases were identified by performing BLAST searches 
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with sequences from characterized esterases / lipases (http://www.ncbi.nlm.nih.gov/blast/) 28 

and Motif (http://www.expasy.org/prosite/) searches. The conserved domains were analyzed 

with CD-SEARCH (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) 30 and KEGG SSDB 

Motif Search (http://www.genome.jp/kegg/ssdb/) 130. The N-terminal sequence analysis of the 

translational product of TM0336 was done using the SignalP 3.0 Server (http://www.cbs.dtu.dk/

services/SignalP/) 131. Phylogenetic analysis was performed by aligning EstD, close homologues 

and sequences of the esterase and lipase families using the Tcoffee server (http://www.igs.

cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi) 132. The alignment was further corrected by hand. 

A bootstrapped phylogenetic tree was constructed and displayed using the neighbor-joining 

method with TreeView version 1.6.5 133. A three dimensional structure of EstD was modeled 

using the PHYRE Protein Fold Recognition Server (http://www.sbg.bio.ic.ac.uk/phyre/) 122. The 

model was evaluated for stereochemical quality using the programs PROCHECK (http://www.

biochem.ucl.ac.uk/~roman/procheck/procheck.html) 124 and What If (http://swift.cmbi.kun.

nl/WIWWWI/) 125. PyMol was used to analyze and visualize the structure 134.

Cloning and expression

The gene TM0336 (Genbank accession number NP_228147) was PCR-amplified, without 

the sequence encoding its signal peptide (the first 18 amino acids) and its stop codon 

using chromosomal DNA of T. maritima as a template and the following two primers: 

5’-GCGGCGCCATATGGATCAGGAAGCGTTTCTC-3’ (sense, underlined NdeI restriction site) and 

5’-GCGCGCTCGAGTTTTACCATCCACCTGGC-3’ (anti-sense, underlined XhoI restriction site). 

The PCR product generated was modified using the A-tailing procedure 135 and ligated into 

the pGEM-t-easy vector. E. coli XL1-blue was transformed with this construct (pWUR349). 

The recombinant plasmid was digested by NdeI and XhoI and the product was purified and 

inserted into pET-26b digested with the same restriction enzymes. The construct was designed 

with a hexahistidine-tag engineered at the C-terminus of the enzyme to facilitate purification. 

Subsequently, E. coli BL21(DE3), harboring the tRNA helper plasmid pSJS1244, was transformed 

with the resulting plasmid (pWUR353). The sequence of the expression clone was confirmed 

by sequence analysis of both DNA strands.

Mutagenesis

Mutants of EstD were created in order to confirm the identity of the active site residues. 

Mutants Ser243Ala, Asp347Asn and His378Asn were generated using Quickchange 

(Stratagene) site directed mutagenesis with the following primers 5’- GTGCTGG 

GACACGCCCTCGGTGCGATGC-3’ and 5’- GCATCGCACCGAGGGCGTGTCCCAGCAC-3’, 

5’- GATCTTCGGCGGCAGAAACTACCAGGTGACTG-3’ and 5’- CAGT 

CACCTGGTAGTTACTGCCGCCGAAG-3’, 5’- CGACGATCTCAATAACTTGATGATTT CAGG-3’ and 

5’- CTCCTGAAATCATCAAGTTATTGAGATCGTCG-3’, respectively (the underlining indicates the 

modified codon). Mutations were confirmed by sequence analysis of both DNA strands.
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Production and purification

E. coli BL21(DE3)/pSJS1244 was transformed with pWUR353. A single colony was used to 

inoculate 4 mL Luria-Bertani medium containing kanamycin and spectinomycin (both 50 µg · 

mL-1) and incubated overnight at 37°C while shaking. Next, the preculture was used to inoculate 

(1:1000) two times 1500 mL Luria-Bertani medium containing kanamycin and spectinomycin 

(both 50 µg · mL-1) in 2-L conical flasks and incubated in a rotary shaker at 37°C for 8 h. The 

culture was then induced by adding isopropyl-ß-D-thiogalactopyranoside (IPTG) to a final 

concentration of 0.1 mM. The culture was further incubated at 37°C for another 16 h. Cells were 

harvested by centrifugation at 10000 g and 4°C for 15 min. The cell pellet was resuspended 

in 25 mL lysis buffer (50 mM Tris-HCl buffer (pH 7.8), 300 mM NaCl, 10 mM imidazole), and 

passed twice through a French press at 110 MPa. The crude cell extract was DNase treated for 

30 min at room temperature to become less viscous. The extract was centrifuged at 43000 g 

and 4°C for 25 min. 20 mL lysis buffer was added to the resulting supernatant (cell free extract) 

and heated for 25 min at 70°C and subsequently centrifuged at 43000 g and 4°C for 25 min. 

The supernatant (heat-stable cell free extract) was filtered (0.45 µm) and applied at a flow rate 

of 2 mL · min-1 to a Ni-chelating column (20 mL) equilibrated in 50 mM Tris-HCl buffer (pH 7.8) 

containing 300 mM NaCl. The column was washed with 20 mM imidazole in the same buffer 

and subsequently proteins were eluted with a linear gradient of 20-500 mM imidazole and 

fractions (2 mL) were collected. The most active fractions were pooled and applied at a flow 

rate of 10 mL · min-1 to a Hi-prep desalting column (53 mL), equilibrated in 50 mM Tris-HCl 

buffer (pH 7.8) containing 150 mM NaCl in order to remove imidazole. Fractions of 5 mL were 

collected.

Size exclusion chromatography

The molecular mass of the purified enzyme was determined by size exclusion chromatography 

on a Superdex 200 high-resolution 10/30 column (24 mL) (Amersham Biosciences, Piscataway, 

NJ, USA) equilibrated in 50 mM Tris-HCl (pH 7.8) containing 100 mM NaCl. Two hundred 

microliters of enzyme solution in 50 mM Tris-HCl and 150 mM NaCl (pH 7.8) buffer was loaded 

at a flow rate of 0.7 mL · min-1 onto the column and fractions (0.5 mL) were collected. Proteins 

used for calibration were blue dextran 2000 (>2,000 kDa), ferritin (440 kDa), catalase (232 kDa), 

aldolase (158 kDa), bovine serum albumin (67 kDa), ovalbumin (43 kDa), chymotrypsinogen A 

(25 kDa), and ribonuclease A (13.7 kDa).

SDS-PAGE, Native PAGE and activity staining

SDS-PAGE was performed with gels containing 10% acrylamide using a MiniProtean III system 

(BioRad, Hercules, CA, USA). Samples containing loading buffer (0.1 M sodium phosphate 

buffer, 4% SDS, 10% 2-mercaptoethanol, 20% glycerol, pH 6.8), were prepared by heating for 

10 min at 100°C. Gels were stained with Coomassie brilliant blue. The molecular mass was 

estimated using the BioRad broad range protein marker. Native PAGE was performed with gels 
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containing 6% acrylamide. Native PAGE and SDS-PAGE gels were stained for esterase activity 

by a modified version of the staining technique of Sobek 32. A renaturation procedure was 

carried out after SDS-PAGE by incubating the gel two times for 15 min in 50 mM Tris-HCl (pH 

7.8) / iso-propanol (4:1, v/v%), subsequently rinsed three times for 15 min in 50 mM Tris-HCl 

(pH 7.8) and then rinsed again with water. The gel was stained at 37°C in the dark by incubating 

it in a 100 mL solution of 50 mM Tris-HCl (pH 7.8) buffer containing 50 mg of Fast Blue BB plus 

and 1 mL of acetone solution containing 10 mg of α-naphtyl acetate. When esterase active 

bands began to color deep brown, the reactions were stopped by rinsing the gel with tap 

water, followed by fixation in 3% (v/v) acetic acid.

Enzyme assays

Esterase activity was determined by measuring the amount of p-nitrophenol released 

during enzymatic hydrolysis of different p-nitrophenyl esters. The release of p-nitrophenol 

was continuously monitored at 405 nm using a Hitachi UV2001 spectrophotometer with a 

temperature controlled cuvette holder. Unless otherwise indicated, in a standard assay, 

esterase activity was measured with 0.2 mM p-nitrophenyl valerate (pNP-C5) as a substrate 

in 50 mM citrate-phosphate buffer (pH 7) containing 1% isopropanol at 70°C. Stock solutions 

of p-nitrophenyl esters were prepared by dissolving substrates in iso-propanol. After pre-

incubation, the reaction was started by adding enzyme to the reaction mix. One unit of esterase 

activity was defined as the amount of protein releasing 1 μmol of p-nitrophenol from pNP-C5 

per minute. Measurements were corrected for background hydrolysis in the absence of enzyme. 

Measurements were carried out at least three times and the molar extinction coefficient of 

p-nitrophenol was determined for every condition prior to each measurement. Activity was 

determined from the initial rate of the hydrolysis reaction. The protein concentration was 

measured at 280 nm using a NanoDrop ND-1000 Spectrophotometer (NanoDrop, Wilmington, 

DE, USA).

	 Peptidase activity was assayed with 0.2 mM L-leucine p-nitroanilide and L-proline 

p-nitroanilide as substrates in a standard assay as described above. 

	 The proteolytic activity of EstD was assayed using 1% (w/v) casein in 50 mM Tris-HCl (pH 

8). Casein hydrolysis assays were performed for up to 1 h at 70°C. The reaction was terminated 

with 10% (v/v) trichloroacetic acid and incubated on ice for 30 min. The absorbance of the 

centrifuged supernatant was measured at 280 nm. A blank without esterase was incubated 

under the same conditions.

Acyl chain length preference 

Substrate specificity of the enzyme towards the acyl chain length of different p-nitrophenyl 

esters was investigated by using p-nitrophenyl acetate, p-nitrophenyl butyrate, p-nitrophenyl 

valerate, p-nitrophenyl octanoate, p-nitrophenyl decanoate, p-nitrophenyl dodecanoate, and 

p-nitrophenyl myristate in the standard assay. 
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pH and temperature optimum

The effect of pH on esterase activity was studied by measuring activities on p-nitrophenyl 

valerate for a pH range of 4.0 to 9.5. The buffers used were 50 mM citrate-phosphate (pH 4.0 

to 8.0) and 50 mM CAPS buffer (pH 9.5). The effect of temperature on esterase activity was 

studied in the range of 45°C to 95°C using 1 mM p-nitrophenyl valerate in the standard assay. 

The pH of the buffers was set at 25°C, and temperature corrections were made using their 

temperature coefficients (-0.0028 pH · °C-1 for citrate-phosphate buffer and -0.018 pH · °C-1 for 

CAPS buffer 136).

Thermostability

Enzyme thermostability was determined by incubating the enzyme in a 50 mM Tris-HCl, 150 

mM NaCl (pH 7.8) buffer at 100°C for various time intervals. Residual activity was assayed 

under the standard condition. 

Inhibition studies

The effect of metal ions on esterases activity was determined using different metal salts (CaCl2, 

NiCl2, CuCl2, MnCl2, MgCl2, FeSO4 and ZnSO4) at final concentrations of 1 mM using the standard 

activity assay. The activity of EstD without addition of metal ions was defined as 100%. The 

effect of inhibitors on esterase activity was determined using ethylenediaminetetraacetic 

acid (EDTA), dithiothreitol (DTT), b-mercaptoethanol and mercuric chloride. The effect of 

modifying agents for serine and histidine was determined using phenylmethylsulfonyl fluoride 

(PMSF) and diethyl pyrocarbonate (DPC), respectively. The enzyme was preincubated in 50 

mM citrate phosphate buffer (pH 7) in the presence of the inhibitor (1 mM) at 37°C for 60 

min. Subsequently, samples were cooled on ice and the residual activities were measured 

using the standard method. Stability against organic solvents and detergents was measured 

in the presence of 1% solvents and detergents within the standard activity assay, viz. glycerol, 

sodium dodecyl sulphate (SDS), Tween 20 and 10% solvents and detergents, viz. methanol, 

ethanol, 2-propanol, glycerol and dimethylsulfoxide (DMSO).

Kinetic measurements

The EstD kinetic parameters K
m and Vmax were calculated from multiple measurements 

(substrate concentrations used were 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 

1.0 mM) by a computer-aided direct fit to the Michaelis-Menten curve (Tablecurve 2D, version 

5.0). 
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Abstract

A predicted esterase (EstA) with an unusual new domain from the hyperthermophilic 

bacterium Thermotoga maritima has been cloned and over-expressed in Escherichia coli. The 

purified protein has been crystallized by the hanging-drop vapour diffusion technique, in the 

presence of lithium sulphate and polyethylene glycol 8,000. Selenomethionine-substituted 

EstA crystals were obtained under the same condition and three different wavelength data 

sets were collected to 2.6 Å resolution. The crystal belongs to the space group H32, with unit-

cell parameters a = b = 130.2 Å, c = 306.2 Å. There are two molecules in the asymmetric unit 

with a V
M of 2.9 Å3 Da-1 and 58% solvent content.
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Introduction

Esterases and lipases catalyse the hydrolysis of ester bonds resulting in the formation of an 

alcohol and a carboxylic acid. Both enzyme types share structural characteristics, including 

an α/β-hydrolase fold and a conserved catalytic triad that is usually composed of a serine, an 

aspartate and a histidine residue 7. Esterases differ from lipases in that they show a preference 

toward short-chain acyl esters (shorter than 10 carbon atoms) 7. Ester-hydrolyzing enzymes 

are attractive biocatalysts, because they have a cofactor independent activity, a high regio- 

and stereo-specificity and are generally rather stable and active in organic solvents. There is a 

special interest from industry in esterases from thermophilic origin since these enzymes are 

both stable in organic solvents and function at elevated temperatures 16. 

The hyperthermophilic anaerobic bacterium Thermotoga maritima was isolated from 

geothermally heated marine sediments at Vulcano, Italy. The organism grows optimally between 

55 and 90°C and can metabolize many simple and complex carbohydrates, including glucose, 

cellulose and starch 119. During a bioinformatic analysis of the genome of T. maritima several 

open reading frames potentially encoding new thermostable esterases were found, including 

one (estA, TM0033) annotated as a hypothetical protein. EstA was produced in Escherichia coli 

and found to exhibit esterase activity with a preference for esters of short chain fatty acids. It 

consists of 395 amino acid residues and has a predicted molecular mass of 44.7 kDa. A BLAST 

search of EstA at NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) 28 reveals the highest similarity 

to other hypothetical proteins and a few predicted peptidases and carboxylesterases. An 

alignment with the obtained homologous sequences revealed that EstA is composed of two 

domains. The C-terminal domain of EstA has a predicted α/β hydrolase fold and includes the 

characteristic conserved Ser-Asp-His catalytic triad. However, the amino acid sequence of the 

N-terminal domain has no homology to known proteins in the database and has therefore an 

unknown function and structure. It is tempting to speculate that the N-terminal domain might 

be involved in substrate binding and recognition. Therefore, determination of the structure 

of EstA may provide insight into the function of this new N-terminal domain and reveal the 

molecular basis of substrate recognition and catalysis by this enzyme. 

This paper describes the cloning, purification, crystallization and preliminary X-ray 

analysis of T. maritima EstA as a first step in the structure determination of this new esterase.

Results and discussion

Cloning, expression and purification

The gene encoding EstA was amplified by PCR, without the predicted signal 

peptide (the first 16 amino acids), and without its stop codon (fused to a 
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(His)6-tag), using chromosomal DNA of T. maritima as a template and the two 

primers BG1962 (5’-GCGCCATGGAGGATGTTACTGTGAAGAGTG-3’) and BG1963 

(5’-GCGCTCGAGTCTACTTTGTTCAAACAGCCAC-3’) introducing NcoI and XhoI restriction sites. 

The generated PCR product was digested by NcoI and XhoI and the product was purified and 

ligated into pET-24d digested with the same restriction enzymes, resulting in the plasmid 

pWUR350. The construct was designed with a hexa-histidine-tag engineered at the C-terminus 

of the enzyme to facilitate purification. E. coli BL21(DE3)/pSJS1244 was transformed with 

pWUR350. 

A single colony was used to inoculate 4 ml Luria-Bertani medium containing kanamycin 

and spectinomycin (both 50 µg ml-1) and incubated overnight at 37°C while shaking. The 

preculture was used to inoculate (1:1000) 2L of the same medium and growth was continued 

for 8 hours (an OD600 above 2.0 was reached). Subsequently, the culture was induced by adding 

IPTG (isopropyl-ß-D-thiogalactopyranoside) to a final concentration of 0.5 mM. The culture 

was further incubated at 37°C for 16 hours. 

Cells were harvested by centrifugation at 10,000 x g for 10 min. The cell pellet was 

resuspended in 30 ml buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 10 mM imidazole). The 

cells were disrupted by passing twice through a French press at 110 MPa. The crude cell extract 

was treated with DNAse I at room temperature for 30 minutes and subsequently centrifuged 

at 43,000 x g for 30 minutes in order to remove cell debris. The supernatant was heated at 

70°C for 30 min and then centrifuged to remove the precipitated proteins. The supernatant 

was filtered and applied to a Ni-chelating column packed with 20 mL Ni-NTA His·Bind Resin 

(Novagen) equilibrated in 50 mM Tris-HCl buffer (pH 7.8) containing 300 mM NaCl. The column 

was washed with 20 mM imidazole in the same buffer and subsequently proteins were eluted 

with a linear gradient of 20-500 mM imidazole in 50 mM Tris-HCl, pH 7.5, 300 mM NaCl. Fractions 

containing esterase activity were pooled and applied to a Hi-prep desalting column (Amersham 

Biosciences) equilibrated with 50 mM disodium phosphate buffer, pH 7.5. Homogeneity of the 

protein was checked by SDS-PAGE electrophoresis and activity staining of the SDS-PAGE gels 

using α-naphtyl acetate as described previously 52. The protein concentration was determined 

at 280 nm using a NanoDrop ND-1000 Spectrophotometer (NanoDrop). For preparation of 

the selenomethionine-substituted EstA (SeMet-EstA), the overproducing strain was grown as 

described previously 137 and the enzyme was purified as described above. EstA and SeMet-EstA 

were assayed for esterase activity using p-nitrophenyl-valerate as a substrate (not shown).

Crystallization 

The purified protein was dialyzed against 10 mM potassium phosphate buffer (pH 7.5) and 

concentrated to 15 mg ml-1. Crystallization was performed using the hanging-drop vapour-

diffusion method at room temperature. Initial crystallization conditions were screened using 
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Crystal Screen and Crystal Screen II (Hampton Research). Drops consisting of equal volumes 

(1 μl) protein and reservoir solution were equilibrated over 500 μl reservoirs. Crystals of EstA 

were obtained using a reservoir solution consisting of 1.0 M lithium sulphate monohydrate, 

2% (w/v) polyethylene glycol 8,000 (Crystal Screen condition 49). SeMet-EstA crystals were 

obtained under the same condition (Figure 3.1).

Figure 3.1:  (a) Crystals of  native EstA and (b) Crystals of SeMet-EstA.

Native SeMet peak SeMet  inflection SeMet  remote

Wavelength (Å) 1.0000                   0.9791 0.9793 0.9757

Resolution limit (Å)
50.0 – 2.6

(2.74-2.6) a

50.0 –2.6

(2.74-2.6)

50.0 –2.6

(2.74-2.6)

50.0 – 2.6

(2.74-2.6)

Space group H32 H32 H32 H32

Unit-cell parameters (Å)

a = b 130.2 131.0 131.0 131.0

c 306.2 306.8 306.8 306.8

Observed reflections 173066 353388 358408 358161

Unique reflections 31079 31295 31587 31457

Completeness (%) 100.0(100.0) 100.0(100.0) 100.0 (100.0) 100.0 (100.0)

Rmerge 
b 0.087(0.430) 0.086(0.498) 0.082(0.412) 0.075(0.437)

<I/s(I)> 14.2(3.6) 22.3 (4.6) 22.1 (4.4) 24.8 (5.0)

Redundancy 5.6(5.7) 11.4(11.7) 11.3(11.4) 11.4(11.3)

Table 3.1: Data-collection and processing statistics for EstA

a. Values in parentheses correspond to the highest resolution shell;
b.
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Data collection and preliminary X-ray analysis

For cryoprotection, crystals were soaked for a few seconds in reservoir solution containing 20% 

(w/v) glycerol. The crystals were mounted in a cryoloop and subsequently flash-frozen in liquid 

nitrogen. X-ray data were collected at 100K on beamline ID29 at the ESRF, Grenoble.  A native 

data set was collected to 2.6 Å resolution. The crystal belongs to space group H32, with unit-

cell parameters a = b = 130.2 Å, and c = 306.2 Å. There are two molecules in the asymmetric 

unit with a V
M of 2.9 Å3 Da-1 and 58% solvent content 138. Crystals of SeMet-EstA showed a well 

defined Se K absorption edge by fluorescence scanning. A single SeMet-EstA crystal was used 

for the MAD data collection at the peak (0.9791 Å), inflection (0.9793 Å) and remote (0.9557 

Å) wavelengths to 2.6 Å resolution. All data were indexed and integrated using MOSFLM 139 and 

scaled with anisotropic scaling corrections using SCALA 140 within the CCP4 suite 141. Processing 

statistics for the native and SeMet data sets are shown in Table 3.1. 

Structure determination is currently ongoing. However, a first model shows that there 

are indeed two domains present in EstA: a domain resembling the α/β-hydrolase fold and a 

domain resembling the immunoglobulin fold. It is speculated that the α/β-hydrolase domain 

is the catalytically active domain and that the immunoglobulin domain might be involved in 

substrate binding or cell adhesion. Structure refinement combined with biochemical analyses 

is expected to provide better insights into the function of this esterase.
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Abstract

Comparative analysis of the genome of the hyperthermophilic bacterium Thermotoga 

maritima revealed a hypothetical protein with typical esterase features (EstA). The EstA 

protein was functionally produced in E. coli and purified to homogeneity. It indeed displayed 

esterase activity with optima at or above 95˚C and at pH 8.5 and with a preference for esters 

with short acyl chains (C2-C10). Its 2.6 Å resolution crystal structure revealed a classical α/β 

hydrolase domain with a catalytic triad consisting of a serine, an aspartate and a histidine. 

EstA is irreversibly inhibited by the organophosphate paraoxon. A 3.0 Å resolution structure 

confirmed that this inhibitor binds covalently to the catalytic serine residue of EstA. 

Remarkably, the structure also revealed the presence of an N-terminal immunoglobulin-like 

(Ig-like) domain, which is unprecedented among esterases. EstA forms a hexamer both in the 

crystal and in solution. Electron microscopy showed that the hexamer in solution is identical 

to the hexamer in the crystal, which is formed by two trimers, with the N-terminal domains 

facing each other. Mutational studies confirmed that residues Phe89, Phe112, Phe116, Phe246 

and Trp377 affect enzyme activity. A truncated mutant of EstA, in which the Ig-like domain was 

removed, showed only 5% of the wild-type activity, had a lower thermostability, and failed to 

form hexamers. These data suggest that the Ig-like domain plays an important role in enzyme 

multimerization and activity of EstA.
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Introduction

Esterases constitute a large family of proteins having representatives in all domains of life. They 

catalyze the hydrolysis of ester bonds resulting in the formation of an alcohol and a carboxylic 

acid. Most esterases belong to the α/β hydrolase family, which also contains lipases, and have 

a conserved catalytic triad that is usually composed of a serine, an aspartate and a histidine 

residue 7. Esterases differ, however, from lipases in that they show a preference toward short-

chain acyl esters (shorter than 10 carbon atoms), and that they are not active on micellar 

substrates 7. The physiological function of these enzymes is often not clear. As biocatalysts, 

however, they are widely used in industrial processes, because of their cofactor independent 

activity, high regio- and stereo-specificity, and their stability and activity in organic solvents 
3. In particular, esterases from thermophilic origin are potentially interesting for industrial 

applications, since most of them are stable in organic solvents, and can withstand elevated 

temperatures 16.

The hyperthermophilic anaerobic bacterium Thermotoga maritima grows optimally at 

temperatures between 55 and 90 °C. It can metabolize many simple and complex carbohydrates, 

including glucose, cellulose and starch 142. A bioinformatics analysis of the genome of 

Thermotoga maritima 119 revealed several open reading frames potentially encoding new 

thermostable esterases, including one (estA, TM0033) which was annotated as a hypothetical 

protein. 

Multiple-sequence alignment suggested that EstA is composed of two domains 70, a 

C-terminal domain with a predicted α/β hydrolase fold and a N-terminal domain, which has 

no homology to known proteins and therefore could not be assigned a function. A three-

dimensional structure of EstA may provide better insight into the structure and function of 

this new N-terminal domain, as well as reveal the molecular basis of substrate recognition and 

catalysis by this enzyme. Therefore, EstA was expressed, crystallized and its three-dimensional 

structure was determined. In addition, various biochemical properties and the quaternary 

structure in solution were determined.

Results

Identification and production

BLAST searches with sequences of known esterases from other hyperthermophilic 

microorganisms against the genome of T. maritima revealed several open reading frames 

potentially encoding new thermostable esterases, including one (estA, TM0033) that has been 

annotated as a hypothetical protein. The gene encodes a protein of 395 amino acids and has a 

calculated molecular mass of 44.5 kDa. A BLAST search of EstA at NCBI (http://www.ncbi.nlm.
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nih.gov/BLAST 28; revealed highest similarity to other hypothetical proteins and a few predicted 

peptidases and carboxylesterases. N-terminal sequence analysis using the SignalP 3.0 Server 

(http://www.cbs.dtu.dk/services/SignalP) revealed that the first 16 amino acids form a signal 

peptide. The predicted mature gene was cloned into the expression vector pET-24d 70, and the 

EstA enzyme was purified to homogeneity from heat-treated cell extracts of E. coli BL21(DE3) 

⁄ pSJS1244 ⁄pWUR350 by immobilized nickel affinity chromatography. Homogeneity of the 

protein was checked by SDS-PAGE and confirmed a molecular subunit mass of 43 kDa (mature 

enzyme). Activity staining of the washed SDS-PAGE gels with α-naphthyl acetate was used to 

confirm the identity of the EstA band (not shown).

