98 research outputs found
Changes in benthos following the clean-up of a severely metal-polluted cove in the Hudson River estuary: Environmental restoration or ecological disturbance?
We studied changes in macrobenthic communities following the environmental clean-up of metal-polluted (cadmium, nickel, and cobalt) sediments in Foundry Cove, a small inlet within the Hudson River estuary of New York. We used a BACI-style experiment to test the hypotheses that high levels of cadmium in sediments change macrobenthic assemblages relative to unpolluted areas, and removal of metals (especially cadmium) by dredging will restore the benthos, such that benthic fauna in Foundry Cove are not different from unpolluted areas. In 1984, prior to the restoration work, there were no significant differneces between macrobenthic assemblages in polluted and unpolluted locations, indicating that cadmium had little effect on community structure. The lack of an observed toxicity effect may have been caused by the compensatory evolution of resistance to cadmium in dominant organisms. Six years after the restoration work and despite a substantial reduction in metal pollution, there were lower abundances of oligochaetes, nematodes, and chironomids and a higher abundance of polychaetes at Foundry Cove relative to reference locations. Correlative analyses identified greater sediment compaction caused by dredging at Foundry, Cove as a possible cause of faunal differences
When a 520 million-year-old Chengjiang fossil meets a modern micro-CT - a case study
The 520 million-year-old Chengjiang biota of China (UNESCO World Heritage) presents the earliest known evidence of the so-called Cambrian Explosion. Studies, however, have mainly been limited to the information exposed on the surface of the slabs. Thus far, structures preserved inside the slabs were accessed by careful removal of the matrix, in many cases with the unfortunate sacrifice of some "less important" structures, which destroys elements of exceptionally preserved specimens. Here, we show for the first time that microtomography (micro-CT) can reveal structures situated inside a Chengjiang fossil slab without causing any damage. In the present study a trilobitomorph arthropod (Xandarella spectaculum) can be reliably identified only with the application of micro-CT. We propose that this technique is an important tool for studying three-dimensionally preserved Chengjiang fossils and, most likely, also those from other biota with a comparable type of preservation, specifically similar iron concentrations
Gradual phyletic evolution at the generic level in early Eocene omomyid primates
Analysis of dental morphology in over 600 stratigraphically controlled specimens of tarsier-like primates from early Eocene strata in Bighorn Basin, Wyoming, provides important new data for understanding the tempo and mode of evolution in primates
Variation in Size and Growth of the Great Scallop Pecten maximus along a Latitudinal Gradient
Understanding the relationship between growth and temperature will aid in the evaluation of thermal stress and threats to ectotherms in the context of anticipated climate changes. Most Pecten maximus scallops living at high latitudes in the northern hemisphere have a larger maximum body size than individuals further south, a common pattern among many ectotherms. We investigated differences in daily shell growth among scallop populations along the Northeast Atlantic coast from Spain to Norway. This study design allowed us to address precisely whether the asymptotic size observed along a latitudinal gradient, mainly defined by a temperature gradient, results from differences in annual or daily growth rates, or a difference in the length of the growing season. We found that low annual growth rates in northern populations are not due to low daily growth values, but to the smaller number of days available each year to achieve growth compared to the south. We documented a decrease in the annual number of growth days with age regardless of latitude. However, despite initially lower annual growth performances in terms of growing season length and growth rate, differences in asymptotic size as a function of latitude resulted from persistent annual growth performances in the north and sharp declines in the south. Our measurements of daily growth rates throughout life in a long-lived ectothermic species provide new insight into spatio-temporal variations in growth dynamics and growing season length that cannot be accounted for by classical growth models that only address asymptotic size and annual growth rate
Response of Benthic Foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal)
This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to metals enrichment.CNPq [401803/2010-4]; [PEst-OE/CTE/UI4035/2014]info:eu-repo/semantics/publishedVersio
- …