Overall structure 

The native EstA crystal structure was solved in space group H32 with 2 molecules per asymmetric 

unit. The structure was determined by multi-wavelength anomalous dispersion (MAD) phasing 

with selenium as anomalous scatterer, and refined at 2.6 Å resolution. The molecule has an 

elongated shape with approximate dimensions of 40 Å x 35 Å x 75 Å. The EstA structural model 

includes residues 20-395, with the exception of residues D248-N251, which form a flexible 

loop. The structure can be subdivided into two domains, a catalytic domain (residues 158-395) 

and an immunoglobulin-like (Ig-like) domain (residues 20-157) (Figure 4.1a). 

The catalytic domain has the canonical architecture of an α/β hydrolase fold protein 

consisting of a central β-sheet of eight strands surrounded by helices (Figure 4.1b), with strand 

β2 antiparallel to the other strands. The β1 and β8 strands are approximately perpendicular 

to each other because of the counter-clockwise twist of the β-sheet. Helices αA, αFa, αFb, and 

the short 3
10-helices η4 and η5 are on one side of the central β-sheet, and helices αB, αC, αE, 

and the two 310-helices η5 and η6 are on the other side. There is no lid structure present in the 

catalytic domain, as seen for some lipases. 

The Ig-like domain is composed of two β-sheets, consisting of nine strands (distribution: 

IABFE/DCGH), sandwiched face to face (Figure 4.1b). Ig-like domains are common in eukaryotic 

proteins, but in bacteria they have been found only in bacterial surface proteins, some glycoside 

hydrolases and a few secreted peptidases (pfam family CL0159). EstA is the first example of an 

esterase consisting of both an α/β hydrolase domain and an Ig-like domain. 

A structural similarity search carried out using the DALI program 143 shows that EstA 

has structural similarity to some esterases, lipases and peptidases with Z-scores between 20.8 

and 15 and RMSDs below 3.0. These scores are mainly based on structural similarity to the 

catalytic domain. The catalytic domain is structurally most similar to the catalytic domain of 

prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis (pdb 2D5L 144), the catalytic 

domain of human dipeptidyl peptidase (pdb 1N1M 145) and the feruloyl esterase domain of 

xylanase Z from Clostridium thermocellum (pdb 1JJF 146). The structures are well superimposed, 
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Figure 4.1 (in color on p.145): (a) Overall fold of the esterase EstA. The N- and C-terminal ends are indicated. The 
figure was generated using Pymol 134. (b) Topology diagram for EstA with the helices displayed as cyan cylinders 
and the strands as red arrows. The positions of the catalytic residues are indicated.

with RMSDs of 2.6 Å (for 204 aligned Cα-atoms), 2.8 Å (200 aligned Cα atoms), and 2.6 Å (202 

aligned Cα atoms), respectively.

A DALI search for structures similar to the Ig-like domain gave Z-scores of 6.4 for the 

Ig-like domain of Rab geranylgeranyltransferase (pdb 1DCE 147), 5.4 for the Ig-like D1 domain of 

Interleukin-4 receptor (pdb 1IAR 148) and 5.2 for the β-galactosidase Ig-like domain 4 (pdb 1BGL 
149). None of the structures found with the DALI search belongs to an esterase. The DALI results 

confirm that the combination of an esterase domain and an Ig-like domain is unprecedented. 
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Inhibitor assays and structure of EstA complexed with paraoxon

Inhibition assays demonstrated that both phenylmethylsulfonyl fluoride (PMSF) and diethyl 

4-nitrophenyl phosphate (paraoxon) inhibit EstA activity, with respectively 7% and 0% 

residual activity. For the determination of kinetic inhibition data, we followed the method 

described by Forsberg and Puu, which states that inhibition proceeds by the formation of a 

reversible Michaelis complex followed by an irreversible step 150. Inhibition can therefore be 

characterized by two parameters, a dissociation constant and a bonding rate constant. The 

inhibition kinetics for paraoxon were investigated in the presence of p-nitrophenyl octanoate 

and resulted in dissociation and rate constants of 33 μM and 0.14 s-1, respectively. Compared 

to EST2 of Alicyclobacillus acidocaldarius, the dissociation constant is slightly higher, but the 

bonding rate constant is comparable 151. Inhibition kinetics for PMSF were not measurable in 

the presence of substrate. Possibly, this is a result of a high dissociation constant, because 

inhibition was observed when EstA was preincubated with PMSF in the absence of substrate. 

Other chemical agents such as diethyl pyrocarbonate, dithiothreitol, divalent metal ions and 

EDTA did not influence EstA activity. EstA was co-crystallized with PMSF and paraoxon, but only 

crystals for the latter were obtained. Electron density maps for the paraoxon co-crystallized 

crystals displayed clear density for a diethyl phosphate moiety covalently bound to the side-

chain of Ser286. The density revealed that the p-nitrophenol leaving group of paraoxon had 

been cleaved off during co-crystallization, thereby leaving a tetrahedral product resembling 

the first transition state formed during ester hydrolysis. The native and the paraoxon-bound 

structures superimpose with an RMSD of 0.4 Å. There are no significant differences between 

the two structures.

Quaternary structure

There are two molecules (protomer A and protomer B) in the asymmetric unit which are related 

by non-crystallographic symmetry. Protomers A and B are essentially similar, with an RMSD 

between them of 0.3 over all Cα atoms. The refined model reveals that the two molecules form 

an interface of 280 Å2 in each monomer, a value that suggests a low association constant. The 

interface involves four beta-strands (βC, βD, βG, and βH) from the N-terminal Ig-like domain 

of both molecules. An intermolecular hydrogen bond (AspA56 to LysB61) stabilizes the dimer. 

With the 3-fold crystallographic symmetry of space group H32, three dimers form a tightly 

packed hexamer, burying a total surface area of 3,585 Å2. The inter-dimer interfaces involve 

residues from αA, αE, β7, β8 and the loop between β2 and β3, as well as the N-termini of βF, βE 

and the loop between them. Salt bridges and hydrogen bonds are formed between neighboring 

protomers, such as ArgA213 to GluA’362, ArgA222 to GluA’360, GluA99 to LysA’363, ArgA187 

to GluA’351, GlnA384 to TyrA’358, and AspA182 to LysA’347. On average, 1,454 Å2 surface area 
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per monomer is buried upon hexamerization. A multiple sequence alignment shows that the 

residues involved in the dimer and trimer interfaces are barely conserved, suggesting a novel 

mode of hexamer formation.

Native-PAGE and size exclusion chromatography showed that multiple quaternary 

structures of EstA are present in solution. Therefore, native mass-spectrometry, in which 

EstA was measured under non-denaturing conditions in ammonium acetate at pH 6.8 152, 

and dynamic light scattering were performed and revealed that the purified EstA protein 

was present predominantly (>50%) as a hexamer in solution. However, to a minor extent also 

mono-, di-, tri, and higher multimeric forms of EstA were detected using mass-spectrometry.

Electron microscopy and single particle analysis were used to analyze the oligomeric 

structure of EstA in solution. Negatively stained specimens of purified EstA with a final 

concentration of 30 μg/ml were found suitable for single particle image analysis. The analysis 

Figure 4.2 (in color on p.146): Comparison of the EM projection maps of the EstA hexamer. Top view (a), side 
view (b) and 10 degrees off side view (c). Two-dimensional projection maps obtained by statistical analysis and 
classification (a - c), the comparable two-dimensional projection maps with 15 Å resolution (d - f) generated from 
the proposed EstA hexameric structure (g - i) 134. The scale bar equals 50 Å.



52

4 Crystal structure and biochemical properties of a novel thermostable esterase containing an Ig-like domain

confirmed that EstA forms hexamers in solution (Figure 4.2). Comparison of the EM projection 

maps with projection maps generated from the crystal structure shows great similarities. The 

generated top view projection map shows three groups of densities which are recognizable in 

the EM projection map despite the limited details. Two EM side views are presented in Figure 

4.2, a side view (b) and a tilted side view (c). The projection in Figure 4.2b is referred as side 

view because two-fold symmetry can be imposed without altering the main characteristics in 

the projection map (not shown here). However, if this two-fold symmetry is imposed on Figure 

4.2c, the overall shape changes. This indicates that the hexamer shown in Figure 4.2c is slightly 

tilted due to different orientations on the carbon support film and therefore referred as tilted 

side view. It was possible to establish the rotational difference between these two views. 

Rotating the proposed hexamer followed by examination of the generated projection maps 

revealed that the tilted side view is about 10 degrees off from the side view. The tilted side view 

provides further evidence of the proposed EstA hexamer. Altogether, electron microscopy and 

single particle analysis showed that the hexameric structure of EstA in solution is composed 

of two trimers facing each other with the Ig-like domains, which is identical to the hexamer in 

the crystal structure.

Active site

The active site of EstA was identified by the location of the nucleophile serine, Ser286, within 

the conserved pentapeptide sequence Gly-X-Ser-X-Gly (GLSMG). A classical catalytic triad was 

found, consisting of Ser286 as the nucleophile, His374 as the proton acceptor/donor and 

Asp334 as the residue that stabilizes the histidine. Ser286 is located at the nucleophile elbow, a 

sharp turn between β5 and helix αC. In both native and the paraoxon-bound structures, Ser286 

has the energetically unfavorable main chain conformation which is also observed in other 

Figure 4.3 (in color on p.147): Stereoview of the EstA catalytic site with the bound SO4 adduct shown. The cata-
lytic triad residues are shown as sticks with the hydrogen bonds shown as dashed black lines. Observed density 
for the bound SO4 is contoured. These images were generated using Pymol 134.
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α/β hydrolases and might provide an energy reservoir for catalysis 153. The location of several 

glycine residues (Gly284, Gly288, and Gly289) in very close proximity to the catalytic Ser286 

prevents steric hindrance in the sharp turn of the nucleophile elbow. Asp334 and His374 are 

located in loops between strand β7 and helix αE and strand β8 and helix αF, respectively. The 

oxyanion hole is formed by the backbone NH groups of Ala198 and Met287.

In the native structure, the Ser286 side-chain has a hydrogen bond with the side-chain 

of His374. Extra density near the side-chain of Ser286 was interpreted as a sulfate-ion, forming 

hydrogen bonds to the side chain of the active site residue Ser286 and the main chain nitrogen 

atoms of Ala198 and Met287, mimicking the oxyanion transition state (Figure 4.3). Sulfate is 

present in the crystallization buffer and is commonly found as an adduct in other structures.

In the paraoxon-bound structure, paraoxon is stabilized by the covalent bond with 

Ser286, hydrogen bonding interactions with the oxyanion hole and by a hydrogen bond to the 

side-chain of His374 (Figure 4.4). One of the two ethyl arms of bound paraoxon points toward 

the surface of EstA, while the other follows the groove of the acyl binding pocket.

The catalytic triad and oxyanion hole are located at the end of a surface depression, 

characteristic for many α/β hydrolases (Figure 4.5a). This groove extends approximately 15 

Å from the catalytic serine into the enzyme where the gorge is closed by Glu33 (S1 in Figure 

4.5b). The volume of the groove is ~790 Å3. The active site serine residue is covered by a valine 

residue (Val336) and a phenylalanine residue (Phe116; of the Ig-like domain) resulting in a 

tunnel. The covered gorge extends to the other site of the catalytic serine for approximately 

5 Å. The active site gorge is slightly curved and is formed by the hydrophobic side-chains of 

Ala198, Gly199, Leu285, Trp377 and Phe112. The tunnel is formed by the hydrophobic side-

chains of Val336, Val337, Phe116, Leu245, Phe246 and Phe89 (of the N-terminal domain of 

subunit B), and by the non-polar side-chain of Tyr290. A second side gorge with a volume 

of ~210 Å3 also provides access to the active site (S2 in Figure 4.5b). The ~7 Å wide opening 

Figure 4.4 (in color on p.147): Stereoview of the EstA catalytic site with the diethyl phosphate (DEP) intermediate 
of the inhibitor paraoxon covalently bound to the catalytic serine. The catalytic triad residues are shown as sticks 
with the hydrogen bonds shown as dashed black lines. Observed density for the bound diethyl phosphate is 
contoured. These images were generated using Pymol 134.
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Figure 4.5 (in color on p.148): Substrate binding gorge. (a) Stereoview of the active site with the bound diethyl 
phosphate intermediate covalently bound to the catalytic serine. Key residues of the catalytic gorge are shown as 
sticks with the hydrogen bonds shown in dashed lines. (b) Surface representation of the EstA catalytic gorge with 
some of the key residues and the intermediate DEP shown in stick mode. These images were generated using 
Pymol 134.

is lined by the residues Leu245, Asp248, Arg249, Pro252, Phe253, Tyr290, Val336, Val337, 

Pro338, and Asn341. 

Substrate specificity and kinetics

Kinetic parameters for the hydrolysis of p-nitrophenyl esters with varying acyl chain length 

are given in Table 4.1. Catalytic activity (Kcat) decreases markedly with an increase in chain 

length with only low levels of activity on the long chain esters. The optimum substrate for an 
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enzyme can be concluded from the catalytic efficiency (Kcat/Km) of its conversion. According to 

this criterion, the esterase shows two optima, for p-nitrophenyl acetate and for p-nitrophenyl 

octanoate. However, one should realize that the natural substrate is not known, and that the 

p-nitrophenyl derivatives may give atypical kinetics. 

The effect of temperature on EstA activity was studied using p-nitrophenyl valerate and 

octanoate as substrates. The esterase activity increased from 40 °C upwards until 95 °C (Figure 

4.6a). An Arrhenius analysis for p-nitrophenyl valerate and octanoate resulted in a linear plot 

in the temperature range of 40-80 °C (Figure 4.6a), with a calculated activation energy for 

the formation of the enzyme-substrate complex of 9.5 and 13.5 kJ/mol respectively, which is 

comparable to a reported value 52. EstA has a high resistance to thermal inactivation, with a 

half-life value of approximately 1.5 h at 100°C (not shown). The optimal pH for the esterase 

was measured in the pH range of 4.8 to 10.2 using the substrates p-nitrophenyl valerate and 

octanoate. The latter substrate was used due to instability of p-nitrophenyl valerate at higher 

pH values. EstA displayed maximal activity at approximately pH 8.5 (Figure 4.6b).

Hydrolysis of triacylglycerol esters was measured using a plate assay. EstA was able to 

hydrolyze tributyrin, but not longer acyl chain esters. To visualize this, the structure of EstA in 

complex with the tributyrin transition state was manually modeled on the basis of the structure 

of Pseudomonas cepacia lipase (pdb 1LIP) with the covalently bound tributyrin transition state 

analogue R
C-(RP,SP)-1,2-dibutylcarbamoylglycero-3-O-p-nitrophenyl butylphosphonate (not 

shown) 154. According to the model, tributyrin could bind in the active site, resembling the way 

paraoxon binds. However, the size of the binding pocket is limited, thus making it impossible 

to bind longer acyl chain triacylglycerols as in Pseudomonas cepacia lipase. This observation is 

in agreement with the results of the plate assay.

	 EstA was investigated for its ability to remove acetyl groups from the substrates 

cephalosporin C, 7-aminocephalosporanic acid (7-ACA), glucose pentaacetate and N-acetyl-

D-glucosamine. EstA displayed an activity of 20 U/mg on glucose pentaacetate. This activity is 

relatively low, suggesting that EstA is not an oligosaccharide deacetylase. EstA was also able 

p-Nitrophenyl esters
Km

(μM)
kcat 
(s-1)

kcat/Km

(s–1 mM–1)

Acetate (C2) 105 ± 10 115 ± 4 1095 ± 111

Butyrate (C4) 414 ± 37   99 ± 3 239 ± 23

Valerate (C5) 183 ± 17   85 ± 2 464 ± 43

Hexanoate (C6)   89 ± 14   79 ± 4   888 ± 147

Octanoate (C8) 27 ± 6   37 ± 3 1370 ± 324

Decanoate (C10)   8 ± 1      10 ± 0.4 1250 ± 164

Dodecanoate (C12)      6 ± 0.6       1.6 ± 0.03 267 ± 27

Table 4.1: Kinetic parameters for hydrolysis of various p-nitrophenyl esters
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Figure 4.6: Effect of temperature, pH and mutations on esterase activity. (a) The effect of temperature on esterase 
activity was studied using p-nitrophenyl-valerate (■) and -octanoate (♦) as a substrate at temperatures ranging 
from 40°C to 95°C. The inset shows the temperature dependence for p-nitrophenyl-valerate as an Arrhenius plot. 
(b) The effect of pH on esterase activity was studied using p-nitrophenyl-valerate (□ citrate phosphate buffer and 
∆ CAPS buffer) and -octanoate (■ citrate phosphate buffer and ▲ CAPS buffer) as substrates at pH values ranging 
from pH 4.8 to pH 10.2. (c) The effect of mutations on esterase activity was studied using p-nitrophenyl-acetate 
(C2), -valerate (C5) and -octanoate (C8) at pH 8 and 70°C.
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to hydrolyze acetyl groups from both cephalosporin C and 7-ACA with an activity of 80 U/mg 

for both substrates. Cephalosporin C and 7-ACA are not stable at high temperature and are 

therefore not considered as natural substrates. EstA was not able to remove the acetyl group 

from N-acetyl-D-glucosamine, indicating it is specific for ester bonds and unable to cleave 

amide bonds.

Mutational studies

Five residues, all near the active site or part of the active site gorge, were changed to alanines 

by site directed mutagenesis in order to analyze their importance for EstA activity. The residues 

selected for mutagenesis were three phenylalanines (Phe89, Phe112 and Phe116) located on 

loops of the Ig-like domain and two conserved residues (Phe246 and Trp377) of the catalytic 

domain. Phe89 is located on a loop (Tyr77-Tyr85) coming from the Ig-like domain of a subunit 

B (EstA multimer) and is a part of the side gorge. Phe116 is located at the top of a very long 

loop (Leu100-Ile126) leading all the way back towards the active site and covers the active site. 

Phe112 is on the same long loop and is part of the groove. The conserved Phe246 is part of the 

tunnel and Trp377 is part of the active site gorge. 

The mutants Phe89Ala, Phe112Ala, Phe116Ala, Phe246Ala and Trp377Ala were 

expressed and purified. The mutants were analyzed by mass-spectrometry and revealed that 

all mutants were present as a hexamer in solution. Esterase activity was determined using 

substrates with different acyl chain lengths, respectively pNP-C2, pNP-C5 and pNP-C8 (Figure 

4.6c). Significant reduction in activity was observed for all five mutants, confirming their 

importance for the activity of EstA. Their relative activity to EstA with the substrate pNP-C5 

was, respectively, approx. 30% for Phe89Ala, 80% for Phe112Ala, 20% for Phe116Ala, 25% 

for Phe246Ala and 15% for Trp377Ala. As can be seen in Figure 4.6c, the effect was more 

pronounced for longer acyl chain substrates. 

In addition, a truncated mutant of EstA was constructed coding only for the catalytic 

domain (EstAtrunc: Asp158-Arg395). EstAtrunc was expressed and purified and was found to 

have a relative activity of only 5% compared to EstA (Figure 4.6c). Furthermore, it had a much 

lower temperature optimum (60°C), lower thermostability (a half-life at 90°C of 15 minutes) 

and was present as a monomeric structure (analyzed by mass-spectrometry).

Discussion

A hypothetical protein with esterase features from the hyperthermophilic bacterium T. 

maritima was produced heterologously and proved to exhibit ester hydrolyzing activity. 

Highest activities were found on p-nitrophenol derivatives with short acyl chains (C2 and C4). 
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In accordance, the enzyme also showed activity with tributyrin, but not with triacylesters with 

longer chains. However, because of a high catalytic efficiency for the acetate- as well as the 

octanoate- p-nitrophenol derivative, we cannot exclude that the physiological substrate may 

contain acyl chains up to C8. Nevertheless, these data indicate that EstA should be classified 

as an esterase (<C10), not a lipase. 

The three-dimensional structure of the protein was determined at 2.6 Å resolution. 

Analysis of the structure of EstA confirms that it is a member of the α/β hydrolase family, with a 

conserved Ser-Asp-His catalytic triad, comprised of Ser286, Asp334 and His374. The active site 

can be accessed via a gorge flanked with predominantly hydrophobic residues. The structure 

was found to be composed of two clearly distinguishable domains. A C-terminal domain 

containing the active site and an unusual N-terminal domain resembling immunoglobulins. 

Such a combination of an esterase- or α/β hydrolase domain with an Ig-like domain is new and 

has, as such, not yet been described.  

Analysis of the quaternary structure by gel filtration, mass-spectrometry and dynamic 

light scattering revealed that EstA predominantly exists as hexamer in solution. The crystal 

structure also shows a hexameric arrangement, composed of two trimers. Electron microscopy 

demonstrated that the hexamer in solution is identical to the hexamer in the crystal, and is 

constructed as a dimer of trimers, with the N-terminal Ig-like domains facing each other. 

Esterases often have a trimeric structure, as was e.g. described for the thermostable esterase 

from Bacillus circulans 155 and the thermostable esterase from Sulfolobus shibatae 100. A 

hexameric structure, however, is rather unusual. Being at the interface of the two trimers, the 

Ig-like domain apparently has a function in multimerization.

The function of the Ig-like domain in other bacterial enzymes has been proposed to 

be substrate binding, directing a substrate to the catalytic groove or cell adhesion 156; 157. The 

latter option seems unlikely for EstA, with the Ig-like domains facing each other. To elucidate 

the function of the Ig-like domain of EstA a truncated mutant was constructed only composed 

of the C-terminal catalytic domain. The resulting EstAtrunc was still active, but had lost 95% 

of its activity, and was no longer able to form hexamers. This again points to a role of the 

Ig-like domain in multimerization. The inability to form multimers may also be the reason 

for the reduced stability that was observed at higher temperatures. Apolar residues at the 

interface become exposed to the solvent, and may contribute to the observed loss of stability. 

Multimerization is a phenomenon often described for enzymes from (hyper)thermophiles, 

and is regarded as one of different mechanisms to increase the thermostability 158. 

The active site is accessible via a gorge, typical for many α/β hydrolases. Unusual, 

however, is that the active site is also accessible via a second side gorge. This side gorge could 

possibly provide an access for substrate or an exit for one of the reaction product following 

nucleophilic attack and formation of the intermediate. On the other hand, compared to other 

esterases and lipases, the EstA active site pocket is unique in its closure by Val336 and Phe116. 

Considering that Phe116 is located in a flexible loop, as indicated by a high B-factor for the 
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fragment Phe112-Leu117, it is possible that upon substrate binding, Phe116 could change its 

conformation and open the tunnel making it better accessible.

Besides Phe116, the active site is surrounded by a set of aromatic residues. To disclose 

their function five residues (Phe89, Phe112, Phe116, Phe246 and Trp377) in proximity of 

the active site were mutated to alanines. The specific activity of each mutant was decreased 

indicating they all were important for activity. Least affected was mutant Phe112Ala, however, 

this residue is located furthest from the active site. The most pronounced inhibiting effects 

were seen with the more hydrophobic longer chain esters. This observation suggests that the 

hydrophobic residues facilitate the entrance of the substrate along the gorge, which would 

hold most for the longer acyl chains. On the other hand, a more general role of the residues 

in stabilization of the active site can, however, not be excluded. One of the mutated residues, 

Phe89, is located on a loop coming from the Ig-like domain of a subunit B. This interaction of 

the Ig-like domain of one subunit with the active site of another subunit also supports the 

view that multimerization is important for the activity of EstA, although not essential, since 

Phe89Ala still has 30% activity. 

In conclusion, the structural and biochemical characterization of EstA showed that it 

is an unusual esterase, which is composed of a conserved C-terminal catalytic domain and an 

unprecedented N-terminal immunoglobulin-like domain. The Ig-like domain presumably plays 

a role in multimerization of EstA into an unusual hexameric structure. Additionally, it may also 

participate in catalysis of EstA, by guiding the substrate to the active site. Further mutagenesis 

and biochemical studies are needed for a better understanding of the role of the N-terminal 

domain. 

Materials and Methods

Protein production and crystallization 

The Thermotoga maritima estA gene (locus tag TM0033) was cloned into the expression vector 

pET24d, without the predicted signal peptide (the first 16 amino acids). EstA was expressed and 

purified as described 70. The purified native and SeMet-EstA proteins were dialyzed against 10 

mM potassium phosphate buffer at pH 7.5 and concentrated to 15 mg/ml. EstA was crystallized 

by hanging-drop vapor-diffusion at room temperature. Crystals of EstA were obtained using a 

reservoir solution consisting of 1.0 M lithium sulphate monohydrate, 2% w/v polyethylene 

glycol 8,000. Drops consisting of equal volumes (1 μl) of protein and reservoir solution were 

equilibrated over 500 μl reservoirs. Crystals suitable for x-ray diffraction were obtained within 

one and two weeks, respectively for the native and SeMet-EstA. A crystal of EstA in complex 

with its inhibitor paraoxon was obtained by incubating the enzyme (15 mg/ml) supplemented 

with 0.2 mM paraoxon for 1h at room temperature and then set up crystallization as described 

above. Crystals were obtained within two weeks.
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Data collection 

For cryoprotection, crystals were soaked for a few seconds in reservoir solution containing 20% 

(w/v) glycerol. The crystals were mounted in a cryoloop and subsequently flash-frozen in liquid 

nitrogen. X-ray data were collected at 100K on beamline ID29 at the ESRF, Grenoble. A native 

data set was collected to 2.6 Å resolution. The crystal belongs to space group H32, with unit-

cell parameters a = b = 130.2 Å, and c = 306.2 Å. There are two molecules in the asymmetric 

unit with a V
M of 2.9 Å3 Da-1 and 58% solvent content 138. Crystals of SeMet-EstA showed a well 

defined Se K absorption edge by fluorescence scanning. A single SeMet-EstA crystal was used 

for the MAD data collection at the peak (0.9791 Å), inflection (0.9793 Å) and remote (0.9557 

Å) wavelengths to 2.6 Å resolution. Data were indexed and integrated with MOSFLM 139 and 

scaled using SCALA 141.

Structure determination and refinement

The EstA structure was solved by MAD phasing with the MAD data from the SeMet-EstA crystal 

and the native data set, using HKL2MAP 159. Eight selenium sites in the asymmetric unit of the 

crystal were found and were used to calculate phases to 2.6 Å resolution (Table 4.2). However, 

initial density maps were of generally poor quality and not suitable for tracing the structure. 

Phases were improved using RESOLVE 160; 161, allowing the identification of non-crystallographic 

symmetry (NCS). NCS averaging and solvent flattening were performed using the program DM 
162 of the CCP4 suite, giving an electron density map of better quality. Autobuilt models from 

RESOLVE and ARP/wARP 163 were combined to give a starting model, comprising 170 residues 

from the total of 380 with only 20 residues assigned into sequence properly. The structure was 

then manually rebuilt in Coot 164 and refined using CNS 165 and REFMAC 166. Strict NCS restraints 

were applied during the earlier stages of the refinement, and were released at later stages. 

In the final stages of refinement, solvent molecules were added using ARP-wARP 163 and were 

manually inspected in Coot 164. A sulfate ion from the reservoir solution was clearly visible at 

high contour level in the omit map. The final refinement Rwork is 19.7% and Rfree is 26.7%.    

The structure of the EstA-paraoxon complex was determined by molecular replacement, 

which was performed with MOLREP using the native structure as the model. The complex 

structure was rebuilt in Coot 164 and refined using REFMAC 166. The Fo − Fc electron density map 

and omit density map displayed clear density for paraoxon and were used to assign the head 

of the paraoxon molecule. No water molecules were picked for this low-resolution data set. 

The model with paraoxon was refined to a final Rwork = 22.0% and Rfree = 26.2%. 

In the final models (native and paraoxon-complexed crystal structures), residues 16-20 

of both molecules and residues 249-250 of chain B are missing because of poor density. The 

geometry of both models was monitored using PROCHECK 124, with the native and paraoxon 

complex models having 85.2 and 82.2% of their residues in the most favored regions of the 

Ramachandran plot, respectively. Cartoon representations were generated using PYMOL 134. 
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Native SeMet peak SeMet inflection SeMet remote
EstA paraoxon

complex

Data collection
Wavelength (Å) 1.0000                   0.9791 0.9793 0.9757 1.0000
Resolution range (Å) 50–2.6(2.74–2.6) a 50–2.6 (2.74–2.6) 50–2.6 (2.74–2.6) 50–2.6 (2.74–2.6) 50–3.0 (3.16–3.0)
Space group H32 H32 H32 H32 H32
Unit-cell parameters (Å)
a = b 130.2 131.0 131.0 131.0 130.5
c 306.2 306.8 306.8 306.8 304.5
Observed reflections 173066 353388 358408 358161 160768
Unique reflections 31079 31295 31587 31457 20405
Completeness (%) 100.0(100.0) 100.0( 100.0) 100.0 (100.0) 100.0 (100.0) 100.0(100.0)
Rmerge 

b 0.087(0.430) 0.086(0.498) 0.082(0.412) 0.075(0.437) 0.152(0.643)
<I/s(I)> 14.2(3.6) 22.3 (4.6) 22.1 (4.4) 24.8 (5.0) 13.4(3.0)
Redundancy 5.6(5.7) 11.4(11.7) 11.3(11.4) 11.4(11.3) 7.9(8.1)

MAD phasing
    No. of Se sites 8
    Figure of merit 0.5

Refinement
Resolution range (Å) 20–2.6(2.66–2.6) 35–3.0(3.08–3.0)
No. of reflections 28373 19311
Rwork (%) 19.7(31.2) 22.0(30.7)
Rfree (%) 26.7(35.5) 26.2(35.6)
Average B-factors
     Protein 36.8 45.8
     Water 33.2 –
     Ligand 49.5 39.6
Rms deviation  
     Bond lengths (Å) 0.018 0.016
     Bond angles (°) 1.88 1.77
a. Values in parentheses correspond to the highest resolution shell;
b.
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h
> is the weighted average intensity for 

all observations l of reflection h.

Table 4.2: Data collection, phasing and refinement statistics

Native mass spectrometry 

Native mass spectrometry measurements were performed in positive ion mode using an 

Electrospray Ionisation Time-of-Flight (ESI-ToF) instrument (LC-T; Micromass, Manchester, 

U.K.) equipped with a Z-spray nano-electrospray ionization source. Needles were made from 

borosilicate glass capillaries (Kwik-Fil, World Precision Instruments, Sarasota, FL) on a P-97 

puller (Sutter Instruments, Novato, CA), coated with a thin gold layer by using an Edwards 

Scancoat (Edwards Laboratories, Milpitas, CA) six Pirani 501 sputter coater. To produce intact 

ions in vacuo from EstA in solution the ions were cooled by increasing the pressure in the 

first vacuum stages of the mass spectrometer. In addition efficient desolvation was needed 

to sharpen the ion signals in order to withdraw the oligomeric states of EstA from the mass 
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spectrum. Therefore, source pressure conditions were raised to values ranging from 7.0-

7.3 mbar, and nano-electrospray voltages were optimized for transmission of large protein 

complexes. The pressure in the interface region was adjusted by reducing the pumping capacity 

of the rotary pump by closing the speed-valve 167; 168. The applied voltages on the needle and 

sample cone were 1,300 V and 150 V, respectively. All spectra were mass calibrated by using 

an aqueous solution of cesium iodide (20 mg/ml). Buffer exchange of EstA samples to 100 mM 

ammonium acetate pH 6.8, was performed by using ultra filtration units with a cut-off of 5,000 

Da (Millipore, Bedford). EstA was diluted to 5 μM and measured at room temperature.

Dynamic light scattering (DLS)

DLS was performed at room temperature using the EstA sample ready for crystallization. The 

EstA particles were monodisperse, with a molecular weight of approximately 285 kDa, which 

suggests that the 43 kDa subunits assemble into a hexamer in solution. 

Electron microscopy and single particle analysis

Samples of purified EstA were negatively stained with 2% uranyl acetate on glow-discharged 

carbon-coated copper grids. Images were recorded with a Gatan 4 K slow-scan CCD camera 

on a Philips CM12 electron microscope (Fei, Eindhoven, The Netherlands) operated at 120 kV 

using ‘‘GRACE’’ software for semi-automated specimen selection and data acquisition 169. The 

final magnification was 100,000x with a pixel size (after binning the images) of 3.0 Å at the 

specimen level. About 8,700 single particles were selected and extracted from 600 electron 

micrographs. Single particle analysis was performed with the GRoningen Image Processing 

(“GRIP”) software package on a PC-cluster. The single particles projections (96 x 96 pixel 

frame) were subjected to multi-reference alignment and reference-free alignment procedure, 

multivariate statistical analysis followed by and hierarchical ascendant classification 170. From 

the whole data set, almost 45% of single particles were assigned to top views of the EstA 

hexamer whereas the remaining ~55% resembled side views. Final two-dimensional projection 

maps of the presented views of the EstA hexamer were calculated from the best resolved 

classes, which represented about 20% of the whole data. 

The packing of EstA within the crystal was examined with PyMOL software 134 for 

possible hexameric structures which resembled the projection maps obtained with electron 

microscopy and single particle analysis. Possible structures were manually fitted into the EM 

projections. Different views of the EstA hexamer were finally displayed using PyMOL software 
134. Truncated versions at 15 Å resolution and two-dimensional projection maps of the generated 

model for the EstA hexamer were generated using routines from the EMAN package 171.

Enzyme assays

Esterase activity was measured as described previously 52. In short, in a standard assay activity 

was measured with 0.2 mM p-nitrophenyl octanoate as substrate in 50 mM citrate-phosphate 

(pH 8) at 70°C. The amount of p-nitrophenol liberated was measured continuously at 405 
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nm on a Hitachi U-2001 spectrophotometer with a temperature controlled cuvette holder. 

Extinction coefficients of p-nitrophenol were determined prior to each measurement.  

The effect of pH on esterase activity was studied in the pH range of 5-11. The buffers 

used were 50 mM citrate-phosphate (pH 5-8) and 50 mM CAPS buffer (pH 9.5-11). The effect 

of temperature on esterase activity was studied in the range of 40-95 °C. The pH of the buffers 

was set at 25 °C, and temperature corrections were made using their temperature coefficients: 

-0.0028 pH/°C for citrate-phosphate buffer and -0.018 pH/°C for CAPS buffer 136. Enzyme 

thermostability was determined by incubating the enzyme in a 50 mM Tris-HCl, 150 mM NaCl 

(pH 7.8) buffer at 100 °C for various time intervals. Residual activity was assayed under the 

standard condition.

Plate assays were used for the detection of activity on triacylglycerol-esters. Agar plates 

containing tributyrin, trioctanoate, triolein, palm oil and olive (1%, vol/vol) were prepared and 

5 mm wide holes were perforated. The resulting holes were loaded with purified enzyme and 

incubated at 50°C. Activity was detected by zones of clearance around the holes.

Deacetylase activity was determined using high-performance liquid chromatography 

(HPLC) by measuring the amount of acetic acid released from the substrates cephalosporin 

C, 7-aminocephalosporanic acid and glucose-pentaacetate. The reaction mixture contained 

0.9 ml substrate solution (dissolved in 50 mM Tris-HCl, pH 7.5) and 0.1 ml of enzyme solution, 

and was incubated at 37°C for various time intervals. The reaction was stopped by adding 0.2 

ml stop solution (100 mM H
2SO4 and 30 mM crotonate) and placing the sample on ice. The 

conditions for HPLC were as follows: column, KC811-Shodex; detection, RI and UV detector; 

solvent, 3 mN H2SO4; flow rate, 1.5 ml/min; temperature, 30°C; internal standard, crotonate. 

One unit of enzyme activity was defined as the amount of enzyme that releases one μmol of 

acetic acid per minute.

The effect of inhibitors and metals was studied by pre-incubating EstA with 1 mM 

inhibitor in 50 mM citrate phosphate buffer (pH 8) at 37°C for 1 hour. Subsequently, samples 

were placed on ice and residual activity was measured using the standard assay. Activity 

of the enzyme without inhibitor was defined as 100%. Inhibition kinetics of paraoxon were 

determined as described for the acetylcholinesterase from electric eel 150. 

Kinetic parameters were determined by fitting the data obtained from multiple 

measurements by a computer-aided direct fit to the Michaelis–Menten curve (Tablecurve 2d, 

version 5.0).

	

Mutagenesis

Mutants of EstA were created to identify the function of the Ig-like domain. Mutants Phe89Ala, 

Phe112Ala, Phe116Ala, Phe246Ala and Trp377Ala were generated using Quikchange (Strata-

gene) site-directed mutagenesis with the following primers BG2486 5-CGGAGGTCTCTCTTTCAG-

CATTGCCAACAACCGTGGAAAGTACG-3 and BG2487 5-CGTACTTTCCACGGTTGTTGGCAATGCT-

GAAAGAGAGACCTCCG-3, BG2488 5-CACTCAAACACCATTGTTGCCGGGCCTAATTTTCTCAA-
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CACCCG-3 and BG2645 5-CGGGTGTTGAGAAAATTAGGCCCGGCAACAATGGTGTTTGAGTG-3, 

BG2490 5-CCATTGTTTTCGGGCCTAATGCGCTCAACACCCGCATGAAACTGG-3 and BG2646 

5-CCAGTTTCATGCGGGTGTTGAGCGCATTAGGCCCGAAAACAATGG-3, BG2492 5-CAGCAGCTG-

GTCCACACTCGCCACTGACAGGGAAAATCC-3 and BG2647 5-GGATTTTCCCTGTCAGTGGCGAGT-

GTGGACCAGCTGCTG-3, BG2494 5-GGTGGGATCCACACGGATCGGCGATACCTACCTACGAG-3 and 

BG2648 5-CTCGTAGGTAGGTATCGCCGATCCGTGTGGATCCCACC-3, respectively (the underlining 

indicates the modified codon). A truncated EstA mutant was generated using the following 

primers BG2496 5-CCGCCATGGATTTCCTCGCATTCACTTTCAAAGACC-3 and BG1963 5-GCGCTC-

GAGTCTACTTTGTTCAAACAGCCAC-3. The sequence of the mutants was confirmed by sequence 

analysis of both DNA strands

Data Bank accession codes

The structural data have been deposited in the RCSB Protein Data Bank with accession codes 

3DOH for native EstA and 3DOI for EstA in complex with paraoxon.
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Abstract

Deacetyl cephalosporins are valuable building blocks for the production of semisynthetic 

β-lactam antibiotics. These compounds can be produced from cephalosporin C or 

7-aminocephalosporanic acid by the action of specific esterases, belonging to the carbohydrate 

esterase family seven (CE7). Members of this family are active towards both cephalosporin C 

and acetylated xylo-oligosaccharides. The acetyl esterase AceA from Thermotoga maritima, 

belonging to CE7, was functionally produced in Escherichia coli and purified to homogeneity. 

AceA was found to be active on a variety of acetylated compounds, including cephalosporin C. 

On artificial p-nitrophenyl-substrates esterase activity was confined to short chain acyl esters 

(C2-C3), and showed optima at or above 100°C and at pH 7.5. The positional specificity of 

AceA was investigated using 4-nitrophenyl-β-D-xylopyranoside monoacetates as substrate 

in a β-xylosidase-coupled assay. AceA hydrolyzed acetate from positions 2, 3 and 4 with the 

same efficiency. Its selenomethionine-substituted and native structures were solved at 2.1 

Å and 2.5 Å resolution, respectively, and revealed a classic α/β-hydrolase fold. AceA forms 

a “doughnut”-like hexamer in solution, with two small tunnels leading to an inner cavity, to 

which the six catalytic centers are exposed. AceA is irreversibly inhibited by the inhibitors 

PMSF and paraoxon. Structures of AceA in complex with PMSF and paraoxon were determined 

to 2.4 Å and 2.1 Å, respectively, and confirmed that both inhibitors bind covalently to the 

catalytic serine. Remarkably, upon binding of inhibitor the catalytic serine adopts an altered 

conformation. It is speculated that this transition is necessary for good hydrogen bonding to 

the oxyanion hole. 
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Introduction

Thermotoga maritima is a hyperthermophilic bacterium growing optimally at 80°C and able to 

metabolize a variety of simple and complex carbohydrates, including glucose, sucrose, starch, 

cellulose, and xylan 142. Its carbohydrate utilization potential was revealed by its genome 

sequence 119. The xylan degrading system of T. maritima has been studied using microarrays 
119; 172; 173, and several genes encoding transporters, xylanases, and a β-xylosidase have been 

identified. Among the enzymes with a differential expression pattern in the microarray was a 

predicted acetyl xylan esterase (locus tag TM0077, aceA) 172; 174. In hardwood xylans many of 

the xylose residues are acetylated at the 2 and / or 3 positions. Therefore, for the complete 

degradation of xylan, esterases / deacetylases are required in addition to xylanases and 

xylosidases 175.  

Presently, esterases and deacetylases active on carbohydrate substrates have been 

classified into 16 families by Henrissat and coworkers (Carbohydrate-Active enZymes Server 

(CAZy)) 114. According to this classification, the predicted acetyl xylan esterase from T. maritima 

belongs to family 7 of the carbohydrate esterases (CE7). Enzymes in the CE7 family are 

rather unusual in that they, in addition to the acetyl xylan esterase activity, display a high 

specific activity towards the antibiotic cephalosporin C 176. Cephalosporin C belongs to the 

class of β-lactam antibiotics that also includes penicillin. These antibiotics affect cell growth 

by inhibiting the penicillin-binding-protein that cross-links peptide glycans required for cell 

wall formation 177. The production of deacetylated cephalosporins is of great interest because 

these compounds are valuable building blocks for the production of semi-synthetic β-lactam 

antibiotics 178; 179. 

In order to disclose the catalytic capacity of the predicted acetyl xylan esterase from T. 

maritima and to gain a better insight into the structure and function of the family 7 carbohydrate 

esterases, TM0077 was functionally expressed and its three-dimensional structure, native 

and in complex with the inhibitors PMSF and paraoxon, was determined. In addition, various 

biochemical properties and the positional specificity of the esterase was investigated.

Results

In silico analysis

AceA was selected as one of the model proteins by the Joint Center for Structural Genomics 

(JCSG), as part of the NIH-funded Protein Structure Initiative (PSI), to establish an automated 

pipeline for large-scale protein production and structure determination 180. The protein 

consists of 325 amino acids and has a calculated molecular mass of 37 kDa. N-terminal 

sequence analysis, using the SignalP 3.0 server, revealed that AceA has no signal sequence and 
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is therefore believed to be an intracellular enzyme. Analysis of the gene organization shows 

that the AceA gene (TM0077) co-localizes with genes encoding a xylanase (TM0070) 181, 5 ABC 

transporter components (TM0071-TM0075), and a β-xylosidase (TM0076) 182. BLAST-P analysis 

showed that AceA has highest similarity with putative acetyl esterases, acetyl xylan esterases 

and cephalosporin C deacetylases. Among the BLAST results there was also a hit with an acetyl 

xylan esterase-related protein from T. maritima (locus tag: TM0435). AceA was compared 

with other members of the CE7-family using a structure-based multi-sequence alignment. The 

three catalytic residues Ser188, Asp274, and His303, were identified because of their complete 

conservation. The nucleophilic serine is located within a conserved pentapeptide consensus 

sequence, Gly-Xaa-Ser-Gln-Gly, typical for this family. Previously, a signature sequence motif, 

RGQ…GxSQG…HE (at the appropriate spacing), was suggested for the CE7 family  based on an 

alignment of 12 amino acid sequences 183. We have confirmed this motif in the multi-sequence 

alignment using 50 sequences belonging to the CE7 family.

Overall structure

The crystal structure of seleno-methionine incorporated AceA (AceA-SM) was determined to 

2.1 Å by multi-wavelength anomalous dispersion (MAD) (Table 5.2). The AceA-SM structure was 

solved in space group P21 and has twelve AceA molecules per asymmetric unit. Native AceA and 

the PMSF (AceA-PMS) and paraoxon (AceA-DEP) co-crystallized structures were determined to 

2.5 Å, 2.4 Å and 2.1 Å, respectively (Table 5.2). They were solved by molecular replacement, 

using AceA-SM as a searching molecule, and belong to space group P212121 containing six AceA 

molecules in the asymmetric unit. In each monomer of the hexamer a calcium ion is bound 

by Lys22, Glu26, and Asp25 through a bridging water molecule. A superposition of the AceA-

SM and native AceA structures gives a root mean square deviation (RMSD) of 0.185 Å, which 

implies that both overall structures are nearly identical. 

The AceA structure resembles the canonical α/β-hydrolase fold, which has been 

described as a central twisted eight-stranded β-sheet surrounded by α-helices on both sides, 

with β2 antiparallel to the other strands. Compared with the canonical α/β-hydrolase fold, 

AceA has an insertion of three helices after β6 and an extension of the N-terminus (Figure 

5.1). Insertions after β6 or β7 are common for α/β-hydrolases and are thought to help shape 

the substrate-binding site 8. The N-terminus is extended with two helices and an antiparallel 

β-strand, which lines up with the other eight β-strands, extending the central sheet. Therefore, 

the second β-strand is equivalent to β1 in the canonical fold. The nine-stranded β-sheet is 

highly twisted, and β1 and β9 are approximately 130°-rotated relative to each other. Helices 

αA, αA1, αC, αD, αE, αE1, αE2, αE3, αF, and the 3
10-helix η1 are on one side of the central 

β-sheet, and helices αB and αG are on the other side. Helices αB and αC start with a 310-helix.
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Figure 5.1 (in color on p.149): (a) Overall fold of the acetyl esterase AceA. The Figure was generated using Pymol 
(DeLano) 134. (b) Topology diagram for AceA, with the helices displayed as cyan cylinders and the strands displayed 
as red arrows. The positions of the catalytic residues are indicated. The figure was generated using TopDraw 184.

Quaternary structure

There is one hexamer in the asymmetric unit of native AceA. Crystallographic packing analysis 

using PQS 185 indicated that the physiological multimeric state of AceA is a hexamer. Size 

exclusion chromatography coupled with static light scattering did confirm this. 

The assembly of the AceA hexamer was studied using PISA (EBI) 186. This analysis 

indicated that the interfaces between protomers AB = CD = EF and AF = BC = DE play an 

essential role in complex formation (CSC scores of 1). The interface between protomers A and 
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B is stabilized by on average 7 hydrogen bonds and has a buried surface area of 1024 Å2. The 

interface between protomers A and F is stabilized by on average 17 hydrogen bonds and has a 

buried surface area of 1079 Å2. Other interfaces are formed between protomers AC = AE = BD 

= BF = CE = DF, burying on average 514 Å2. The multiple sequence alignment of AceA showed 

that the residues involved in the interfaces are not conserved. The hexamer has a total buried 

surface area of 18,860 Å2, which is approximately 30% of the total surface area. On average, 

3,143 Å2 per monomer is buried upon complex formation.

Molecular surface representations of the AceA hexamer shows a ‘doughnut’-like shape. 

The six active sites are located at the interior of the hexamer, where they line an oval-shaped 

cavity. Access to this cavity is via two entrances, one on each site of the hexamer (Figure 

5.2a). The two entrances are approximately 13 Å wide and result in a short tunnel spanning 

approximately 10 Å to the inner cavity. This is similar in the hexamer of AceA and CAH 183. 

Interestingly, the AceA-SM structure does not contain the two holes in the hexamer, due to 

very flexible N-terminal residues blocking the entrances (Figure 5.2b). 

Figure 5.2 (in color on p.150): (a) A “sliced” image of the AceA hexamer showing the two entrances on each side 
of the ‘doughnut’ and the internal cavity, and (b) Surface representation of the biological unit of AceA-SM and 
AceA from T. maritima and the cephalosporin C deacetylase (CAH) from B. subtilus 183, with each monomer in a 
different color.
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Comparison with related structures

A structural similarity search was performed using the program DALI 187. Chain A of the 

AceA structure was used as a search model and similarity was found with cephalosporin C 

deacetylases, acylamino-releasing enzymes, dipeptidyl peptidases and some esterases and 

lipases. AceA is structurally most similar with the cephalosporin C deacetylase (CAH) from B. 

subtilus (PDB: 1ODS) 183 and with an acylpeptide hydrolase/esterase apAPH from Aeropyrum 

pernix K1 (PDB: 1VE6) 65. The sequence identity between AceA and CAH after the structural 

alignment is 41% and the two structures are aligned with a Z-score of 46 and an RMSD of 1.5 

Å over 312 Cα atoms. The sequence identity with apAPH is 17% with a Z-score of 23.3 and an 

RMSD of 2.3 Å over 230 Cα atoms. Superposition of AceA with CAH and apAPH is shown in 

Figure 5.3. 

Figure 5.3 (in color on p.151): Superposition of AceA (yellow) with (a) the cephalosporin C deacetylase (CAH) 
from B. subtilus (PDB: 1ODS; blue) 183 and (b) the α/β-hydrolase domain of the acylpeptide hydrolase/esterase 
apAPH from A. pernix K1 (PDB: 1VE6; light blue) 65.

Inhibitor assays and structures of AceA complexed with PMSF and paraoxon

Inhibition assays showed that both diethyl p-nitrophenyl phosphate (paraoxon) and 

phenylmethylsulfonyl fluoride (PMSF) inhibit AceA activity with 1 and 45% residual activity, 

respectively. The inhibition kinetics for PMSF and paraoxon were investigated in the presence 

of p-nitrophenyl acetate, as described previously 68. This resulted in dissociation and rate 

constants of 690 μM and 0.017 s-1 for PMSF, and 960 μM and 0.21 s-1 for paraoxon, respectively. 

These results are in good agreement with the inhibition assay. No significant stimulation 
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or reduction of activity of AceA was observed in the presence of divalent metal ions or 

ethylenediaminetetraacetic acid (EDTA). 

In order to obtain more information about possible conformational changes occurring 

during catalysis, AceA was co-crystallized with the inhibitors PMSF and paraoxon. The electron 

density map of AceA in complex with PMSF showed clear density for the PMSF modification. 

The F-atom was cleaved from the PMSF molecule during the binding reaction and the 

phenylmethyl sulfonyl (PMS) moiety is covalently bound to the Oγ atom of Ser188. The native 

and PMS-bound structure superimpose with an RMSD of 0.114 Å. Electron density maps for the 

paraoxon co-crystallized crystals displayed clear density for a diethyl-phosphate (DEP) moiety 

covalently bound to the Oγ atom of Ser188. The p-nitrophenol group of paraoxon has been 

cleaved of during co-crystallization, thereby leaving a tetrahedral product reminiscent of the 

first transition state formed during carboxyl ester hydrolysis. The native and paraoxon-bound 

structure superimpose with an RMSD of 0.143 Å. Attempts to obtain co-crystallizations of AceA 

with the substrate cephalosporin C, even at a low temperature of 4 °C,  were unsuccessful. 

Analysis of the active site 

The active site of AceA has a classic catalytic triad, consisting of Ser188 as the nucleophile, 

His303 as the proton acceptor/donor, and Asp274 as the acidic residue stabilizing the histidine. 

The catalytic serine Ser188 is located within a conserved pentapeptide sequence, Gly-X-Ser-

X-Gly (GGSQG), characteristic for esterases and lipases. The positions of Ser188, Asp274, and 

His303 are consistent with the canonical fold of the α/β-hydrolase family. Ser188 is located 

at the nucleophile elbow, a sharp turn between β6 and helix αC. The presence of five glycine 

residues (Gly186, Gly187, Gly190, Gly191, Gly192) in close proximity to Ser188 prevents steric 

hindrance in the sharp turn of the nucleophile elbow. Asp274 and His303 are located at loops 

between β8 and helix αF, and between β9 and helix αG, respectively. The oxyanion hole is 

formed by the backbone amide groups of Tyr92 and Gln189.

In the native structure, the Ser188 side chain makes a hydrogen bond with the imidazole 

ring of His303. Extra density was observed near the side chain of Ser188 and was interpreted 

as a chloride ion on the basis of its electron density and geometry. The chloride ion is bound at 

the entrance of the oxyanion hole, forming hydrogen bonds with the backbone amides of the 

residues Tyr92 and Gln189 (Figure 5.4a). In the PMSF inhibited structure, the sulfonyl group 

of the inhibitor makes hydrogen bonds with the backbone amides of the residues Tyr92 and 

Gln189. The phenyl ring of the inhibitor is located in the small active site groove surrounded 

by the hydrophobic residues Tyr92, Trp124, Pro228, Ile276, and His303 (Figure 5.4b). In the 

paraoxon inhibited structure, the DEP moiety is stabilized by hydrogen-bonding interactions 

with the oxyanion hole. One of the two ethyl arms of bound paraoxon points toward the large 

pocket of the protein, while the other follows the groove of the small pocket. The two ethyl 
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arms are stabilized by packing against the side chains of Tyr92, Trp124, Pro228, Ile276, and 

His303 (Figure 5.4c). 

The catalytic triad and oxyanion hole are located at one end of a surface depression. 

This pocket has a nearly oval shape and extends from the catalytic serine approximately 15 Å 

into one end of the enzyme and spans approximately 12 Å. A small pocket of approximately 5 

Å long extends to the other side of the catalytic serine. The volume of both pockets together 

is 1082 Å3 (CASTp analysis; 188). The substrate-binding pocket is bordered by residues from the 

helices αB and αG, and its base is formed by residues from β-strands 5, 6, and 7. The large 

pocket consists of the following residues: Gln88, Tyr89, Ile90, Gly91, Asp101, Trp102, Phe104, 

Trp105, Cys112, Trp124, Leu125, Ala185, Gly186, Gly187, Ser188, Leu208, Asp210, Val211, 

Ser269, His303, Glu304, Gly305, Gly306, Gly307, Ser308, Gln310, Ala311, and Gln314. The 

small groove consists of the following residues: Tyr92, Ser188, Gln189, Phe213, and Pro228. 

The overall pocket is hydrophobic, although it does have some polar residues (Gln88, Asp210, 

and Gln314) which may interact with the substrate.

Figure 5.4 (in color on p.151): A view of the AceA catalytic site. (a) Native AceA with the bound chloride ion, (b) 
AceA in complex with PMSF and (c) AceA in complex with paraoxon. The catalytic residues are shown as sticks, 
with the hydrogen bonds shown as dashed lines. Green (AceA), cyan (AceA-PMS) or blue (AceA-DEP) were used 
for the carbon atoms, red was used for oxygen atoms. The omit maps for Ser188 with the phenylmethyl sulfonyl 
(PMS) and diethylphosphate (DEP) moieties are contoured at 1σ level.   

Two conformations of the catalytic serine

Although no large conformational changes were observed upon binding of PMSF or paraoxon, 

compared to native AceA, a different conformation of the catalytic serine was observed (Figure 

5.5). In the native AceA structure, the catalytic serine shows a conformation in which the 

Ser188 Oγ is in the plane of the imidazole ring of His303, most commonly observed in the 

resting state of esterases and lipases. The Ser188 (Oγ) side chain makes a hydrogen bond with 

the imidazole ring (Nε2) of His303, which are 2.50 Å apart from each other (Conformation A). 

In the PMSF and paraoxon bound structures, the conformation of the catalytic serine changes 

in which the Ser188 Oγ rotated over 110°, increasing the distance to the imidazole ring to 3.12 

Å and 2.93 Å for PMSF and paraoxon bound structures, respectively (Conformation B). In the 



74

5 Crystal structures of an acetyl esterase / cephalosporin C deacetylase from T. maritima

AceA-SM structure, the catalytic serine was observed to be also in conformation B, with a 

distance to the imidazole ring of 3.04 Å. Extra electron density was identified in the AceA-SM 

structure, suggesting that there could exist a partially occupied acyl intermediate on Ser188. 

However, the density was not clear enough and, as a result, water molecules were modeled 

instead. The transition of conformation A to B seems to take place upon binding of substrate. 

No rearrangements of other residues of the active site were observed in the A to B transition. 

Figure 5.5 (in color on p.152): Movement of Ser188 Oγ from conformation A to B. The Oγ atom of the Ser188 is 
rotated about 110° to the opposite direction between native AceA and the complexed structures. Conformation A 
in AceA (green), and conformation B in AceA-PMS (cyan) and AceA-DEP (blue) are shown. Similar colors for each 
structure were used as in Figure 5.4. 

Enzyme activity

Activity of AceA was investigated using p-nitrophenol esters with varying acyl-chain length, 

ranging from C2 to C18. However, AceA is only active on the short-chain p-nitrophenol esters of 

acetate and propionate and did not hydrolyze esters with acyl-chains longer than four carbons. 

The kinetic parameters for the hydrolysis of p-nitrophenyl C2 and C3 were determined (Table 

5.1). The optimum substrate for an enzyme can be deduced from the catalytic efficiency (kcat/

Km) of its conversion. According to this criterion both substrates are preferred equally. 

The effect of temperature on activity was studied using p-nitrophenyl acetate as 

substrate. The esterase activity increased from 40°C upwards until 100°C (Figure 5.6a). An 

Arrhenius analysis resulted in a linear plot in the temperature ranges of 40-60°C and 60-

100°C (6a; inset), with calculated activation energies for the formation of the enzyme 

substrate-enzyme complex of 33.7 and 21.9 kJ/mol, respectively. The nick in the Arrhenius 
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Figure 5.6: Effect of temperature and pH on esterase activity. (a) The effect of temperature on esterase activity 
was studied using pNP-C2 as a substrate at temperatures ranging from 40-100°C. The inset shows the temperature 
dependence as an Arrhenius plot. (b) Thermal stability of AceA at 90°C. (c) The effect of pH on esterase activity 
was studied using pNP-C2 as a substrate at pH values in the range of 4.8-9.2. 
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plot is probably caused by a conformational change. AceA has good resistance to thermal 

inactivation. An approximately 50% transient increase in activity is seen during the first 10 to 

20 minutes when the enzyme is incubated at 90°C. After 30 minutes, inactivation of function 

occurs by first order kinetics with a half-life of approximately 120 minutes (Figure 5.6b). A 

transient activation has also been seen for other thermophilic esterases, such as the esterase 

from Sulfolobus shibatae 55, and it is believed that a high temperature is needed in order to 

obtain an optimal conformation. AceA was not stable at 100°C, resulting in a half-life value of 

less than 5 minutes. The effect of pH on activity was measured in the pH range of 4.8 to 9.2 

using the substrate p-nitrophenyl acetate. AceA displayed maximum activity at approximately 

pH 7.5 (Figure 5.6c), which is comparable to other CE7 esterases such as the acetyl xylan 

esterases from Thermoanaerobacterium sp. strain JW/SL-YS485  116.

Table 5.1: Kinetic parameters for hydrolysis of various esters

Ester Km (mM) kcat (s
-1) kcat/Km (s

–1 mM–1)

pNP-Acetate 0.185 57.5 310.8

pNP-Propionate 0.137 41.2 300.7

2-Ac pNP-Xylp 2.2 35.5 16.1

3-Ac pNP-Xylp 3.9 64.6 16.6

4-Ac pNP-Xylp 3.9 87.7 22.5

Positional specificity

The positional specificity of AceA was tested on three monoacetates of 4-nitrophenyl β-D-

xylopyranoside. For that reason, the β-xylosidase XloA 182 (TM0076) from T. maritima was 

cloned. The thermostable enzyme was heterologously expressed, purified to homogeneity and 

activity of XloA was confirmed by measuring the release of p-nitrophenol from the substrate 

4-nitrophenyl β-D-xylopyranoside (data not shown). The β-xylosidase was not active on the 

three monoacetates of 4-nitrophenyl β-D-xylopyranoside. In the XloA-coupled assay, AceA 

hydrolyzed acetate from positions 2, 3 and 4 of 4-nitrophenyl β-D-xylopyranoside at similar 

rates and also displayed an equal affinity for each substrate. The results are summarized in 

Table 5.1. 

In addition, AceA was investigated for its ability to remove acetyl groups from the 

substrates 7-aminocephalosporanic acid (7-ACA), cephalosporin C, glucose pentaacetate, 

N-acetyl-D-glucosamine, xylan and acetylated xylan. AceA has no activity on  acetylated and 

non-acetylated xylan polymers, indicating that it indeed is an acetyl esterase and not an acetyl 

xylan esterase. As expected from an acetyl esterase, AceA displayed high activity on glucose 

pentaacetate with a turnover number of 2680 s-1. Like other members of CE7, AceA was also 



77

Crystal structures of an acetyl esterase / cephalosporin C deacetylase from T. maritima

able to hydrolyze the acetyl groups from both cephalosporin C and 7-ACA with a turnover 

number of 376 s-1 and 1140 s-1, respectively. However, it is unlikely that both compounds are 

natural substrates, because the stability of these compounds at the growth temperature of 

T. maritima is very low. AceA was not able to hydrolyze the acetyl group from N-acetyl-D-

glucosamine, indicating that it is specific for ester bonds and unable to hydrolyze amide bonds.

Discussion

Deacetyl cephalosporins are valuable building blocks for the production of semisynthetic 

β-lactam antibiotics. These compounds are derived from cephalosporin C or 

7-aminocephalosporanic acid via enzymatic or chemical processes 178. Esterases and 

deacetylases belonging to the carbohydrate esterase family 7 are unusual in that they are active 

towards both acetylated xylo-oligosaccharides and the antibiotic cephalosporin C. CE7 family 

members have also been identified in genomes of thermophilic bacteria. Such thermostable 

esterases may be valuable in the preparation of derivatives of β-lactam antibiotics. One of 

these, a putative CE7 acetylxylan esterase (AceA) from the hyperthermophilic bacterium 

T. maritima, was functionally produced in Escherichia coli and purified to homogeneity.

The three-dimensional structure of AceA has been determined at 2.6 Å resolution and 

revealed a classic α/β-hydrolase fold with an insertion of three helices after β6 and an extension 

of the N-terminus with a β-strand and two helices. The crystal structure has a hexameric 

arrangement composed of three dimers. The hexamer has a “doughnut”-like shape, with two 

entrances on each side of the hexamer leading to an internal cavity where the six catalytic 

centers reside. The N-terminal extension and the inserted helices are important structural 

features, because they contribute to shaping the internal cavity and the two entrances. 

Interestingly, the two entrances are blocked in the AceA-SM structure due to a very flexible 

N-terminal peptide chain. The electron densities are also poor in this region. Analysis of the 

quaternary structure by gel filtration and static light scattering showed that AceA also exists as 

a hexamer in solution. 

In the structure of AceA a calcium ion is bound at the beginning of helix αA. The calcium 

ion makes hydrogen bonds with Lys22, Glu26 and Asp25 via a water molecule. In each monomer 

of the hexamer a calcium ion is bound. However, no significant stimulation or reduction of 

activity of AceA was observed in the presence of calcium ions or EDTA. Therefore, it seems 

that these calcium ions are not important for activity. No calcium is present in the B. subtilus 

CAH structure 183, however, the residues Lys22, Glu26 and Ser25 are conserved and may act as 

an calcium binding site in this structure as well. Calcium is present in the crystallization buffer 

and could therefore be a crystallization adduct. On the other hand, calcium may help stabilize 

the structure.
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Structures of AceA in complex with the inhibitors PMSF and paraoxon were obtained 

at 2.5 Å and 2.1 Å resolution, respectively. Upon binding of PMSF or paraoxon, the reaction 

mechanism of AceA is blocked at the acylation step via the formation of a tetrahedral 

intermediate. The negatively charged oxygen of the tetrahedral intermediate, derived from the 

substrate oxyanion, is stabilized by hydrogen bonds with the two backbone amide groups of 

Tyr92 and Gln189, resulting in the formation of the oxyanion hole. Remarkably, upon binding 

of both inhibitors, the catalytic serine appears to adopt an altered conformation. In the PMSF-

bound and paraoxon-bound structures the Ser188 Oγ is rotated over 110°, compared to Ser188 

Oγ in the native structure. It is speculated that this conformational change of the Ser188 Oγ in 

AceA is required for correct hydrogen bonding to the backbone amides of Tyr92 and Gln189, 

hence forming the oxyanion hole and thereby stabilizing the transition state intermediate. 

The oxyanion hole is an essential feature for catalysis in α/β-hydrolases 6; 8; 56. Alternate 

conformations of the catalytic serine have also been observed in other esterase structures, 

such as the Fusarium solani cutinase 189, the Penicillium purpurogenum acetyl xylan esterase 
190, the Bacillus subtilis lipase 191, and the Aspergillus niger feruloyl esterase 192. However, in 

contrast to the above enzymes, the conformational change of the AceA catalytic serine seems 

to be solely induced by binding of an inhibitor. We expect that upon binding of a substrate, 

Ser188 will also adopt an altered conformation.  

On artificial p-nitrophenyl-esters AceA activity was confined to short acyl chain esters 

(C2 and C3). AceA is active on a variety of acetylated compounds, with highest specific activity 

on glucose penta-acetate. No activity was detected on xylan or acetylated xylan. This implies 

that AceA should be classified as an acetyl esterase, and not as an acetyl xylan esterase 193. In 

good agreement with this observation, the lack of any apparent signal sequence suggests that 

AceA is not a secreted protein. This predicted intracellular location of AceA is incompatible 

with a role in the deacetylation of xylan, an extracellular substrate. In addition, it is tempting to 

speculate that the tunnel entrances in the AceA hexamer may function as a filter, disallowing 

the access of large substrates to the active sites. 

 Three different monoacetates of 4-nitrophenyl-β-D-xylopyranoside were tested 

as substrates for AceA in a β-xylosidase-coupled assay. This assay enabled to examine the 

positional specificity of the enzyme. AceA hydrolyzed acetate at positions 2, 3 and 4 with the 

same efficiency. This is the first esterase from the CE7-family tested for its positional specificity. 

The esterase CtAxe from Clostridium thermocellum belonging to CE4 shows a clear preference 

for hydrolyzing acetate at the C2 position of 4-nitrophenyl β-D-xylopyranoside 194. The 

Penicillium purpurogenum  AXE II esterase belonging to CE5 also has a preference for acetate 

at C2 of 4-nitrophenyl β-D-xylopyranoside 195. The lack of preference for a specific position of 

the acetate group correlates with the broad substrate specificity for the CE7 esterases. 

Based on the results of this study, the likely main biological function of AceA is removing 

the remaining acetyl groups on the short acetylated end products of xylan degradation 

that are transported into the cytoplasm, and thus allowing access of a β-xylosidase to the 
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xylose oligomer. Yet, it cannot be excluded that AceA will also act on other small acetylated 

compounds. 

AceA has a relatively high specific activity on the substrates 7-ACA and cephalosporin 

C. This is approximately ten fold higher than the acetyl xylan esterase from B. pumilus 196 or 

the acetyl esterase from Thermoanaerobacterium sp. strain JW/SL YS485 197. AceA has a higher 

hydrolytic activity on 7-ACA compared to cephalosporin C, as has been described for other CE7 

esterases 183; 196; 197). The optimum temperature (≥100°C) and thermal stability (t1/2 = 2h at 90°C) 

of AceA are considerably higher than those reported for other characterized CE7 esterases, 

such as the Thermoanaerobacterium enzyme that has a temperature optimum of 80°C and a 

half-life of 1h at 75°C 116. Recently, the substrate specificity of the acetyl xylan esterase from P. 

purpurogenum was changed from a clear preference for acetate, to a range of fatty acid esters 

of up to at least 14 carbons 195. In future it might be possible to engineer the structure of AceA 

as well, and enable the (de)acetylation of cephalosporins at the C10 position with various acyl 

chains. Altogether, the high stability and activity and the relatively broad specificity of AceA 

on 7-ACA and cephalosporin C suggests a possible application in the production of new semi-

synthetic antibiotics.

Materials and methods

Gene cloning

The gene encoding TM0077 (GenBank: AAD35171.1, GI:4980565; SwissProt: Q9WXT2) 

was amplified by polymerase chain reaction (PCR) from genomic DNA using PfuTurbo DNA 

polymerase (Stratagene) and primers corresponding to the predicted 5’ and 3’ ends. The PCR 

product was cloned into plasmid pMH1, which encodes an expression and purification tag 

(MGSDKIHHHHHH) at the amino terminus of the protein. The cloning junctions were confirmed 

by DNA sequencing. 

AceA-SM protein production and purification

Protein production was performed in a selenomethionine-containing medium using the 

Escherichia coli methionine auxotrophic strain DL41. At the end of fermentation, lysozyme was 

added to the culture to a final concentration of 1 mg/mL, and the cells were harvested. After 

one freeze/thaw cycle, the cells were sonicated in Lysis Buffer [50 mM Tris pH 7.9, 50 mM NaCl, 

1 mM MgCl
2, 0.25 mM Tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and the lysate 

was centrifuged at 3,400 x g for one hour. The soluble fraction was applied to nickel-chelating 

resin (GE Healthcare) pre-equilibrated with Equilibration Buffer [50 mM potassium phosphate 

pH 7.8, 300 mM NaCl, 10% (v/v) glycerol, 0.25 mM TCEP] containing 20 mM imidazole, the 

resin was washed with Equilibration Buffer containing 40 mM imidazole, and the protein was 

eluted with Elution Buffer [20 mM Tris pH 7.9, 300 mM imidazole, 10% (v/v) glycerol, 0.25 mM 
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TCEP]. The eluate was buffer exchanged with Buffer Q [20 mM Tris pH 7.9, 5% (v/v) glycerol, 

0.25 mM TCEP] containing 50 mM NaCl and applied to a RESOURCE Q column (GE Healthcare) 

pre-equilibrated with the same buffer. The protein was eluted using a linear gradient of 50 to 

500 mM NaCl in Buffer Q and purified further with a HiLoad 16/60 Superdex 200 column (GE 

Healthcare), using Crystallization Buffer [20 mM Tris pH 7.9, 150 mM NaCl, 0.25 mM TCEP] as 

the mobile phase. For crystallization assays the peak Superdex 200 fractions were concentrated 

to ~15 mg/mL by centrifugal ultrafiltration (Millipore). Molecular weight and oligomeric state 

of AceA were determined using a 1 cm × 30 cm Superdex 200 column (GE Healthcare) in 

combination with static light scattering (Wyatt Technology). The mobile phase consisted of 20 

mM Tris pH 8.0, 150 mM NaCl, and 0.02% (w/v) sodium azide.

Native AceA production and purification

For protein production, cells were grown in LB medium for 8 hours (an OD600 well above 

2.0 was reached). Subsequently, the culture was induced by adding 0.15% L-arabinose and 

incubated another 16 hours at 37°C. Cells were harvested by centrifugation at 10,000 x g for 20 

min. The cell pellet was resuspended in 30 ml of Lysis Buffer 2 [50 mM Tris-HCl pH 8.0, 50 mM 

NaCl, 10 mM imidazole, 0.25 mM TCEP]. The cells were disrupted by two passages through a 

French press at 110 MPa. The crude cell extract was treated with DNAse I at room temperature 

for 30 min and subsequently centrifuged at 43,000 x g for 30 min in order to remove cell 

debris. The supernatant was heated at 70°C for 25 min and then centrifuged to remove the 

precipitated proteins. The supernatant was filtered and loaded onto a nickel-chelating column 

packed with 20 ml of Ni-NTA His-Bind Resin (Novagen) and equilibrated in 50 mM Tris-HCl pH 

8.0, 300 mM NaCl, 2% (v/v) glycerol, and 0.25 mM TCEP. The column was washed with 20 mM 

imidazole in the same buffer, and proteins were subsequently eluted with a linear gradient of 

20-500 mM imidazole in the same buffer. Fractions containing esterase activity were pooled 

and loaded onto a HiPrep Desalting column (GE Healthcare) equilibrated with 20 mM Tris-HCl 

pH 8.0, 150 mM NaCl, and 0.25 mM TCEP. The homogeneity of the protein was checked by 

SDS-PAGE, and activity staining of the SDS-PAGE gel was performed using α-naphtyl acetate, 

as described previously 52. The protein concentration was determined at 280 nm using a 

NanoDrop ND-1000 Spectrophotometer.

Crystallization

Crystals of selenomethionine-substituted AceA were obtained by hanging drop vapor diffusion 

against a 250 μl reservoir solution consisting of 20% PEG-300, 10% glycerol, 0.1 M phosphate-

citrate pH 4.2, and 0.2 M (NH4)2SO4 pH 4.5, at 20°C. Drops consisted of 0.5 μl protein and 0.5 

μl reservoir.

Native AceA was crystallized using nano-drop vapour diffusion techniques against a 

crystallization reagent consisting of 0.2 M calcium acetate hydrate, 20% (w/v) PEG 3350, pH 

7.3 at 20°C. Protein was concentrated to 22.8 mg/ml and 7-aminodesacetoxycephalosporanic 
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acid added to a molar ratio of 1:3 (protein:ligand). Drops consisted of 100 nl protein and 100 

nl of crystallization reagent and a 60 µl reservoir of crystallization reagent. Crystals of AceA in 

complex with its inhibitors PMSF and paraoxon were obtained at 4°C in the same condition 

as the native crystals. AceA protein and PMSF / paraoxon were added to a molar ratio of 1:3 

(protein:inhibitor).

Data collection

For cryoprotection, glycerol was added to the AceA-SM crystal to a final concentration of 15% 

(v/v). The crystal was mounted in a cryoloop and subsequently flash-frozen in liquid nitrogen. 

X-ray data were collected at 100 K on beamline BL9-2 at the SSRL (Stanford) using a Quantum 

210 CCD detector (ADSC). A AceA-SM data set was collected to 2.1 Å resolution and the data 

indexed in space group P2
1 (Table 5.2), with unit cell parameters a = 152.6 Å, b = 130.95 Å, 

and c = 157.82 Å. There are twelve molecules in the asymmetric unit. Data were indexed and 

integrated with DENZO and then scaled with the program SCALEPACK 198. 

Native AceA crystals were transferred to crystallization reagent complimented with 

10% (v/v) ethylene glycol and flash-cooled to 100K and data collected at beamline 5.0.3 of the 

ALS. All data were processed with the HKL2000 package 198. The native data set was collected 

to 2.5 Å resolution and the data indexed in space group P212121 with unit cell parameters a = 

103.5 Å, b = 103.8 Å, and c = 221.0 Å. (Table 5.2). There are six molecules in the asymmetric 

unit.

Structure solution and refinement

The AceA-SM structure was solved by MAD phasing using two wavelength MAD datasets. For 

initial phasing, SHELXD was used to find candidate SeMet substract sites. Attempts to complete 

phasing were unsuccessful due to the translational non-crystallographic symmetry (NCS) (not 

recognized initially). Self-consistent sets (partial sets) were found using the CCP4 program 

PROFESSS and a few more SeMet sites were found by the SHELXD program, and added into 

these partial sets. The AutoSHARP run did not complete because of an over-simplistic view of 

NCS. The solution was achieved, but a reasonable electron density map was not obtained. Trials 

of ARP/wARP did not succeed initially. However, the SHARP run was completed. Updates of the 

ARP/wARP program, concerning docking of side chains, were used in the chain tracing. The 

structure was refined with BUSTER using tight NCS to an R/R
free of 24.2/24.7. The continuous 

model building was performed using O 199 and the structure was further refined using CNS 165 

and REFMAC5 200. Refinement statistics are summarized in Table 5.2. The final model contains 

residues 2-323 (A, B, C, D, E, F, G, H, I, J, K and L chains) in the asymmetric unit. A main chain 

torsion angle analysis using MolProbity 201 showed that 97.4% and 100% of all residues are in 

favored and allowed regions of the Ramachandran plot, respectively. GlnB120, which is on 

the border of the Ramachandran outlier, is supported by electron density as well as the NCS 

model. 
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	 The native AceA structure was solved by molecular replacement using PHASER 202; 203 

with the AceA-SM coordinates (pdb: 1VLQ) as a search model. Six molecules were successfully 

located and the structure was further refined with Refmac 200 using tight NCS to an R/Rfree 

of 0.181/0.215. Iterative cycles of refinement and building were performed with Refmac5, 

Phenix 166; 204 and Coot 164. All other crystallographic manipulations were carried out with the 

CCP4 package 141. Refinement statistics are summarized in Table 5.2. The final model contains 

residues 3-324 (A, B, C, D and F chains) and 3-323 (E chain) in the asymmetric unit. A main 

chain torsion angle analysis using MolProbity 201 showed that 97.1% and 100% of all residues 

are in favored and allowed regions of the Ramachandran plot, respectively. Glu134 and Gly135 

of B chain, and Asn302 of B, C and D chains are located on the border line of the Ramachandran 

outlier. The total secondary structure content in terms of α-helical, 310-helical, and β-strand 

elements is 33.2, 2.2, and 18.9%, respectively. The model backbone as well as side-chain 

geometries fully conform to standard protein stereo-chemical parameters. 

Enzyme assays

Esterase activity using p-nitrophenyl esters was measured as described previously 52. In short, 

in a standard assay, activity was measured with 0.2 mM p-nitrophenyl acetate as substrate 

in 50 mM citrate-phosphate (pH 6) at 70°C. The amount of p-nitrophenol liberated was 

measured continuously at 405 nm on a Hitachi U-2001 spectrophotometer with a temperature-

controlled cuvette holder. Extinction coefficients of p-nitrophenol were determined prior to 

each measurement. Kinetic parameters were determined by fitting the data, obtained from 

multiple measurements, with a computer-aided direct fit to the Michaelis–Menten curve 

(Tablecurve 2d, version 5.0).

The effect of pH on esterase activity was studied in the pH range of 5 to 10. The 

buffers used were 50 mM citrate-phosphate (pH 5-8) and 50 mM CAPS (3-(cyclohexylamino) 

1-propanesulphonic acid) buffer (pH 9.5-10). The pH of the buffers was set at room temperature, 

and temperature corrections were made using their temperature coefficients: -0.0028 pH/°C 

for citrate-phosphate buffer and -0.018 pH/°C for CAPS buffer. The effect of temperature on 

esterase activity was studied in the range of 40-100°C using 0.2 mM p-nitrophenyl acetate as 

substrate. Enzyme thermostability was determined by incubating the enzyme in a 50 mM Tris-

HCl, 150 mM NaCl (pH 7.8) buffer at 90°C and 100°C for various time intervals. Residual activity 

was assayed in a standard assay.

The effect of inhibitors was studied by pre-incubating AceA with 1 mM inhibitor 

in 50 mM citrate-phosphate buffer (pH 8) at 37°C for 1 hour. Subsequently, samples were 

placed on ice and residual activity was measured using the standard assay. Activity of the 

enzyme without inhibitor was defined as 100%. Inhibition kinetics of PMSF and paraoxon were 

determined as described for the acetylcholinesterase from electric eel 150. Deacetylase activity 

was determined using high-performance liquid chromatography (HPLC) by measuring the 

amount of acetic acid released from the substrates cephalosporin C, 7-aminocephalosporanic 
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acid, and glucose-pentaacetate. The reaction mixture contained 0.9 ml of substrate solution 

(dissolved in 50 mM Tris-HCl, pH 7.5) and 0.1 ml of enzyme solution, and was incubated at 37°C 

for various time intervals. The reaction was stopped by adding 0.2 ml of stop solution (100 mN 

H2SO4 and 30 mM crotonate) and placing the sample on ice. The conditions for HPLC were as 

follows: column, KC811 Shodex; detection, RI and UV detectors; solvent, 3 mN H2SO4; flow 

rate, 1.5 ml/min; temperature, 30°C; internal standard, crotonate. One unit of enzyme activity 

was defined as the amount of enzyme that releases one μmol of acetic acid per minute.

	 Xylan was acetylated by the method described by Johnson 206. Activity on xylan was 

measured quantitatively using DMSO extracted xylan (1% polysaccharide solution in 0.1 M 

sodium phosphate buffer pH 6) at 60°C 207.

Enzyme-coupled assay

The positional specificity of AceA was investigated using an enzyme-coupled assay on 

monoacetylated 4-nitrophenyl β-D-xylopyranosides as described by Biely et al., 2004 208. The 

β-xylosidase XloA (locus tag: TM0076) from T. maritima was cloned into the vector pET24d in 

frame with a C-terminal 6xHis tag. The enzyme was expressed and purified as described above 

for native AceA. Activity of XloA was confirmed by measuring the release of p-nitrophenol at 

405 nm from the substrate 4-nitrophenyl β-D-xylopyranoside (NPh-Xyl). 

	 The enzyme-coupled assay was performed at 60°C in a total volume of 125 μl, 

which contained 0.1 M sodium phosphate (pH 6 or 7), 2-O-, 3-O-, or 4-O-acetyl NPh-Xyl, the 

β-xylosidase XloA, and AceA. Stable 50 times-concentrated stock solutions of the substrates 

were prepared in DMSO. The reaction was started by the addition of 2.5 μl of a stock solution 

to a preheated reaction mixture consisting of phosphate buffer, auxiliary β-xylosidase XloA 

(~0.6 nkat), and AceA. The reaction was terminated by the addition of 800 μl of a 2% solution 

of Na
2CO3. Liberated p-nitrophenol was determined at 405 nm against substrate and enzyme 

blanks. A short incubation time for activity determination was used to suppress acetyl 

migration on the xylopyranosyl-ring, which is significant at pH 6 or 7 209. The kinetic constants 

were determined at pH 7 and 60°C with a reaction time of 2 minutes. 

Structure validation and deposition

Analysis of the stereochemical quality of the model was accomplished using AutoDepInputTool 
210, MolProbity 201, SFcheck 4.0 211, and WHATIF 5.0 125. Protein quaternary structure was 

analyzed using the PQS server 185. Figures were prepared with PyMOL (DeLano Scientific) 
134. The structural data of AceA-SM has been deposited in the RCSB Protein Data Bank with 

accession code 1VLQ. The structural data of native AceA and AceA complexed with PMSF and 

paraoxon will be deposited after a final Quality Control check (QC-check) at the JCSG.
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Abstract

A bioinformatics analysis of the genome of T. maritima revealed the presence of several genes 

potentially encoding esterases and lipases, including one (estB, TM0053) that was annotated 

as a putative esterase. The esterase encoding gene was cloned and functionally expressed in E. 

coli. EstB was found to exhibit esterase activity with a preference for medium acyl chain esters 

(C8-C10). The enzyme is a hexamer in solution. EstB showed optimal activity around 95°C and 

at pH 9. Crystals were obtained and a dataset was collected to ~2.8 Å. The structure solution 

is ongoing.
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Introduction

Esterases and lipases belong to a diverse group of hydrolases with representatives in all domains 

of life. They catalyze the hydrolysis (or synthesis) of ester bonds, resulting in the formation 

of an alcohol and a carboxylic acid. Most esterases and lipases belong to the α/β-hydrolase 

family and share structural and functional characteristics. In general, they have a co-factor 

independent activity, an α/β-hydrolase structural fold, and a conserved catalytic triad that is 

usually composed of a serine acting as the nucleophile, a histidine as the proton acceptor/

donor, and an aspartate or glutamate as the acidic residue stabilizing the histidine 5; 6; 7; 8. 

Esterases differ from lipases in that they show a preference for short chain acyl esters 

(≤C10), whereas lipases show a preference for long chain acyl esters (≥C10) and are active on 

water-insoluble substrates 9. It is noteworthy that lipases are often also capable of hydrolyzing 

the esterase substrates 7. In industry, esterases and lipases are applied in various processes, 

such as the stereospecific hydrolysis of drugs and ester synthesis for food ingredients 3; 5; 10; 

11. In particular, enzymes from thermophilic origin are potentially interesting for industrial 

applications, since most of them can withstand elevated temperatures and show an increased 

stability in organic solvents compared to enzymes of mesophilic origin 12.

Thermotoga maritima is a hyperthermophilic bacterium growing optimally at 80°C and 

is able to metabolize many simple and complex carbohydrates, including glucose, starch, and 

xylan 142. A bioinformatics analysis of the genome of T. maritima revealed the presence of 

several genes potentially encoding esterases and lipases, including one (estB, TM0053) that 

was annotated as a putative esterase. In this paper, the identification, cloning, expression, 

and partial characterization of the esterase EstB from T. maritima is reported. This enzyme 

has been described in another study and was assigned the function of carboxylesterase 71. The 

results of the current study, however, revealed several different characteristics.

Results 

Identification and in silico analysis

A bioinformatic analysis of the genome of T. maritima, led to the identification of several open 

reading frames potentially encoding new thermostable esterases and lipases, including one 

(estB, TM0053) that was annotated as a putative esterase. The gene encodes a protein of 364 

amino acids and has a calculated molecular mass of 40.8 kDa. N-terminal sequence analysis 

using the SignalP 3.0 Server revealed that the first 22 amino acids form a signal peptide. 

BLAST-P analysis, using the EstB amino acid sequence as a template, showed that 

EstB has highest similarity with other putative esterases and hypothetical proteins belonging 

to the Thermotogales family. A comparison of EstB with the amino acid sequences of these 
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Figure 6.1: Amino acid sequence alignment EstB. Multiple sequence alignment of EstB with the most significant 
BLAST hits: Thermotoga sp. RQ2 (TRQ2_0893), Thermotoga petrophila RKU-1 (Tpet_0871), Marinitoga piezophila 
KA3 (MPKA3_1323), Thermotoga neapolitana DSM 4359 (CTN_0641), Thermosipho melanesiensis BI429 
(Tmel_1912), Fervidobacterium nodosum Rt17-B1 (Fnod_1333), Thermosipho africanus TCF52B (THA_206), and 
the lipase from Pseudomonas glumae (1TAH). The probable catalytic triad, consisting of Ser162, Asp309 and 
His330, is marked with an asterisk.
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most significant hits in the BLAST-search, as well as with the sequence of the triacylglycerol 

lipase from Pseudomonas glumae (pdb: 1TAH) 212, identified three amino acids that potentially 

constitute the characteristic catalytic triad (Ser162, Asp309, and His330) (Figure 6.1). The 

potential catalytic serine lies within a conserved pentapeptide motif A/G-X-S-X-G (AHSMG), 

which is called the nucleophile elbow and is typical for esterases and lipases. The levels of 

similarity with other hits in the BLAST search were much lower and were restricted to the 

region around the catalytic serine. 

Cloning and purification

The gene encoding EstB was amplified by PCR, without the predicted signal peptide (the first 

22 amino acids) and without its stopcodon (fused to a His
6x tag), using chromosomal DNA of T. 

maritima as a template. The gene was cloned into the expression vector pET-24d (designated 

pWUR351), and subsequently expressed in E. coli BL21(DE3)/pSJS1244. The enzyme EstB 

was purified to homogeneity from heat-treated cell extracts by immobilized metal affinity 

chromatography. The homogeneity of the protein was checked by SDS-PAGE and activity 

staining of the SDS-PAGE gels using α-naphtyl-acetate (Figure 6.2). On the SDS-PAGE and 

activity stained gels a main band corresponding to the mature EstB monomer (38.4 kDa) was 

visible, however, also other bands belonging to multimers of EstB were visible. Native-PAGE 

showed a single band on gel indicating that EstB is present in one quaternary conformation. 

Size exclusion chromatography showed that EstB eluted as a single peak corresponding to an 

estimated mass of 253 kDa. This suggests that EstB is most probably present as a hexamer.

Figure 6.2: SDS-PAGE of EstB fractions. Samples were separated by SDS-PAGE in duplicate. One gel was stained 
with Coomassie Brilliant Blue (A) and the other was stained for activity using α-naphtyl acetate after renaturation 
(B). Lane M, relative molecular mass standards; lane 1, heat-stable cell free extract; lane 2, EstB after immobilized 
metal affinity chromatography; lane 3, two-times diluted EstB after immobilized metal affinity chromatography; 
lane 4, purified EstB. Multiple bands are visible corresponding to EstB multimers. Both the monomer (38.4 kDa) 
and multimers (76.8 and 115.2 kDa) of EstB are believed to be catalytically active.  
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Figure 6.3: Substrate preference and effect of temperature and pH on activity. (a) Substrate preference, (b) The 
effect of pH on esterase activity was studied using p-nitrophenyl octanoate (citrate-phosphate buffer (■) and 
CAPS buffer (▲)) as substrate at pH values in the range of 5.8-10.2. (c) The effect of temperature on esterase 
activity was studied using p-nitrophenyl octanoate as substrate at temperatures ranging from 40-100°C. Inset: the 
temperature dependence for p-nitrophenyl octanoate as an Arrhenius plot.
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Biochemical properties

The substrate specificity of purified EstB was investigated using p-nitrophenol (pNP) esters with 

acyl chains of different lengths, ranging from C2 to C18 (Figure 6.3a). The highest hydrolytic 

activity was measured with the substrates pNP-C8 and pNP-C10. Very low activity (≤ 1 U/ mg) 

was measured with the two long acyl chain esters pNP-C16 and C18. Based on these results, 

EstB is not a lipase but an esterase.  

The effect of pH on esterase activity was determined at 70°C using the substrate 

pNP-C8. The activity was measured over the pH range of pH 4.8 to 10.3. EstB showed highest 

activity at approximately pH 9 (Figure 6.3b). No hydrolytic activity could be measured at a pH 

value of 4.8. 

The effect of temperature on esterase activity was determined with a citrate-phosphate 

buffer (pH 8) and substrate pNP-C8. The activity was measured in the range of 40 to 100°C. 

Activity of EstB increased with temperature and the highest hydrolytic activity was measured 

at approximately 95 °C (Figure 6.3c). An Arrhenius analysis resulted in a linear plot in the 

temperature range of 60-90°C (Figure 6.3c, inset), with a calculated activation energy for the 

formation of the enzyme/substrate complex of 15 kJ/mol. The thermostability of EstB was 

determined by measuring the residual activity after incubation at 100°C at different time 

points. EstB has no resistance to thermal inactivation at 100°C (half-life ≤ 1 min). 

Preliminary crystallization results

Purified EstB was used for crystallization trials, at the Joint Center for Structural Genomics 

(JCSG) automated pipeline for structure determination 180, testing 400 conditions. Crystals of 

native EstB were obtained using a reservoir solution consisting of 3.4 M 1,6 Hexanediol; 0.2 

M MgCl2; 0.1 M Tris pH 8.5 at 20°C. A dataset was collected to ~2.8 Å resolution. The crystal 

belongs to spacegroup P1 and molecular replacement is ongoing. However, at this moment 

the models look too dissimilar for solution and therefore seleno-methionine incorporated EstB 

may be required to allow multi-wavelength anomalous dispersion (MAD). 

Discussion

In this paper the cloning, expression and partial characterization of an esterase from the 

hyperthermophilic bacterium T. maritima is described. During a bioinformatic analysis of the 

genome of T. maritima the gene TM0053 was identified as a putative esterase. Sequence 

analysis allowed the identification of a probable catalytic triad, Ser162, Asp309 and His330. The 

recombinant protein was heterologously expressed in E. coli to fairly high levels. Purification 
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of EstB to homogeneity required only a few steps (heat treatment, Ni-chelating column and a 

desalting column).

When the recombinant enzyme was assayed using p-nitrophenyl esters, it exhibited 

highest activity towards p-nitrophenyl octanoate (C8) and decanoate (C10), which is comparable 

to esterases from other hyperthermophiles, viz. Aeropyrum pernix 66 and Sulfolobus solfataricus 
50. Low activities were observed for esters with acyl chain lengths of C14 or higher, suggesting 

that the enzyme is an esterase with specificity for substrates of medium chain length. 

EstB showed a high temperature optimum around 95°C, which is comparable to several 

other esterases of T. maritima 50; 52; 68 and other hyperthermophiles such as the esterase 

from Pyrobaculum calidifontis 38, the esterase from Sulfolobus shibatae 55, the esterase from 

Sulfolobus solfataricus 40 and an esterase from a metagenomic library 25. Unlike, the esterases 

EstA and EstD of T. maritima 52; 68, EstB was not stable at 100°C. However, it is expected that 

EstB will display good stability around 80°C, which is the optimal growth temperature of T. 

maritima 142. 

The esterase showed maximal activity around pH 9, with approximately 55% and 90% of 

the maximal activity at pH 5.8 and 10.2, respectively. This broad pH spectrum suggests that the 

enzyme could be utilized in various applications. A high pH optimum has also been observed 

for other esterases from hyperthermophiles, such as the esterase from Thermoanaerobacter 

tengcongensis 72 and an esterase from a metagenomic library 26.

In a previous study by Kakugawa et al. (2006) 71, EstB was characterized as well, but 

some of the reported features differed considerably from our current findings. The enzyme 

showed a lower temperature optimum (60°C instead of 95°C) and also the pH optimum differed 

(pH 7.5 instead of pH 9). There are small differences between both studies in respectively the 

cloning, purification and assay methods, which may result in the differences observed. In the 

earlier study, the signal peptide of EstB was not completely removed during cloning. The first 

14 N-terminal amino acid residues were removed during cloning, instead of the first 22 amino 

acid residues in this study. 

Determination of the structure of EstB may provide insight into the function of this 

enzyme and reveal the molecular basis of substrate recognition and catalysis by this enzyme. 

Therefore, crystallization trials for EstB have been initiated. Crystal were obtained in this screen 

and resulted in a dataset to ~2.8 Å. Structure determination is ongoing.    

As to the physiological role of this esterase, one can only speculate. For most 

characterized esterases a specific function has not been attributed. Most probably, the enzyme 

is involved in the extracellular breakdown of esterified fatty acids, which would agree with the 

presence of a signal sequence and the broad pH range. 
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Materials and methods

Data mining

The genome of T. maritima MSB8 119 was screened for potential esterases and lipases. 

Sequences coding for esterases and lipases were identified by performing BLAST-P searches with 

sequences from characterized esterases and lipases at the National Center for Biotechnology 

Information (NCBI) (http://www.ncbi.nlm.nih.gov/blast/) 28. Multiple sequence alignments 

were constructed using the Tcoffee Expresso(3DCoffee) server (http://www.tcoffee.org/) 132; 213 

and manually adjusted using the program GeneDoc. The N-terminal sequence analysis of the 

translational product of TM0053 was performed using the SignalP 3.0 Server (http://www.cbs.

dtu.dk/services/SignalP/) 214. 

Cloning 

The gene encoding EstB (locus tag: TM0053; GenBank: AAD35147) was PCR-amplified, 

without the sequence encoding its predicted signal peptide (the first 22 amino acids) and 

without its stop codon, using chromosomal DNA of T. maritima as a template and the two 

primers BG1964 5’-GCGCCATGGAATCTACACCCACACTCTACGATGTGGTGG-3’ and BG1965 

5’-GCGGCGGCCGCTTGCGATCCCCCCTTC-3’ introducing respectively a NcoI and NotI restriction 

site. The generated PCR product was digested by NcoI and NotI and the product was purified 

and ligated into pET-24d (Novagen) digested with the same restriction enzymes, resulting 

in the plasmid pWUR351. The construct was designed with a 6xhis-tag at the C-terminus of 

the enzyme to facilitate purification. The sequence of the expression clone was confirmed by 

sequence analysis of both DNA strands. 

Expression and purification

E. coli BL21(DE3)/pSJS1244 was transformed with pWUR351. A single colony was used to 

inoculate 4 ml Luria-Bertani medium containing kanamycin and spectinomycin (both 50 µg / ml) 

and incubated overnight at 37°C with shaking. The preculture was used to inoculate (1:1000) 

1L of the same medium and growth was continued for 8 h (an OD
600 above 2.0 was reached). 

Subsequently, the culture was induced by adding IPTG (isopropyl β-D-1-thiogalactopyranoside) 

to a final concentration of 0.5 mM. The culture was incubated for a further 16 h at 37°C. Cells 

were harvested by centrifugation at 10,000xg for 15 min. The cell pellet was resuspended in 

30 ml lysis buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 10 mM imidazole). The cells were 

disrupted by passing twice through a French press at 110  MPa. The crude cell extract was 

treated with DNAseI at room temperature for 30 min and subsequently centrifuged at 43,000xg 

for 20 min in order to remove cell debris. The supernatant was heated at 70°C for 15 min and 

then centrifuged at 43,000xg for 20 min in order to remove the precipitated proteins. The 

supernatant was filtered and applied to a nickel-chelating column packed with 20 ml Ni-NTA 

His-Bind Resin (Novagen) and equilibrated in 50 mM Tris-HCl buffer pH 7.5 containing 300 mM 
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NaCl. The column was washed with 20 mM imidazole in the same buffer and proteins were 

subsequently eluted with a linear gradient of 20-500  mM imidazole in 50  mM Tris-HCl pH 

7.5, 300 mM NaCl. Fractions containing esterase activity were pooled and applied onto a Hi-

Prep desalting column (GE Healthcare) equilibrated with 50 mM Tris-HCl buffer pH 7.5. The 

homogeneity of the protein was checked by SDS-PAGE and activity staining of the SDS-PAGE 

gels using α-naphtyl acetate, as described previously 52.

Size exclusion chromatography

The molecular mass of the purified esterase was determined by size exclusion chromatography 

on a Superdex  200 high-resolution 10/30 column (24  mL) (GE Healthcare) equilibrated in 

50 mM Tris/HCl (pH 7.5) containing 100 mM NaCl. Two hundred microliters of enzyme solution 

(1.4 mg/ml) in 50 mM Tris-HCl buffer pH 7.5 was loaded at a flow rate of 0.6 mL·min−1 onto the 

column and fractions (0.5 mL) were collected. Proteins used for calibration were blue dextran 

2000 (> 2000 kDa), ferritin (440 kDa), catalase (232 kDa), aldolase (158 kDa), bovine serum 

albumin (67  kDa), ovalbumin (43  kDa), chymotrypsinogen  A (25  kDa), and ribonuclease  A 

(13.7 kDa).

Enzyme assays

Esterase activity was determined by measuring the amount of p-nitrophenol released during 

enzymatic hydrolysis of different p-nitrophenyl esters. The release of p-nitrophenol was 

continuously monitored at 405 nm using a Hitachi UV2001 spectrophotometer with a temperature 

controlled cuvette holder. Unless otherwise indicated, in a standard assay, esterase activity 

was measured with 0.2 mM p-nitrophenyl octanoate (pNP-C8) as a substrate in 50 mM citrate-

phosphate buffer (pH 8.0) containing 1% isopropanol at 70 °C. Stock solutions of p-nitrophenyl 

esters were prepared by dissolving substrates in isopropanol. After preincubation, the reaction 

was started by adding enzyme to the reaction mix. One unit of esterase activity was defined as 

the amount of protein releasing 1 µmol·min−1 of p-nitrophenol from pNP-C8. Measurements 

were corrected for background hydrolysis in the absence of enzyme. Measurements were 

carried out at least three times and the molar extinction coefficient of p-nitrophenol was 

determined for every condition prior to each measurement. Activity was determined from the 

initial rate of the hydrolysis reaction. The protein concentration was measured at 280 nm using 

a NanoDrop ND-1000 Spectrophotometer.

Acyl chain length preference

Substrate specificity of the enzyme towards the acyl chain length of different p-nitrophenyl 

esters was investigated by using p-nitrophenyl acetate (C2), p-nitrophenyl butyrate (C4), 

p-nitrophenyl valerate (C5), p-nitrophenyl octanoate (C8), p-nitrophenyl decanoate (C10), 

p-nitrophenyl dodecanoate (C12), p-nitrophenyl myristate (C14), p-nitrophenyl palmitate 

(C16) and p-nitrophenyl stearate (C18) in the standard assay.



97

Purification and partial characterization of a thermostable esterase from T. maritima

Effect of pH and temperature 

The effect of pH on esterase activity was studied by measuring activities on p-nitrophenyl 

octanoate for a pH range of 5-11. The buffers used were 50 mm citrate-phosphate (pH 5.0-8.0) 

and 50 mm CAPS buffer (pH 9.5-11.0). The pH of the buffers was set at 25 °C, and temperature 

corrections were made using their temperature coefficients (-0.0028  pH·°C−1 for citrate-

phosphate buffer and the phosphate buffer, and -0.018 pH·°C−1 for CAPS buffer). The effect 

of temperature on esterase activity was studied in the range 40-95  °C using p-nitrophenyl 

octanoate in the standard assay. Enzyme thermostability was determined by incubating the 

enzyme in a 50 mm Tris-HCl (pH 7.5) buffer at 100 °C for various time intervals. Residual activity 

was assayed under the standard condition.

Crystallization and data collection

Purified EstB in 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.25 mM tris(2-carboxyethyl)

phosphine (TCEP) was used for crystallization trials at the Joint Center for Structural Genomics 

(JCSG) automated pipeline for structure determination. 400 JCSG crystallization conditions 

were screened against samples containing ligands (PMSF, capric acid, paraoxon and apo) at 

20°C and 4°C. Protein was concentrated to ~18 mg/ml in crystallization buffer (20 mM Tris-HCl, 

pH 7.8 and 150 mM NaCl) and ligand added to a final concentration of ~4.7 mM (molar ratio 

10:1, ligand:protein). Crystals of EstB were obtained by hanging drop vapor diffusion against a 

60 μl reservoir solution consisting of 3.4 M 1,6 Hexanediol; 0.2 M MgCl2; 0.1 M Tris-HCl pH 8.5 

at 20oC. Drops consisted of 150 nl protein and 150 nl reservoir. A native dataset was collected 

to ~2.8 Å resolution. Crystals were flash-cooled to 100K and data collected at beamline 5.0.3 

of the ALS. All data were processed with the HKL2000 package 198 and all other crystallographic 

manipulations were carried out with the CCP4 package 141. The crystal belongs to spacegroup 

P1 with unit cell dimensions of a = 97.346 Å, b = 97.680 Å, c =98.752 Å, a=91.625°, b=102.794° 

and g=119.563°. These dimensions suggest 9 molecules are present in the asymmetric unit with 

a solvent content of 45.8% and a Matthews coefficient of 2.3 A3/Da. Molecular replacement is 

ongoing, however, thus far the models look too dissimilar for solution and therefore seleno-

methionine incorporated EstB may be needed.
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Abstract

The genome sequence of A. fulgidus suggested the presence of a gene potentially encoding 

a lipase (lipA, AF1753). The lipase encoding gene was cloned and functionally expressed in E. 

coli. LipA was found to exhibit lipase activity with a preference for medium acyl chain esters 

(C10). Qualitative plate assays showed that LipA has highest activity on the triacylglycerol 

esters of octanoate and palmitate. LipA showed optimal activity around 95°C and at pH 11. 

A structural model was constructed using the lipase A from Bacillus subtilus as template. The 

model indicated a non-canonical catalytic triad, consisting of Ser136, Asp163 and His210, 

with the aspartate located after strand β6. Crystals of LipA were obtained and a dataset was 

collected to ~2.6 Å. The structure solution is ongoing.
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Introduction

Lipases (EC 3.1.1.3), like esterases, belong to the family of carboxylic ester hydrolases 7. In the 

presence of water they catalyze the hydrolysis of an ester into its corresponding alcohol and 

carboxylic acid. However, in an organic solvent they can catalyze the ester-synthesis or the 

transesterification reaction 4. Esterases are defined as enzymes that catalyze the hydrolysis 

of short chain fatty acid esters (<10 carbon atoms) and lipases are defined as enzymes that 

catalyze the hydrolysis of longer chain fatty acid esters (>10 carbon atoms) and are active on 

micellar substrates 9. Both esterases and lipases share structural and functional characteristics, 

such as the α/β-hydrolase fold, a co-factor independent activity, and a conserved catalytic 

triad usually consisting of a nucleophilic serine in a GxSxG pentapeptide motif, and an acidic 

residue (aspartate or glutamate) that is hydrogen bonded to a histidine 6; 8; 56. 

Lipases are frequently applied in industry, e.g. in organic synthesis, biodiesel production 

and medical biotechnology 2. These processes are often operated at elevated temperatures 

or in the presence of organic solvents, which are conditions that are detrimental to most 

enzymes. In this respect, enzymes from thermophilic origin are promising because they can 

withstand elevated temperatures and display a high intrinsic stability in organic solvents 12. 

Hence, it would be of interest to search for lipases in hyperthermophilic bacteria and archaea. 

Most microorganisms living at elevated temperatures belong to the domain of the archaea, 

however, to our knowledge no lipase has been cloned and characterized from archaea thus 

far. Recently, it was shown that several species of halophilic archaea exhibit lipase activity, but 

none of the enzymes responsible for this activity was purified and characterized 215; 216.

	 Archaeoglobus fulgidus is a hyperthermophilic sulphate-reducing archaeon isolated 

from hydrothermal areas near Vulcano (Italy) 217. The organism grows optimally at 83°C and can 

grow on various carbon sources such as fatty acids, amino acids, organic acids, and CO 218; 219. 

Its genome has been sequenced 219, and the annotation suggested the presence of a putative 

lipase (lipA, AF1763). To confirm the anticipated function of LipA, the corresponding gene 

was cloned and heterologously expressed in Escherichia coli, and its biochemical properties 

were investigated. This enzyme has been described in another study and was assigned the 

function of carboxylesterase 93. The results in the present study, however, revealed different 

characteristics, amongst others showing that LipA is a true lipase. 

Results 

In silico analysis

The entire genome of A. fulgidus was analyzed for the presence of new esterases and lipases. 

The genome sequence revealed the presence of an ORF (AF1763) that was annotated as a 
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putative lipase. It has a conserved pentapeptide sequence (GxSxG), which is typical for 

esterases and lipases, and is predicted to have an α/β-hydrolase fold. The gene encodes a 

474-amino-acid protein with a calculated molecular mass of 52.8 kDa. 

A homology search at JGI IMG showed that LipA has highest similarity with two putative 

lipases from respectively Frankia alni ACN14a (32% identity) and Frankia sp. CcI3 (30% identity). 

Furthermore, similarity was found with a conserved hypothetical protein from Aurantimonas 

sp. SI85-9A1 (26% identity) and with lipases from Bacillus pumilus (24% identity) and B. subtilus 

(23% identity). A BLAST search of LipA at NCBI against the non-redundant database confirmed 

these findings. Similarity to other sequences in the database is limited to the N-terminal part 

(amino acids 1-229) of LipA. This N-terminal part is predicted to have the α/β-hydrolase fold 

and has highest similarity to various putative esterases and lipases. The C-terminal part (AA 

230-474) of LipA only shares similarity with the two sequences of the Frankia species. It is has 

no homology with other sequences and is therefore believed to be a new domain.

Active site analysis

A multiple sequence alignment of LipA with the two putative lipases from Frankia species 

and several Bacillus lipases showed that the active site of LipA is potentially composed of 

Ser136, which is located within a pentapeptide motif (Gly-Xaa-Ser-Xaa-Gly), and His210 (Figure 

7.1). Both the serine and histidine residue are not conserved in the sequences from Frankia, 

suggesting that these enzymes are probably not esterases or lipases. The alignment was not 

conclusive about the acidic residue involved in LipA catalysis. Potential candidates are Asp163, 

Asp169, Glu172, Glu193 and Glu194.

In the absence of a crystal structure, a three-dimensional model of LipA was built using 

the 3D-structural threading program PHYRE 220. The program was able to construct a model 

only for the N-terminal part of LipA (Asp21-Thr234) (Figure 7.2a). The structure of lipase A 

from Bacillus subtilus 191 (pdb: 1ISP) was used as a template to build the model. The model 

was constructed with an E-value of 3.2e-13 and an estimated precision of 100%. No good 

model could be obtained for the C-terminal part of LipA, suggesting it could be a new domain. 

The model showed that Ser136 and His210 are both located in close proximity of each other, 

and are at positions according to the canonical α/β-hydrolase fold. Ser136 is centrally located 

within a nucleophilic elbow after the carboxyl end of the fifth strand of the central β-sheet 

and His210 is located on a loop between the eighth β-strand and helix α8. There is, however, 

no acidic residue located at the “usual” position after the seventh β-strand. An acidic residue 

(Asp163) is located after strand six and is in close proximity of His210 and Ser136 (Figure 7.2b).
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Figure 7.1: Amino acid sequence alignment LipA. Multiple sequence alignment of LipA with the first BLAST hits: 
Frankia alni ACN14a (Frankia 1), Frankia sp. CcI3 (Frankia 2), Bacillus sp. NK13 (Bac_NK13), Bacillus pumilus (Bac_
pum) and the lipase from Bacillus subtilis  (Bac_3D2R). The GXSXG motif containing the catalytic serine and 
the histidine that is part of the catalytic triad are marked with an asterisk. The catalytic acidic residue from the 
Bacillus enzymes is indicated with an exclamation mark, and the potential candidates in LipA (Asp163, Asp169, 
Glu172, Glu193 and Glu194) are indicated with a question mark.



104

Characterization of a lipase from the hyperthermophilic archaeon A. fulgidus7
Cloning and production

The N-terminal sequence of LipA was analyzed using SignalP version 3.0 and it was predicted 

that the first 20 amino acids form a signal peptide. The LipA gene was cloned into the expression 

vector pET-24d without its signal peptide and in frame with a C-terminal 6xHis-tag (pWUR364). 

The enzyme was purified to homogeneity from heat-treated cell extracts of E. coli BL21(DE3)/

pSJS1244/pWUR364 by immobilized metal affinity chromatography. SDS-PAGE of purified LipA 

was performed to confirm homogeneity of the protein and to determine the molecular mass 

of the recombinant protein. Results obtained from SDS-PAGE confirmed a molecular subunit 

mass of 51 kDa (mature enzyme). Furthermore, it showed that the purification with metal 

affinity chromatography was efficient (Figure 7.3a). Activity staining of the SDS-PAGE gels 

using α-naphtyl acetate confirmed the identity of the LipA band (Figure 7.3b). Native-PAGE 

showed a single band and size exclusion chromatography suggested that the enzyme exists as 

a monomer with an estimated mass of 50 kDa (not shown). 

Figure 7.2 (in color on p.152): 3D model of LipA. In a) The overall structure of the N-terminal domain of LipA, and 
b) Residues of the potential catalytic triad.

Enzyme activity

Substrate specificity of purified LipA was determined using p-nitrophenyl esters. LipA showed 

hydrolytic activity towards most of the p-nitrophenyl esters tested (C3-C18) (Figure 7.4a). The 

highest specific activity with LipA was found for the p-nitrophenyl ester of decanoate (C10). No 

activity was found for the short chain p-nitrophenyl ester of acetate (C2) and lowest activity 

was found towards the p-nitrophenyl esters of propianate (C3), butyrate (C4), and the long 

chain p-nitrophenyl ester of stearate (C18). 
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A qualitative plate assay was done in order to determine activity of LipA on triacylglycerol 

esters. LipA showed activity towards tributyrate, trioctanoate, palm oil, olive oil and triolein. 

Substrate hydrolysis causes the formation of a halo around the spot where enzyme was added 

to the plate. The largest and clearest halos were observed for the substrates trioctanoate and 

palm oil.

Figure 7.3: SDS-PAGE of LipA fractions. Samples were separated by SDS-PAGE in duplicate. One gel was stained 
with Coomassie brilliant blue (a) and the other was stained for activity using α-naphtyl acetate after renaturation 
(b). M: molecular weight standards, lane 1: cell free extract, lane 2: heat-stable cell free extract, lane 3: LipA after 
immobilized metal affinity chromatography and lane 4: purified LipA.

Influence of temperature and pH

The effect of temperature on the activity of LipA was investigated over a temperature range 

from 40 to 100°C using p-nitrophenyl octanoate as a substrate (Figure 7.4b). The hydrolytic 

activity increased from 40°C upwards with an optimum at 90°C. An Arrhenius analysis resulted 

in a linear plot in the temperature range of 60-90°C (not shown), with a calculated activation 

energy for the formation of the enzyme/substrate complex of 16.5 kJ·mol−1. LipA was found 

to have a high resistance to thermal inactivation, with half-life values of approximately 20 

minutes at 90°C and 10 hours at 80°C.

The effect of pH on the activity of LipA was investigated over a pH range from 4.8 to 12 

using p-nitrophenyl myristate (C14) as a substrate (Figure 7.4c). The substrate pNP-C14 was 

used because of its stability at higher pH values. Maximal activity of LipA was measured at 

approximately pH 11. LipA was active over the complete range of pH values examined. 
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Figure 7.4: Biochemical properties of LipA. (a) Substrate preference, (b) The effect of temperature on esterase 
activity was studied using p-nitrophenyl octanoate as substrate at temperatures ranging from 40-100°C, and (c) 
The effect of pH on esterase activity was studied using p-nitrophenyl myristate as substrate at pH values in the 
range of 4.8-11.8.
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Effect of inhibitors and divalent metal ions 

The effect of various inhibitors on LipA activity was investigated. Phenylmethylsulfonyl fluoride 

(PMSF), a serine protease inhibitor, strongly inhibited enzyme activity, with no residual activity 

remaining in the presence of 1 mM inhibitor. Paraoxon inhibited LipA to a lower extent 

with less than 40% residual activity remaining in the presence of 1 mM inhibitor and no 

activity remaining in the presence of 10 mM. Activity was also strongly inhibited by mercury 

chloride (30% residual activity). Other chemical agents such as diethyl pyrocarbonate (DPC), 

dithiothreitol (DTT) and EDTA did not affect LipA activity. The effect of various metal ions was 

investigated by measuring LipA activity in the presence of the metal ions Ca2+, Ni2+, Co2+, Zn2+, 

Mn2+ and Mg2+ at concentrations of 1 mM. No significant stimulation or reduction of activity of 

LipA was observed.

Preliminary crystallization results

Purified LipA was used for crystallization trials, at the Joint Center for Structural Genomics 

(JCSG) automated pipeline for structure determination, testing 400 conditions. Crystals of 

native LipA were obtained using a reservoir solution consisting of 1.5M sodium chloride and 

10% (v/v) ethanol at 20°C. A dataset was collected to ~2.6 Å resolution. The crystal belongs to 

spacegroup C2 and molecular replacement is ongoing. 

Discussion

This paper describes the cloning and characterization of a thermostable lipase from A. fulgidus. 

In a previous study by Rusnak et al. (2005) 93, LipA was partially characterized as well, but the 

reported features differed considerably from our current findings. The enzyme showed a lower 

temperature optimum (70°C instead of 90°C) and a much lower thermostability (t1/2 of 25 min 

at 40°C compared to the here reported t1/2 of 10 hours at 80°C). Especially the latter result is 

dubious in view of the high growth temperature of A. fulgidus. The previous data suggested 

that LipA should be classified as a carboxylesterase, whereas our data clearly classified LipA 

as lipase. These differences may be explained by the fact that in the earlier study the signal 

peptide of LipA was not removed during cloning. LipA does possess a signal peptide and is 

therefore believed to be an extracellular enzyme. Usually, when such an enzyme is transported 

across the cell membrane, the signal peptide is removed in the process resulting in a mature 

protein. Not removing the signal peptide potentially influences the biochemical properties of 

LipA. 
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The multiple-sequence alignment suggested that LipA is composed of two domains: an 

N-terminal catalytic domain and a C-terminal domain that has no homology to known proteins 

and therefore cannot be assigned a function. In order to investigate the function of this 

C-terminal domain, a truncated mutant of LipA, in which the C-terminal domain was removed, 

was made. LipAtrunc showed lower activity than wild-type LipA on pNP-C10, suggesting that 

the C-terminal domain plays an important role in activity of LipA. Further biochemical analyses 

are ongoing. 

Most esterases and lipases belong to the α/β-hydrolase family and have a conserved 

catalytic triad that is composed of a nucleophile, an acidic residue and a conserved histidine 
6; 8; 56. The catalytic triad typically comprises Ser, Asp and His, although variations have been 

observed. In LipA, the Ser136 and His210 are conserved, yet the acidic residue is not conserved. 

Several potential candidates were identified: Asp163, Asp169, Glu172, Glu193 and Glu194. 

In the absence of a crystal structure, a three-dimensional model of LipA was built using the 

3D-structural threading program PHYRE 220. In the obtained model, Ser136 and His210 are 

both located in close proximity of each other, and are at positions according to the canonical 

α/β-hydrolase fold. The acidic residue (Asp163) is located at a non-canonical position, after 

strand six, but in close proximity of His210 and Ser136. In the study by Rusnak et al. (2005) 
93, the amino acids Ser136, Asp163 and His210 were mutated, resulting in complete loss of 

activity of LipA. Therefore, the model’s prediction of Asp163 as potential active site residue is 

in good agreement with the mutagenesis data. This topological shift of the acidic residue has 

been observed in other enzymes belonging to the α/β-hydrolase fold 8. A limited number of 

lipases have been described that have the acidic catalytic site residue located after the sixth 

strand, such as the human pancreatic lipases (HPL) and the lipoprotein lipases 221. A three-

dimensional structure of LipA may provide better insight into this topological shift of the acidic 

residue, as well as give information on the function of the C-terminal part of LipA. Therefore, 

LipA was crystallized by hanging-drop vapour-diffusion and a dataset was collected to ~2.6 Å 

resolution. Its structure solution is ongoing.

 	 The expression level of the recombinant enzyme was high and the two-step purification 

(heat treatment and metal-chelating column) was successful. When LipA was assayed with 

p-nitrophenyl esters, it showed a preference for substrates with long-chain lengths. Highest 

activity was observed with pNP-decanoate. Furthermore, LipA was able to hydrolyze both 

short and long chain triacylglycerol esters. These data indicate that LipA should be classified as 

a lipase. 

As expected from an enzyme derived from a hyperthermophile, LipA has a high 

temperature optimum at 90°C and is stable for 10h at 80°C. The optimal activity at high 

pH values (10-11) and high thermal stability and activity make LipA a good candidate for 

future applications in industry. This is the first lipase that has been characterized from a 

hyperthermophilic archaeon. 
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Note added in proof

Recently, the structure of LipA was solved by another group 222 (Figure 7.5a). We could solve 

our data set by molecular replacement using the corresponding pdb coordinates (2ZYI). Our 

unit cell and space group are different, however the two structures are nearly identical with an 

RMSD of 0.28 Å (Figure 7.5b). Residues 71-86 (lid structure) are disordered in our structure, in 

agreement with the fact that no ligand is bound. The LipA structure can indeed be subdivided 

into two domains: an N-terminal domain belonging to the α/β-hydrolase fold that contains 

the active site residues, and a C-terminal β-barrel domain involved in binding of lipids. The 

structure also shows that, as predicted, the catalytic triad consists of Ser136, Asp163, and 

His210. 

Figure 7.5 (in color on p.153): (a) Overall fold of the lipase (pdb: 2ZYI). The N-terminal and C-terminal ends are 
indicated. The helices are displayed in cyan and the strands in red. (b) Superposition of our LipA (blue) and 2ZYI 
(green). A stearic acid that was present in the 2ZYI structure is shown in red. 
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Materials and methods

Data mining

The genome of A. fulgidus was screened for sequences coding possible esterases and lipases. 

Esterases and lipases were identified by performing BLAST searches at the National Center for 

Biotechnology Information (NCBI) with sequences from characterized esterases and lipases  

(http://www.ncbi.nlm.nih.gov/blast/) 28; 223. Homologues sequences were searched at the 

DOE Joint Genome Institute (JGI) Integrated Microbial Genomes (IMG) (http://img.jgi.doe.

gov). The N-terminal sequence analysis of the translational product of AF1763 was performed 

using the SignalP 3.0 Server (http://www.cbs.dtu.dk/services/SignalP/) 214. Multiple sequence 

alignments were constructed using the Tcoffee server (http://www.igs.cnrs-mrs.fr/Tcoffee/

tcoffee_cgi/index.cgi) 132 and manually assessed using GeneDoc. 

Cloning 

The gene encoding LipA (locus tag AF1763) was PCR-amplified, without the sequence 

encoding its predicted signal peptide (the first 20 amino acids) and without its stop-

codon, using chromosomal DNA of A. fulgidus as a template and the two primers 

BG2064 5’-CGGCCATGGAAGACTTTAGACCGGTAGTGTTTGTGC-3’ and BG2065 

5’-GGCGCTCGAGAATGTAATCCGAAAACTGCACGATAATCG-3’ introducing respectively a NcoI 

and XhoI restriction site. The generated PCR product was digested by NcoI and XhoI and the 

product was purified and ligated into the expression vector pET-24d digested with the same 

restriction enzymes, resulting in the plasmid pWUR364. The construct was designed with a 

hexahistidine tag engineered at the C-terminus of the enzyme to facilitate purification. The 

sequence of the expression clone was confirmed by sequence analysis of both DNA strands. 

Expression and purification

E. coli BL21(DE3)/pSJS1244 was transformed with pWUR364. A single colony was used to 

inoculate 4 ml Luria-Bertani medium containing kanamycin and spectinomycin (both 50 µg / ml) 

and incubated overnight at 37°C with shaking. The preculture was used to inoculate (1:1000) 

1L of the same medium and growth was continued for 8 h (an OD
600 above 2.0 was reached). 

Subsequently, the culture was induced by adding IPTG (isopropyl β-D-1-thiogalactopyranoside) 

to a final concentration of 0.5 mM. The culture was incubated for a further 16 h at 37°C. Cells 

were harvested by centrifugation at 10000g for 15 min. The cell pellet was resuspended in 

25 ml lysis buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 10 mM imidazole). The cells were 

disrupted by passage twice through a French press at 110 MPa. The crude cell extract was 

treated with DNAseI at room temperature for 20 min and subsequently centrifuged at 43000g 

for 30 min in order to remove cell debris. The supernatant was heated at 70°C for 15 min 

and then centrifuged to remove the precipitated proteins. The supernatant was filtered and 

applied onto a nickel-chelating column packed with 20 ml Ni-NTA His-Bind Resin (Novagen) and 
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equilibrated in 50 mM Tris-HCl buffer pH 7.8 containing 300 mM NaCl. The column was washed 

with 20 mM imidazole in the same buffer and proteins were subsequently eluted with a linear 

gradient of 20-500 mM imidazole in 50 mM Tris-HCl pH 7.5, 300 mM NaCl. Fractions containing 

esterase activity were pooled and applied onto a Hi-Prep desalting column (Amersham 

Biosciences) equilibrated with 50 mM Tris-HCl buffer pH 7.5. The homogeneity of the protein 

was checked by SDS-PAGE and activity staining of the SDS-PAGE gels using α-naphtyl acetate, 

as described previously 52. 

Size exclusion chromatography

The molecular mass of the purified esterase was determined by size exclusion chromatography 

on a Superdex 200 high-resolution 10/30 column (24 mL) (Amersham Biosciences) equilibrated 

in 50 mM Tris/HCl (pH 7.5) containing 100 mM NaCl. Two hundred microliters of enzyme solution 

in 50 mM Tris/HCl and 150 mm NaCl (pH 7.5) buffer was loaded at a flow rate of 0.6 mL·min−1 

onto the column and fractions (0.5  mL) were collected. Proteins used for calibration were 

blue dextran 2000 (> 2000 kDa), ferritin (440 kDa), catalase (232 kDa), aldolase (158  kDa), 

bovine serum albumin (67  kDa), ovalbumin (43  kDa), chymotrypsinogen  A (25  kDa), and 

ribonuclease A (13.7 kDa).

Enzyme assays

Esterase activity was determined by measuring the amount of p-nitrophenol released 

during enzymatic hydrolysis of different p-nitrophenyl esters. The release of p-nitrophenol 

was continuously monitored at 405  nm using a Hitachi UV2001 spectrophotometer with a 

temperature controlled cuvette holder. Unless otherwise indicated, in a standard assay, 

esterase activity was measured with 0.2 mm p-nitrophenyl octanoate (pNP-C8) as a substrate 

in 50 mm citrate-phosphate buffer (pH 8) containing 1% isopropanol at 70 °C. Stock solutions of 

p-nitrophenyl esters were prepared by dissolving substrates in isopropanol. After preincubation, 

the reaction was started by adding enzyme to the reaction mix. One unit of esterase activity 

was defined as the amount of protein releasing 1 µmol·min−1 of p-nitrophenol from pNP-C8. 

Measurements were corrected for background hydrolysis in the absence of enzyme. 

Measurements were carried out at least three times and the molar extinction coefficient of 

p-nitrophenol was determined for every condition prior to each measurement. Activity was 

determined from the initial rate of the hydrolysis reaction. The protein concentration was 

measured at 280 nm using a NanoDrop ND-1000 Spectrophotometer

Acyl chain length preference

Substrate specificity of the enzyme towards the acyl chain length of different p-nitrophenyl 

esters was investigated by using p-nitrophenyl acetate (C2), p-nitrophenyl propionate (C3), 

p-nitrophenyl butyrate (C4), p-nitrophenyl valerate (C5), p-nitrophenyl octanoate (C8), 

p-nitrophenyl decanoate (C10), p-nitrophenyl dodecanoate (C12), p-nitrophenyl myristate 
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(C14),  p-nitrophenyl palmitate (C16) and p-nitrophenyl stearate (C18) in the standard assay.

Plate assays with triacylglycerol esters

Plate assays were used for the detection of activity on triacylglycerol esters. Agar plates 

containing tributyrin, trioctanoate, triolein, palm oil and olive oil (1% vol/vol) were prepared, 

and 5 mm wide holes were perforated. The resulting holes were loaded with purified enzyme 

and incubated at 50°C. Activity was detected by zones of clearance around the holes.

pH and temperature optimum

The effect of pH on esterase activity was studied by measuring activities on p-nitrophenyl 

myristate for a pH range of 5-12. The buffers used were 50 mm citrate-phosphate (pH 4.0–8.0), 

50 mm CAPS buffer (pH 9.5-12) and 50 mM phosphate buffer (pH12). The pH of the buffers 

was set at 25 °C, and temperature corrections were made using their temperature coefficients 

(-0.0028  pH·°C−1 for citrate-phosphate buffer and phosphate buffer, and -0.018  pH·°C−1 for 

CAPS buffer). The effect of temperature on esterase activity was studied in the range 40-100 °C 

using p-nitrophenyl octanoate in the standard assay. Enzyme thermostability was determined 

by incubating the enzyme in a 50 mm Tris-HCl, 150 mm NaCl (pH 8) buffer at 80° and 90 °C for 

various time intervals. Residual activity was assayed under the standard condition.

Inhibition studies

The effect of divalent metal ions on activity was determined using different metal salts (CaCl
2, 

NiCl2, CoCl2, MnCl2, MgCl2, and ZnSO4) at final concentrations of 1  mm using the standard 

activity assay. The activity of LipA without addition of metal ions was defined as 100%. The 

effect of inhibitors (EDTA, DTT, DPC, HgCl2, PMSF and paraoxon) was studied by preincubating 

LipA with 1  mM inhibitor in 50  mM TRIS-HCl buffer (pH  8) at 37  °C for 1  h. Subsequently, 

samples were placed on ice, and residual activity was measured using the standard assay. The 

activity of the enzyme without inhibitor was defined as 100%. 

Mutagenesis

A truncated LipA mutant was generated using the primers BG2064 

5’-CGGCCATGGAAGACTTTAGACCGGTAGTGTTTGTGC-3’ and BG2649 5- 

CCGCTCGAGCCGTTTATGAACTCAAACATCACC -3 introducing respectively a NcoI and XhoI 

restriction site. The generated PCR product was digested by NcoI and XhoI and the product 

was purified and ligated into the expression vector pET-24d digested with the same restriction 

enzymes. The construct was designed with a hexahistidine tag engineered at the C-terminus 

of the enzyme to facilitate purification. The sequence of the expression clone was confirmed 

by sequence analysis of both DNA strands. LipAtrunc was produced and purified as described 

for LipA.
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Crystallization and data collection

Purified LipA in 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.25 mM TCEP was used for 

crystallization trials at the Joint Center for Structural Genomics (JCSG) automated pipeline 

for structure determination. 400 JCSG crystallization conditions were screened at 20°C and 

4°C. Protein was concentrated to ~19 mg/ml in crystallization buffer (20 mM Tris-HCl, pH 7.8 

and 150 mM NaCl) with NDBS195 added to a final concentration of 1M. Crystals of LipA were 

obtained by hanging drop vapor diffusion against a 60 μl reservoir solution consisting of 1.5 

M sodium chloride and 10% (v/v) ethanol at 20°C. Drops consisted of 100 nl protein and 100 

nl reservoir. A native dataset was collected to ~2.6 Å resolution. Crystals were flash-cooled 

to 100K and data collected at beamline 5.0.3 of the ALS. All data were processed with the 

HKL2000 package 198 and all other crystallographic manipulations were carried out with the 

CCP4 package 141. The crystal belongs to spacegroup C2 with unit cell dimensions of A=134.8, 

B=90.5 Å, C=105.9 Å, a=90o, b=124.7o and g=90o. These dimensions suggest 2 molecules are 

present in the asymmetric unit with a solvent content of 52.5% and a Matthews coefficient of 

2.6 A3/Da. Molecular replacement is ongoing. 

Acknowledgement

This research was financially supported by the Graduate School VLAG. 

 



114



115

8Chapter

Summary and general discussion
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from hyperthermophiles. Extremophiles 13 (4), p. 567 - 581.
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Carboxyl ester hydrolases

Biocatalysts play an important role in modern biotechnology because of their specificity, 

selectivity, efficiency and sustainability. One of the industrially most exploited and important 

groups of biocatalysts are the carboxylic ester hydrolases. There is a special interest from industry 

in carboxylic ester hydrolases of thermophilic origin since these enzymes generally display a 

high intrinsic thermal and chemical stability 12. This thesis describes the results of biochemical 

and structural analyses of thermostable esterases, derived from a hyperthermophilic bacterium 

(Thermotoga maritima) and a hyperthermophilic archaeon (Archaeoglobus fulgidus). The 

information obtained in this study provides fundamental knowledge, which may act as a basis 

for modern methods of enzyme engineering, with the aim to improve the applicability of these 

enzymes.

Chapter 1 of this thesis gives an overview of the carboxyl ester hydrolases from 

hyperthermophilic bacteria and archaea that have been characterized up to now. Carboxyl ester 

hydrolases are important biocatalysts with applications in medical biotechnology, detergent 

production, organic synthesis, biodiesel (methyl-ester) production, flavor and aroma synthesis, 

and other food related processes 10; 11. At this moment, most esterases and lipases used in 

industry are obtained from mesophiles (Topt < 60°C), basically, because they were the first to 

be identified and characterized. Analyses of the genome sequences of hyperthermophilic 

bacteria and archaea (Topt ≥ 80°C) revealed that the hyperthermophilic world also displays a 

broad repertoire of esterases that deserves isolation and further characterization. 

Esterases and lipases

Although there are two well-known groups of carboxylic ester hydrolases, viz. the esterases 

and lipases, the distinction between both groups is not always clear. In fact, the only 

discriminative feature which is still valid, is that esterases show a preference for short-chain 

acyl esters (shorter than 10 carbon atoms) and that lipases are active on long-chain acyl esters 

and are active on micellar substrates 9. Both types of enzymes share structural and functional 

characteristics, including a catalytic triad, an α/β-hydrolase fold and a cofactor independent 

activity 7. The catalytic triad usually consists of a nucleophilic serine in a GXSXG pentapeptide 

motif and an acidic residue (aspartic acid or glutamic acid) that is hydrogen bonded to a histidine 

residue 6; 8; 56. In chapter 1 it is shown that the majority of the characterized hyperthermophilic 

carboxylic ester hydrolases are esterases. Only recently a true lipase, hydrolyzing long chain 

fatty acid esters, was identified in the hyperthermophilic archaeon A. fulgidus. Thus far, only 

one comprehensive screening approach has been described, in this study 160 thermophilic or 

hyperthermophilic anaerobic archaea and bacteria were isolated from deep-sea hydrothermal 

vents and screened for esterase activity, of which 47 were found to be esterase positive 54. To 
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the best of our knowledge, no screens have been reported that were aimed to specifically find 

lipases in hyperthermophiles.

Thermotoga maritima esterases

Most of the characterized esterases in this thesis are obtained from Thermotoga maritima. 

T. maritima is a hyperthermophilic anaerobic bacterium isolated from geothermally heated 

marine sediments at Vulcano, Italy. The organism grows between 55°C and 90°C (Topt = 80°C) 

and can metabolize a variety of simple and complex carbohydrates, including glucose, sucrose, 

cellulose, xylan and starch 142. We performed a bioinformatics analysis of the genome of T. 

maritima 119 and several open reading frames potentially encoding new esterases were 

identified: a hypothetical protein (locus tag: TM0033), a putative esterase (TM0053), a 

predicted acetyl xylan esterase (TM0077), a hypothetical protein (TM0336), a putative esterase 

(TM1160), and a putative lipase (TM1350) (Figure 8.1). 

Figure 8.1: Circular representations of the Thermotoga maritima and Archaeoglobus fulgidus chromosomes. 
Potential esterase and lipase genes are indicated by their locus tags. 

	 One of the first enzymes that was cloned and found active in an initial screen was EstD 

(TM0336). Chapter 2 describes the identification, heterologous production, purification and 

biochemical characterization of this novel esterase. The enzyme was originally annotated as a 

hypothetical protein, but a more detailed sequence analysis revealed the presence of an α/β-

hydrolase fold and a nucleophilic serine in a pentapeptide motif, suggesting a possible role in 

ester hydrolysis. We found that EstD exhibited significant esterase activity with a preference 

for short acyl chain esters (C4–C8). As to be expected for a hyperthermophilic enzyme, EstD 

showed a temperature optimum around 95°C, and was stable at high temperatures, with a 
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half-life of 1h at 100°C. This is comparable to other described hyperthermophilic esterases, 

such as the Pyrococcus furiosus esterase 53 and the Pyrobaculum calidifontis esterase 38. In the 

absence of a crystal structure, a structural model was constructed using the carboxylesterase 

Est30 from Geobacillus stearothermophilus 123 as a template. The model covered most of the 

C-terminal part of EstD. The model showed an α/β-hydrolase fold and indicated the presence 

of a typical catalytic triad consisting of Ser243, Asp347 and His378.

Several classifications of esterases and lipases into distinct families have been completed. 

In one such study, 53 bacterial esterases and lipases were classified into eight families based on 

their sequence similarity and some of their fundamental biological properties 110. Phylogenetic 

analysis showed that EstD is only distantly related to other esterases and could not be grouped 

into one of these eight families. Therefore, a new family for this enzyme was proposed. Most 

of the recent classification studies are based on sequence and structural similarity and are 

accessible at online databases. For a more detailed discussion of relevant databases we refer 

the reader to Chapter 1.

EstA is another esterase (TM0033) that was annotated as a hypothetical protein, but 

had typical esterase features. A multiple-sequence alignment suggested that EstA is composed 

of two domains: a C-terminal domain with a predicted α/β-hydrolase fold and an N-terminal 

domain that has no homology to known proteins and therefore no function could be assigned. 

To gain insight into the function of this new N-terminal domain and reveal the molecular 

basis of substrate recognition and catalysis by this enzyme, crystallization trials were initiated. 

Hence, in Chapter 3 the cloning, purification, crystallization and preliminary X-ray analysis of 

EstA is described. Native and selenomethionine-substituted EstA were purified to apparent 

homogeneity and were crystallized by the hanging-drop vapour-diffusion method. Crystals 

grew optimally in 1.0 M lithium sulfate monohydrate and 2% (w/v) polyethylene glycol 8000. 

Multiple wavelength anomalous data sets were collected to 2.6 Å resolution. 

After obtaining its preliminary crystallographic data, the structure and various 

biochemical properties of EstA were determined, as described in Chapter 4. EstA displayed 

esterase activity with a preference for esters with short acyl chains (C2-C10). The structure 

of EstA was indeed found to be composed of two distinguishable domains: a conserved 

C-terminal domain containing the catalytic site and an N-terminal domain resembling the 

immunoglobulin fold. Analysis of the quaternary structure by mass-spectrometry and dynamic 

light scattering revealed that EstA predominantly exists as a hexamer in solution. Electron 

microscopy confirmed that the hexamer in solution is identical with the hexamer in the crystal, 

which is formed by two trimers, with the immunoglobulin-like domains facing each other. 

Different functions of immunoglobulin-like domains in other bacterial enzymes have been 

proposed: substrate binding, directing a substrate to the catalytic groove or cell adhesion 156; 

157. In EstA, the immunoglobulin-like domain appears to play an important role in multimer 

formation and activity (see disccusion below). 

In Chapter 5 we investigated the structure and various biochemical properties of an 
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acetyl esterase / cephalosporin C deacetylase AceA (TM0077), belonging to the carbohydrate 

esterase family seven (CE7) 114. Enzymes belonging to CE7 are unusual in that they are active 

towards both acetylated xylo-oligosaccharides and the antibiotic cephalosporin C 176. AceA 

was found to be active on a variety of acetylated compounds, including cephalosporin C. The 

activity on artificial p-nitrophenyl-substrates was confined to short chain acyl esters (C2-C3). 

The positional specificity of AceA was investigated using 4-nitrophenyl-β-D-xylopyranoside 

monoacetates as substrate in a β-xylosidase-coupled assay 208. AceA hydrolyzed acetate from 

positions 2, 3 and 4 with the same efficiency. A selenomethionine-substituted and a native 

structure were solved to 2.1 Å and 2.5 Å, respectively, revealing a classical α/β-hydrolase fold. 

AceA forms a hexamer both in the crystal and in solution. The hexamer has a “doughnut”-

like shape, with two entrances on each side of the hexamer leading to an inner cavity, to 

which the six catalytic centers are exposed. AceA is irreversibly inhibited by the inhibitors 

PMSF and paraoxon. Structures of AceA in complex with PMSF and paraoxon were solved at 

2.4 Å and 2.1 Å, respectively, confirming that both inhibitors bind covalently to the catalytic 

serine. Surprisingly, upon binding of these substrate analogs, the catalytic serine adopts 

an altered conformation. Alternate conformations of the catalytic serine have also been 

observed in other esterase structures, such as the Fusarium solani cutinase 189, the Penicillium 

purpurogenum acetyl xylan esterase 190, the Bacillus subtilis lipase 191, and the Aspergillus niger 

feruloyl esterase 192. However, in contrast to the above enzymes, the conformational change 

of the AceA catalytic serine seems to be solely induced by binding of substrate. We speculate 

that this transition is required for proper hydrogen bonding to the oxyanion hole, and thus 

stabilizing the tetrahedral intermediate during catalysis.

In Chapter 6 we described the cloning, purification, crystallization and partial 

biochemical characterization of the esterase EstB (TM0053). EstB exhibited esterase activity 

with a preference for medium acyl chain esters (C8-C10), and with optimal activity around 

95°C and at pH 9. Gel filtration indicated that EstB is also present as a hexamer in solution. 

EstB was crystallized by hanging-drop vapour-diffusion and a dataset was collected to ~2.8 Å 

resolution. Its structure solution is ongoing. 

Archaeoglobus fulgidus lipase

The only true lipase we discovered was obtained from Archaeoglobus fulgidus. A. fulgidus is 

a hyperthermophilic sulphate reducing archaeon initially isolated from hydrothermal areas 

near Vulcano Island, Italy. The organism grows optimally at 83°C and can use various carbon 

sources such as fatty acids, amino acids, organic acids, and CO 218; 219. Archaeoglobus species 

are also commonly found in reservoir waters of offshore oil fields, where they are believed to 

be responsible for ‘reservoir souring’ 224; 225. The genome of A. fulgidus was found to contain 

several open reading frames potentially encoding new esterases: a carboxylesterase (est-1) 
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(locus tag: AF0865), a carboxylesterase (est-2) (AF1537), a carboxylesterase (AFEST) (AF1716) 
59, a lysophospholipase (AF1753), a putative lipase (AF1763) 93, and a carboxylesterase (est-3) 

(AF2336) (Figure 8.1). 

The anticipated function of the putative lipase LipA (AF1753) was investigated. In 

Chapter 7 the identification, cloning, purification and partial characterization of this lipase 

is described. LipA was found to exhibit lipase activity with a preference for medium acyl 

chain esters (C10) and qualitative plate assays showed that LipA has highest activity on the 

triacylglycerol esters of octanoate and palmitate. This indicated that LipA should indeed be 

classified as a lipase. LipA showed optimal activity around 95°C and at pH 11. In several lipases 

access to the active site is regulated by the position of a “lid structure”, which can influence the 

activity and selectivity of the enzyme 226. Whether LipA also has a lid structure is not known, 

a crystal structure may provide insight into substrate recognition and catalysis of this enzyme. 

LipA has been crystallized by hanging-drop vapour-diffusion and a dataset was collected 

to ~2.6 Å resolution. Its structure solution is ongoing. This is the first lipase isolated from a 

hyperthermophilic archaeon.

General aspects

Various carboxylic ester hydrolases have been investigated in this thesis and several others 

were treated in the review of Chapter 1, and one may wonder whether we can distill some 

general conclusions with respect to their hyperthermophilic nature. 

One obvious feature of all investigated enzymes is that they show a high thermostability, 

with half-lives ranging from 10h at 80°C to 1.5h at 100°C. This characteristic is also the 

reason for the interest from industry for this group of enzymes. The high thermostability is 

a result of subtle changes in the amino acid composition, generally correlating with a high 

chemical stability 12. In most cases, however, no specific residues can be identified that govern 

thermostability of the esterases discussed. The difference in stability observed between our 

reported characterization of LipA and an earlier description of LipA (t1/2 of 25 min at 40°C) 93, can 

be attributed to the presence of the signal peptide. Cloning of the lipA gene without the signal 

sequence resulted in a significant increase in the temperature optimum and thermal stability 

(Chapter 7). A similar observation was made for EstB (Chapter 6) and an earlier description of 

EstB (T
opt = 60°C; pHopt = 7.5) 71, in which the signal peptide was incompletely removed, resulting 

in a lower temperature optimum and a different pH-optimum. These data indicate that even a 

short N-terminal sequence can substantially affect the properties of an enzyme. We speculate 

that a not or incomplete removed signal peptide may prevent multimerization of the enzyme, 

and as such decrease the thermal stability. If the signal peptide is in close proximity of the 

active site it may also influence catalysis of the enzyme.

With respect to the active site, the hyperthermophilic esterases, described here, all 
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show the typical α/β hydrolase fold, and a conserved catalytic triad consisting of a nucleophilic 

serine in a pentapeptide motif, an aspartate, and a histidine. The only unusual features that 

were found concern the conformational change of the catalytic serine in AceA upon inhibitor 

binding, and the non-canonical position, after strand β6, of the catalytic aspartate in LipA. These 

variations may contribute to improved positioning of active site residues to accommodate 

certain substrates.

Concerning the quaternary structure it appears that most of the esterases occur 

as hexamer. Only EstD is present mostly as a monomer (and to a lower extent as dimer). 

Commonly, both mesophilic and thermophilic esterases are present as a monomer, or higher 

multimers such as dimer, trimer or tetramer. However, a hexameric structure is rather unusual. 

Multimerization is a phenomenon often described for enzymes from hyperthermophiles and 

is regarded as one of different mechanisms to increase thermostability 158. Whether this is 

also the case for the esterases is hard to say. For the esterases EstA and AceA, we believe that 

multimerization most probably also plays an important role in the activity of these enzymes. 

For instance, the mutation of Phe89Ala, which is located on a loop leading to the active site of 

another subunit (EstA hexamer), and did result in decreased activity (Chapter 4). 

One aspect that was hardly discussed in the previous chapters, concerns the physiological 

role of this group of enzymes. Carboxyl ester hydrolases are ubiquitous enzymes, which have 

been identified in all domains of life (Bacteria, Archaea and Eukaryotes), and in some viruses. 

However, for most of the characterized enzymes the physiological role has not been assigned. 

As discussed above, many of these enzymes have a signal peptide, suggesting that they are 

transported across the cytoplasmic membrane, and function to hydrolyze extracellular ester 

compounds, providing carboxylic acids and/or alcohols to be assimilated by the cell. However, 

there are also esterases without a signal peptide that are presumably active on esterified 

substrates that have been transported into the cell. The physiological role of esterases acting 

on carbohydrates is often better understood, e.g. the acetyl esterase of T. maritima is believed 

to be involved in the degradation of xylan, deacetylating xylo-oligosaccharides (as discussed 

in Chapter 5). 

The presence of LipA in A. fulgidus suggests that the organisms is able to hydrolyze 

esterified long-chain fatty acids. A. fulgidus has been isolated from hot oil reservoirs, but 

little is known about the natural substrates of the hyperthermophiles in the hot oil reservoirs. 

Initial experiments with A. fulgidus demonstrated, that it is able to grow anaerobically on oil 

components, such as crude oil, olive oil and arachnic acid, by sulfate reduction 227. The electron 

donor was not identified, but was most likely a fatty acid. Genome analyses revealed that A. 

fulgidus has many putative genes encoding enzymes involved in ß-oxidation as well as esterase 

and lipase genes 219, suggesting it can grow on fatty acids and oils. Growth of A. fulgidus has 

been tested on straight-chain fatty acids from C4 to C18, olive oil, palm oil and sunflower oil. 

A. fulgidus was able to grow on all these substrates using sulfate as terminal electron acceptor 

(personal communication dr. Diana Sousa).
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	 In several publications, it was shown that the production of lipases and esterases is 

induced by adding fatty acids or oils to the growth medium, e.g. the studies by Dalmau et 

al. (2000), and Choi & Lee (2001) 228; 229. To investigate the role of esterases and lipases in 

A. fulgidus, we cultured it on several substrates that could potentially induce the expression 

of esterases and lipases. The different substrates tested were glycerol, butyrate, octanoate, 

palmitate, tributyrate, trioctanoate, palm oil, olive oil, and lactate, with thiosulfate as terminal 

electron receptor. We observed growth on all the substrates tested, except glycerol. A glycerol 

transporter, a glycerol kinase and glycerol-3-phosphate dehydrogenase have been annotated in 

the genome sequence 219. Apparently, A. fulgidus is unable to grow on glycerol as a sole carbon 

source. To investigate whether certain esterase and lipase genes were specifically induced, a 

microarray experiment was set up, in which A. fulgidus was grown batchwise and in a chemostat 

on lactate, octanoate, trioctanoate and palm oil. However, growth in the chemostat was not 

successful for the substrates trioctanoate and palm oil due to very slow growth rates and low 

cell densities compared to growth in serum flasks. Anaerobic hydrolysis of lipids to glycerol and 

fatty acids occurs rapidly, subsequent fatty acid degradation via ß-oxidation proceeds rather 

slowly 230. Due to time limitations, the microarray experiments were terminated (Levisson M., 

Sousa D.Z. and Henstra A.M., unpublished results). 

High pressure and microwave irradiation

The initial project aimed also at investigating the behavior of thermostable enzymes under 

high pressure or microwave irradiation. These methods may open new ways for the tuning of 

enzyme reactions, and thus offers the possibility of expanding the area of biocatalysis in the 

food industry.

High pressure can have a kinetic and an equilibrium effect on enzymatic reactions. 

The kinetic effect is determined by the activation volume of the reaction, meaning that a 

negative activation volume will result in an increase of the reaction rate. The equilibrium effect 

is dependent on the reaction volume in such a way that pressure will shift the equilibrium 

towards the state of lowest volume 231. Thus far, high pressure has hardly been used for 

process optimization, mostly because of the instability of enzymes at high pressure. However, 

recently it was shown that high pressures (up to 1000 MPa) can be applied when an enzyme 

from a hyperthermophilic microorganism is used 232. The use of enzymes to catalyze the 

synthesis of ester bonds is of great interest to industry. However, the synthesis of an ester-

bond between an alcohol and a fatty acid is a condensation reaction in which water and an 

ester are formed. This will lead to an increase in the reaction volume and thus, an unfavorable 

equilibrium. Therefore, ester synthesis under high pressure is not feasible. On the other hand, 

the equilibrium for the hydrolysis of an ester will be positively influenced by high pressure.

Microwave irradiation has been successfully used to accelerate reactions in organic chemistry 
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233; 234. There are two mechanisms associated with microwave heating: dipole polarization and 

ionic conduction 233; 235. A polar molecule (dipole or ion) will continuously align itself with the 

fluctuating electric field. This causes molecular friction and the energy is lost as heat. During 

ionic conduction, as the molecules fluctuate under influence of the microwave field, they 

collide with their neighboring molecules or atoms. These collisions cause agitation or motion, 

creating heat 236. Lately, microwave irradiation has also been used as a tool in biocatalysis. 

Several effects on enzymatic activity have been reported, such as improved stability 237, 

improved rates 238; 239, improved conversion of substrate (Gelo-Pujic 1997), improved activity at 

suboptimal temperatures 240, an improved affinity, and kinetic resolution 239; 241; 242. In contrast, 

there are also several publications that question the beneficial effects of microwave irradiation 

and showed that the observed effects were purely thermal and not related to the microwave 

field 243; 244.  

	 In the course of this project, the esterases EstA and EstB from T. maritima and the 

lipase LipA from A. fulgidus have been investigated for their ability to stereo-selectively 

acylate racemic alcohols. Among the various enzymes and reactions evaluated, the enzyme 

LipA catalyzed the synthesis of 2-octyl acetate using (R,S)-2-octanol and vinyl-acetate as 

substrates, and 2-pentyl acetate using (R,S)-2-pentanol and vinyl-acetate as substrates (Figure 

8.2). The latter reaction was studied at 70°C comparing conventional heating in a waterbath 

and microwave irradiation in a CEM Discover. Care was taken that the experiments in both 

systems were performed under identical circumstances, only changing the mode of heating. In 

addition, the effect of two different solvents, toluene and heptane, was tested. The reaction 

performed in heptane had a two-fold higher rate compared to toluene. We also found that, 

in both toluene and heptane, the heating mode had no significant effect on the rate of the 

reaction. This was also observed in a study by Réjasse et al. (2004) 237. The effect of solvent and 

the heating mode on kinetic resolution is ongoing.

Figure 8.2: Transesterification of (R,S)-2-pentanol and (R,S)-2-octanol with vinyl acetate by LipA. The kinetic 

resolution of LipA is not known. 
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Applications

The enzymes described in this thesis have been tested in a platform, amongst ≥400 other 

commercially available esterases and lipases, at an industrial company for multiple applications. 

Most reactions concerned the selective hydrolysis of a racemic ester, resulting in an optically 

pure product. Because of intellectual property reasons no details can be given on the exact 

composition of these reactions. Nevertheless, in various of the reactions tested, one or more 

of the hyperthermophilic enzymes performed better than the other enzymes in the platform. 

Especially, LipA, EstA and EstB often behaved best in screens of ≥400 different esterases. The 

enzymes showed good conversion, selectivity, and / or activity with the selected substrates. 

These results indicate that there is a lot of potential in the use of carboxyl ester hydrolases 

from hyperthermophiles for industrial applications. 

Novel developments and future perspectives

In recent years, many new hyperthermophilic bacteria and archaea have been isolated. The 

genomes of several of these hyperthermophiles have been sequenced and in future this 

number will increase rapidly due to forthcoming sequencing projects (GOLD genomes online; 
23). This increase in sequence information will accelerate the identification of new carboxylic 

ester hydrolases with new properties. Hitherto, traditional screening has been used to identify 

new enzymes, however, bioinformatics and metagenome-screening will contribute more and 

more to this identification process. A major drawback of metagenome screening is that in order 

to function well, the genes of interest need to be functionally expressed in the heterologous 

screening host. Therefore, recently a new two-host fosmid system for functional screening of 

(meta)genomic libraries from extreme thermophiles was developed 245. This system allows 

the construction of large-insert fosmid libraries in E. coli and the transfer of the recombinant 

libraries to the extreme thermophile T. thermophilus, in combination with high-throughput 

screening (robotics). This system has been proven to have a higher level of functional 

expressed genes and may be of value in the identification of new carboxylic ester hydrolases 

from hyperthermophiles. However, in addition to the identification of new carboxylic ester 

hydrolases also their characterization is indispensable.

	 The classification of esterases into families is an ongoing process and due to the rapid 

increase in new esterase gene sequences, many of the current databases are incomplete. 

A promising approach is the superfamily based approach, which combines theoretical 

and experimental data and can reveal much information about a protein family 246. A new 

completely automatic program capable of constructing these superfamily systems is 3DM 247. 

This program is able to create a new superfamily of the carboxylic ester hydrolases based on 

structural and sequence similarity. In addition, superfamily systems generated by 3DM have 
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also been proven to be powerful tools for understanding and predicting rational modification 

of proteins 248.

	 Many new sequences and protein structures of carboxylic ester hydrolases are 

becoming available. These structures can provide a basis for modern methods of enzyme 

engineering. Apart from exploiting natural evolution, optimization by computational design 

and laboratory evolution is a major challenge for obtaining tailor-made enzymes for industrial 

applications 249. In the past, these methods have been successfully used to alter enzymes to 

meet specific demands, including increased stability, activity, and enantioselectivity 250. In 

future, the identification of new esterases, together with advanced engineering strategies 

and high-throughput screening systems will lead to improved thermostable esterases able to 

perform a vast array of reactions. 
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Figure 1.3: Canonical fold of α/β-hydrolases. In a) Topology diagram, with the strands indicated by red arrows and 
the helices by cyan cylinders. The positions of the catalytic residues are indicated. In b-d) the structures of three 
hyperthermophilic esterases: b) the carboxylesterase AFEST from A. fulgidus (pdb 1JJI), c) the esterase EstA from 
T. maritima (pdb 3DOH), and d) the acylpeptide hydrolase apAPH from A. pernix (pdb 1VE6). 
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Figure 4.1: (a) Overall fold of the esterase EstA. The N- and C-terminal ends are indicated. The figure was generated 
using Pymol. (b) Topology diagram for EstA with the helices displayed as cyan cylinders and the strands as red 
arrows. The positions of the catalytic residues are indicated. 
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Figure 4.2: Comparison of the EM projection maps of the EstA hexamer. Top view (a), side view (b) and 10 degrees 
off side view (c). Two-dimensional projection maps obtained by statistical analysis and classification (a - c), the 
comparable two-dimensional projection maps with 15 Å resolution (d - f) generated from the proposed EstA 
hexameric structure (g - i). The scale bar equals 50 Å.
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Figure 4.3: Stereoview of the EstA catalytic site with the bound SO
4 adduct shown. The catalytic triad residues 

are shown as sticks with the hydrogen bonds shown as dashed black lines. Observed density for the bound SO4 is 
contoured. These images were generated using Pymol.

Figure 4.4: Stereoview of the EstA catalytic site with the diethyl phosphate (DEP) intermediate of the inhibitor 
paraoxon covalently bound to the catalytic serine. The catalytic triad residues are shown as sticks with the 
hydrogen bonds shown as dashed black lines. Observed density for the bound diethyl phosphate is contoured. 
These images were generated using Pymol.
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Figure 4.5: Substrate binding gorge. (a) Stereoview of the active site with the bound diethyl phosphate intermediate 
covalently bound to the catalytic serine. Key residues of the catalytic gorge are shown as sticks with the hydrogen 
bonds shown in dashed lines. (b) Surface representation of the EstA catalytic gorge with some of the key residues 
and the intermediate DEP shown in stick mode. These images were generated using Pymol.
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Figure 5.1: (a) Overall fold of the acetyl esterase AceA. The Figure was generated using Pymol (DeLano). (b) 
Topology diagram for AceA, with the helices displayed as cyan cylinders and the strands displayed as red arrows. 
The positions of the catalytic residues are indicated. The Figure was generated using TopDraw.
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Figure 5.2: (a) A “sliced” image of the AceA hexamer showing the two entrances on each side of the ‘doughnut’ 
and the internal cavity, and (b) Surface representation of the biological unit of AceA-SM, AceA and cephalosporin 
C deacetylase (CAH) from B. subtilus with each monomer in a different color.
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Figure 5.3: Superposition of AceA (yellow) with (a) the cephalosporin C deacetylase (CAH) from B. subtilus (PDB: 
1ODS; blue) and (b) the α/β-hydrolase domain of the acylpeptide hydrolase/esterase apAPH from A. pernix K1 
(PDB: 1VE6; light blue).

Figure 5.4: A view of the AceA catalytic site. (a) Native AceA with the bound chloride ion, (b) AceA in complex 
with PMSF and (c) AceA in complex with paraoxon. The catalytic residues are shown as sticks, with the hydrogen 
bonds shown as dashed lines. Green (AceA), cyan (AceA-PMS) or blue (AceA-DEP) were used for the carbon 
atoms, red was used for oxygen atoms. The omit maps for Ser188 with the phenylmethyl sulfonyl (PMS) and 
diethylphosphate (DEP) moieties are contoured at 1σ level.   
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Figure 7.2: 3D model of LipA. In a) The overall structure of the N-terminal domain of LipA, and b) Residues of the 
potential catalytic triad.

Figure 5.5: Movement of Ser188 Oγ from conformation A to B. The Oγ atom of the Ser188 is rotated about 110° 
to the opposite direction between native AceA and the complexed structures. Conformation A in AceA (green), 
and conformation B in AceA-PMS (cyan) and AceA-DEP (blue) are shown. Similar colors for each structure were 
used as in Figure 5.4. 



153

Appendix II: Color figures

Figure 7.5: (a) Overall fold of the lipase (pdb: 2ZYI). The N-terminal and C-terminal ends are indicated. The helices 
are displayed in cyan and the strands in red. (b) Superposition of our LipA (blue) and 2ZYI (green). A stearic acid 
that was present in the 2ZYI structure is shown in red. 
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Een veelgebruikte techniek in de moderne biotechnologie is de synthese van producten met 

behulp van enzymen. Enzymen genieten vaak de voorkeur boven chemische processen vanwege 

een hogere productzuiverheid, minder restproducten, laag energieverbruik en selectievere 

omzettingen. Een belangrijke groep enzymen, die veel gebruikt wordt in de industrie, zijn de 

carboxylester-hydrolases. Deze enzymen katalyseren de hydrolyse van esterverbindingen in 

een waterige omgeving, maar in organische oplosmiddelen kunnen ze eveneens de synthese 

en de trans-esterificatie-reactie katalyseren. 

De carboxylester-hydrolases worden veelal onderverdeeld in twee groepen, namelijk 

de esterases en de lipases. Het onderscheid tussen beide groepen is niet altijd duidelijk. 

Het enige nog geldige onderscheid is dat esterases een voorkeur hebben voor korte keten 

acyl-esters (korter dan 10 koolstofatomen) en dat lipases een voorkeur hebben voor lange 

keten acyl-esters (langer dan 10 koolstofatomen) en ook actief zijn op in water onoplosbare 

substraten (micellen). Beide enzymgroepen delen echter structurele en functionele 

kenmerken, waaronder een katalytische triade, een α/β-hydrolase-vouwing, en een cofactor 

onafhankelijke activiteit. De katalytische triade bestaat meestal uit een nucleofiele serine in 

een pentapeptide motief (GxSxG), en een zuur residu (asparaginezuur of glutaminezuur) dat 

via een waterstofbrug gebonden is aan een histidine-residu. 

Het gebruik van enzymen in de biotechnologie heeft ook nadelen. Veel reacties 

vinden plaats onder hoge temperaturen en/of in organische oplosmiddelen. Aangezien deze 

omstandigheden schadelijk zijn voor de meeste enzymen is er juist een vraag naar meer 

stabiele enzymen. De enzymen van hyperthermofielen zijn daarom een goede keuze omdat 

die vaak van nature al een thermische en chemische stabiliteit vertonen. Hyperthermofielen 

zijn micro-organismen die optimaal leven bij temperaturen boven de 80°C.

Dit proefschrift beschrijft de resultaten van de biochemische en structurele analyse 

van verschillende thermostabiele esterases, afkomstig uit een hyperthermofiele bacterie 

(Thermotoga maritima) en een hyperthermofiele archaeon (Archaeoglobus fulgidus). De 

in deze studie verkregen informatie verschaft fundamentele kennis, die kan fungeren als 

basis voor moderne methoden van enzym-engineering, met als doel het verbeteren van de 

toepasbaarheid van deze enzymen.

Hoofdstuk één van dit proefschrift geeft een overzicht van alle tot nu toe 

gekarakteriseerde carboxylester-hydrolases uit hyperthermofiele bacteriën en archaea. 

Carboxylester-hydrolases zijn belangrijke biokatalysatoren met toepassingen in de medische 

biotechnologie, in wasmiddelen, in organische synthese, in biodieselproductie (methylester), 

in smaak- en aromasynthese en in andere voedingsgerelateerde processen. Op dit moment, zijn 

de meeste door de industrie gebruikte esterases afkomstig uit mesofielen (T
opt <60°C) omdat 

zij als eerste zijn geïdentificeerd en gekarakteriseerd. Analyse van de genoomsequenties van 

hyperthermofiele bacteriën en archaea laat zien dat ook de hyperthermofiele wereld een breed 

repertoire aan esterases heeft, die zowel isolatie als een verdere karakterisatie verdienen.
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Thermotoga maritima esterases 

Het merendeel van de gekarakteriseerde esterases beschreven in dit proefschrift zijn 

afkomstig uit Thermotoga maritima. T. maritima is een hyperthermofiele anaërobe bacterie 

die geïsoleerd is uit geothermaal verwarmde mariene sedimenten bij Vulcano, Italië. Het 

micro-organisme groeit tussen de 55°C en 90°C (Topt = 80°C) en kan een aantal eenvoudige en 

complexe koolhydraten metaboliseren, zoals glucose, sucrose, cellulose, xylaan en zetmeel. 

Door middel van een bioinformatica-analyse van het genoom van T. maritima werden 

verschillende genen, die potentieel coderen voor nieuwe esterases, geïdentificeerd, namelijk: 

een hypothetisch eiwit (locus tag: TM0033), een vermeend esterase (TM0053), een voorspeld 

acetyl xylaan esterase (TM0077), een hypothetisch eiwit (TM0336), een vermeend esterase 

(TM1160), en een vermeend lipase (TM1350).

Hoofdstuk twee beschrijft de identificatie, heterologe productie, zuivering en 

biochemische karakterisatie van een esterase (EstD, TM0336). Het enzym was oorspronkelijk 

geannoteerd als een hypothetisch eiwit. Echter, een meer gedetailleerde sequentieanalyse 

onthulde de aanwezigheid van een α/β-hydrolase-vouwing en een nucleofiele serine in 

een pentapeptide motief, hetgeen duidt op een mogelijke rol in esterhydrolyse. EstD heeft 

inderdaad esterase-activiteit met een voorkeur voor acyl-esters met een korte keten (C4-C8). 

Zoals verwacht van een hyperthermofiel enzym heeft EstD een optimale activiteit bij 95°C 

en is stabiel bij hoge temperaturen, met een half-waarde tijd van 1 uur bij 100°C. Een model 

van de eiwitstructuur werd geconstrueerd en gaf inzicht in het actieve centrum en mogelijke 

substraatbinding van dit enzym. De residuen die betrokken zijn bij de katalyse zijn door 

mutatie- en inhibitiestudies bevestigd. Een fylogenetische analyse van EstD toonde aan dat dit 

enzym slechts ver verwant is aan andere esterases en daarom hebben we een nieuwe familie 

voor dit enzym voorgesteld.

Het derde hoofdstuk beschrijft het kloneren, zuiveren, kristalliseren en de voorlopige 

structuuranalyse van een esterase (EstA, TM0033). EstA is ook een esterase dat in eerste 

instantie werd aangeduid als een hypothetisch eiwit, maar tevens typische esterase-kenmerken 

heeft. Een meervoudige sequentievergelijking suggereerde dat EstA is samengesteld uit twee 

domeinen: een C-terminaal domein met een voorspelde α/β-hydrolase-vouwing en een 

N-terminaal domein dat geen homologie heeft met bekende eiwitten en dus geen functie kan 

worden toegewezen. Zodoende werden kristallisatieonderzoeken ingezet om zowel de functie 

van dit nieuwe N-terminale domein te ontrafelen, als om inzicht te krijgen in de moleculaire 

basis van substraatherkenning en katalyse door dit enzym. Natief en selenomethionine 

gesubstitueerd EstA werden gekristalliseerd door middel van de “hanging-drop vapour-

diffusion” (hangende-druppel dampdiffusie) methode. Kristallen groeiden optimaal in 1,0 M 

lithiumsulfaat monohydraat en 2% (w/v) polyethyleenglycol 8000. Een dataset werd verzameld 

tot 2.6 Å resolutie en een eerste analyse wordt beschreven.

Na deze eerste structuuranalyse, werden de structuur en de verschillende biochemische 

eigenschappen van EstA in meer detail onderzocht. Dit staat beschreven in hoofdstuk vier. 
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EstA vertoonde esterase-activiteit met een voorkeur voor esters met korte acyl-ketens (C2-

C10). De structuren van zowel natief EstA, als EstA in complex met de competitieve remmer 

paraoxon, zijn bepaald. De structuur van EstA blijkt, zoals was voorspeld, te zijn samengesteld 

uit twee verschillende domeinen: een geconserveerd C-terminaal domein met het katalytische 

centrum en een N-terminaal domein, gelijkend op de immunoglobuline-vouwing. Uit analyse 

van de quaternaire structuur met  behulp van massaspectrometrie en dynamic light scattering 

(dynamische licht verstrooiing) bleek dat EstA in oplossing voornamelijk bestaat als hexameer. 

Elektronenmicroscopie bevestigde dat de hexameer in oplossing identiek is aan de hexameer 

in het kristal. Het immunoglobuline-achtige domein van EstA lijkt een belangrijke rol te spelen 

in het vormen van de EstA hexameer en in de activiteit van dit enzym. 

In hoofdstuk vijf onderzochten we de kristalstructuur en verschillende biochemische 

eigenschappen van een acetylesterase / cephalosporine C deacetylase (AceA, TM0077), 

behorende tot de carbohydraat esterase familie zeven (CE7). Enzymen die behoren tot CE7 

zijn ongebruikelijk omdat zij actief zijn op zowel geacetyleerde xylo-oligosachariden als op 

het antibioticum cephalosporine C. AceA blijkt actief te zijn op een verscheidenheid aan 

geacetyleerde verbindingen, waaronder ook cephalosporine C. De activiteit op onnatuurlijk 

p-nitrofenyl-ester substraten is beperkt tot korte keten acyl-esters (C2-C3). De kristalstructuur 

van AceA werd opgehelderd en onthulde een klassieke α/β-hydrolase-vouwing. Inzicht in 

substraatbinding werd verkregen door co-kristallisatie-structuren met de remmers PMSF en 

paraoxon. Na binding van deze remmers veranderde de katalytische serine van conformatie. Wij 

speculeren dat deze verandering nodig is, zodat de waterstofbruggen met de “oxyanion hole” 

correct gevormd kunnen worden en zodoende, stabilisatie van de tetrahedral intermediair 

tijdens katalyse bewerkstelligen

In hoofdstuk zes staat het kloneren, zuiveren, kristalliseren, en een gedeeltelijke 

biochemische karakterisatie van een esterase (EstB, TM0053) beschreven. EstB vertoont 

esterase-activiteit met een voorkeur voor de middellange keten acyl-esters (C8-C10). EstB 

heeft een optimale activiteit bij ongeveer 95°C en een pH van 9. Gelfiltratie toont aan dat EstB 

in oplossing waarschijnlijk ook aanwezig is als een hexameer. EstB werd gekristalliseerd door 

middel van de “hanging-drop vapour-diffusion” methode en een dataset is verzameld tot ~2,8 

Å resolutie. Er wordt momenteel gewerkt aan het oplossen van de structuur.

Archaeoglobus fulgidus lipase 

Het enige echte lipase dat we ontdekt hebben is afkomstig uit Archaeoglobus fulgidus. A. 

fulgidus is een hyperthermofiel sulfaat reducerend archaeon die aanvankelijk is geïsoleerd 

nabij het eiland Vulcano, Italië. Het organisme groeit optimaal bij 83°C en kan leven op diverse 

koolstofbronnen zoals vetzuren, aminozuren, organische zuren, en CO. Archaeoglobus soorten 

zijn ook aangetroffen in reservoirwater van offshore olievelden, waar ze verantwoordelijk 

worden gehouden voor “reservoirverzuring”. Het genoom van A. fulgidus blijkt verscheidene 
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genen te bevatten die potentieel coderen voor nieuwe esterases: een carboxylesterase (est-

1) (locus tag: AF0865), een carboxylesterase (est-2) (AF1537), een carboxylesterase (AFEST) 

(AF1716), een lysofosfolipase (AF1753), een voorspeld lipase (AF1763), en een carboxylesterase 

(est-3) (AF2336). 

De functie van het voorspelde lipase (LipA, AF1753) werd onderzocht. In hoofdstuk 

7 wordt het kloneren, zuiveren en een gedeeltelijke karakterisatie van dit lipase beschreven. 

LipA blijkt lipase-activiteit te vertonen met een voorkeur voor middellange keten acyl-esters 

(C10). Met behulp van kwalitatieve plaattesten is gebleken dat LipA de hoogste activiteit heeft 

met triacylglycerolesters van octanoaat en palmitaat. Hieruit is duidelijk geworden dat LipA 

inderdaad een lipase is. LipA heeft optimale activiteit bij ongeveer 95°C en bij een pH van 11. 

In verscheidene lipases is de toegang tot het actieve centrum geregeld door de positie van een 

“dekselstructuur”, die van invloed kan zijn op de activiteit en de selectiviteit van het enzym. 

Of LipA ook een dekselstructuur heeft is niet bekend, maar een kristalstructuur kan inzicht 

geven in substraatbinding en katalyse van dit enzym. LipA is gekristalliseerd met behulp van 

de “hanging-drop vapour-diffusion” methode en een dataset is verzameld tot ~2,6 Å resolutie. 

Er wordt momenteel gewerkt aan het oplossen van de structuur. Dit is het eerste lipase dat is 

geïsoleerd uit een hyperthermofiel archaeon. 

Nieuwe ontwikkelingen en vooruitzichten 

In de afgelopen jaren zijn veel nieuwe hyperthermofiele bacteriën en archaea geïsoleerd. De 

genoomsequentie van verschillende van deze hyperthermofielen is bepaald en in de toekomst 

zal dit aantal snel toenemen als gevolg van het grote aantal lopende sequencing projecten 

(GOLD genomes online). Deze toename van sequentie-informatie zal de identificatie van 

nieuwe carboxylester-hydrolases, met nieuwe eigenschappen, versnellen. Tot nu toe wordt 

voor de identificatie van nieuwe enzymen veeal een traditionele screening gebruikt, echter, 

in de toekomst zal bioinformatica en metagenoom-screening meer en meer bijdragen aan het 

identificatieproces. Een groot nadeel van metagenoom-screening is dat de eiwitten die van 

belang zijn functioneel moeten worden geproduceerd in de heterologe host. Daarom is er 

onlangs een nieuw systeem ontwikkeld voor het functioneel screenen van (meta)genomische 

banken van extreme thermofielen. Dit systeem maakt het mogelijk om fosmid-banken in 

E. coli te maken en dan over te brengen naar de extreem thermofiele T. thermophilus. Dit 

systeem heeft bewezen een groter aantal genen functioneel tot expressie te brengen en kan 

in de toekomst waardevol zijn bij de identificatie van nieuwe carboxylester-hydrolases uit 

hyperthermofielen. In aanvulling op de identificatie van nieuwe carboxylester-hydrolases is 

ook hun karakterisatie onontbeerlijk. 

De indeling van esterases in families is een voortdurend proces en als gevolg van 

de snelle toename in nieuwe esterase-gensequenties zijn veel van de huidige databases 

onvolledig. Een nieuwe veelbelovende aanpak is gebaseerd op superfamilies, waarbij 
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theoretische en experimentele gegevens worden verenigd en daardoor veel informatie kan 

onthullen over een eiwitfamilie. Een nieuw volledig automatisch programma dat in staat is 

deze superfamilie-systemen te bouwen is 3DM. Dit programma heeft de mogelijkheid om een 

nieuwe superfamilie van de carboxylester-hydrolases te maken, gebaseerd op structurele en 

sequentiële overeenkomsten. Daarnaast hebben superfamilie-systemen, gegenereerd door 

3DM, ook bewezen krachtige hulpmiddelen te zijn voor het rationeel modificeren van eiwitten. 

Veel nieuwe sequenties en eiwitstructuren van carboxylester-hydrolases zullen 

beschikbaar komen. Deze structuren kunnen een basis vormen voor moderne methoden van 

enzym-engineering. Afgezien van het benutten van de natuurlijke evolutie, zijn optimalisatie 

door computational design en laboratoriumevolutie een grote uitdaging voor het verkrijgen 

van op maat gemaakte enzymen voor industriële toepassingen. In het verleden, zijn deze 

methoden met succes gebruikt om enzymen aan te passen voor specifieke eisen, zoals een 

verbeterde stabiliteit, activiteit en enantioselectiviteit. In de toekomst zal de identificatie 

van nieuwe esterases, samen met geavanceerde engineering-technieken en high-throughput 

screening-systemen leiden tot betere thermostabiele esterases die in staat zullen zijn om een 

breed scala aan reacties te katalyseren.
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Mijn proefschrift is dan eindelijk af!!! Graag wil ik daarom van de gelegenheid gebruik maken 

om alle mensen te bedanken die, ieder op hun eigen manier, hebben bijgedragen aan het tot 

stand komen van dit proefschrift.

Op de eerste plaats wil ik graag mijn dagelijkse begeleider en tevens co-promotor 

Servé Kengen bedanken. Servé, ik heb het erg getroffen met een begeleider zoals jij. Bedankt, 

dat ik (na te kloppen) altijd bij je binnen kon lopen met mijn vragen en problemen. Jouw raad, 

optimisme en vertrouwen waren voor mij onmisbaar. Ook wil ik graag mijn promotor John 

van der Oost van harte bedanken. John, ik ben blij dat ik alweer enige jaren in jouw groep 

mag werken, eerst als student, toen AIO en nu als PostDoc. Jouw enorme enthousiasme en 

optimisme inspireerden mij en hadden een positief effect op mijn werk. Zowel jij als Servé 

hebben mij de vrijheid gegeven om mijn onderzoek grotendeels zelf in te vullen en daarvoor 

ben ik jullie beiden erg dankbaar. Mijn tweede promotor, Willem de Vos, wil ik ook graag 

bedanken. Willem, je stond wat verder af van mijn onderzoek, maar ik heb dankbaar gebruik 

gemaakt van je commentaar en adviezen wanneer mijn onderzoek ter sprake kwam. 

Natuurlijk, nu mijn kamergenoten, paranimfen, fotograaf en bovenal goede vrienden 

Marco, John en Marcel. Ik wil jullie bedanken omdat jullie willen optreden tijdens mijn promotie. 

Mede dankzij jullie ging ik met plezier naar mijn werk. We hebben samen veel lol gehad, zowel 

op onze kamer als tijdens de lunch en koffiepauzes. Samen lachen om de grappen van John en 

Marco, het brouwen van speciale biertjes, tafeltennis na de lunch, barbecues in Wageningen 

en Haaksbergen, ik heb het allemaal samen met jullie meegemaakt. Marcel, het reizen door 

Zuid-Afrika was super en zeker voor herhaling vatbaar. John, wanneer gaan we het volgende 

biertje brouwen? En Marco, jij hebt het momenteel druk met schrijven en ik wens je daarom 

veel succes met het afronden van je eigen proefschrift.  

Verder wil ik graag alle mensen van de BacGen groep bedanken voor alle hulp en de 

gezellige tijd. Ans, en later Sjon, bedankt voor jullie ondersteuning op het lab. Stan, jij bent 

van alle markten thuis, bedankt voor je raad en adviezen. Harmen, als bioinformatica-goeroe, 

heb ik je regelmatig moeten raadplegen. Bart, Mark M. en Katrin, voor de “social talk” tijdens 

lunch en koffiepauzes. Suzanne en Bram, voor de gezelligheid op de werkkamer. Alle andere 

Bacgenners: Jaapie, Jasper W., Johan, Ronnie, Krisztina, Hao, Colin, Marke, Fabian, Lei, Karin, 

Matthijs, Pawel, Magnus, Edze, Pierpaolo, Ratnesh, Teunie, Rie, Nicolas, Vincent en Ingrid, 

allemaal bedankt!!!

Voor de dagelijkse gang van zaken op de vakgroep ben ik dank verschuldigd aan Wim, 

Nees, Gosse, Jannie, Renée, Francis en Anja. Verder wil ik ook iedereen in één van de andere 
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groepen binnen Microbiologie (MicPhys, MolEco en FunGen) bedanken voor de goede sfeer 

op het lab, tijdens de koffie en lunchpauzes, labuitjes, etc.

Tijdens mijn onderzoek heb ik samengewerkt met een groot aantal mensen van zowel 

binnen als buiten Wageningen. 

Ik wil graag Geb Visser en Maurice Franssen van Organische Chemie bedanken voor 

hun hulp, advies en samenwerking. Ondanks meerdere pogingen voor biokatalyse onder 

magnetronstraling, heeft dit helaas niet geresulteerd in de beoogde verschillen in enzym 

kinetiek. 

Marieke Bruins en Anja Janssen van Proceskunde wil ik graag bedanken voor het nuttige 
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