22 research outputs found

    Fecal microbiome and food allergy in pediatric atopic dermatitis: A cross-sectional pilot study

    Get PDF
    Background: Exposure to microbes may be important in the development of atopic disease. Atopic diseases have been associated with specific characteristics of the intestinal microbiome. The link between intestinal microbiota and food allergy has rarely been studied, and the gold standard for diagnosing food allergy (double-blind placebo-controlled food challenge [DBPCFC]) has seldom been used. We aimed to distinguish fecal microbial signatures for food allergy in children with atopic dermatitis (AD). Methods: Pediatric patients with AD, with and without food allergy, were included in this cross-sectional observational pilot study. AD was diagnosed according to the UK Working Party criteria. Food allergy was defined as a positive DBPCFC or a convincing clinical history, in combination with sensitization to the relevant food allergen. Fecal samples were analyzed using 16S rRNA microbial analysis. Microbial signature species, discriminating between the presence and absence food allergy, were selected by elastic net regression. Results: Eighty-two children with AD (39 girls) with a median age of 2.5 years, and 20 of whom were diagnosed with food allergy, provided fecal samples. Food allergy to peanut and cow's milk was the most common. Six bacterial species from the fecal microbiome were identified, that, when combined, distinguished between children with and without food allergy: Bifidobacterium breve, Bifidobacterium pseudocatenulatum, Bifidobacterium adolescentis, Escherichia coli, Faecalibacterium prausnitzii, and Akkermansia muciniphila (AUC 0.83, sensitivity 0.77, specificity 0.80). Conclusions: In this pilot study, we identified a microbial signature in children with AD that discriminates between the absence and presence of food allergy. Future studies are needed to confirm our findings

    Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals With Steatohepatitis

    Get PDF
    The intestinal microbiota has been linked to the development and prevalence of steatohepatitis in humans. Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low-animal-protein diet, which is thought to be mediated by gut microbiota. However, data on causality between these observations in humans is scarce. In this regard, fecal microbiota transplantation (FMT) using healthy donors is safe and is capable of changing microbial composition in human disease. We therefore performed a double-blind randomized controlled proof-of-principle study in which individuals with hepatic steatosis on ultrasound were randomized to two study arms: lean vegan donor (allogenic n = 10) or own (autologous n = 11) FMT. Both were performed three times at 8-week intervals. A liver biopsy was performed at baseline and after 24 weeks in every subject to determine histopathology (Nonalcoholic Steatohepatitis Clinical Research Network) classification and changes in hepatic gene expression based on RNA sequencing. Secondary outcome parameters were changes in intestinal microbiota composition and fasting plasma metabolomics. We observed a trend toward improved necro-inflammatory histology, and found significant changes in expression of hepatic genes involved in inflammation and lipid metabolism following allogenic FMT. Intestinal microbial community structure changed following allogenic FMT, which was associated with changes in plasma metabolites as well as markers of .Conclusion:Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect on intestinal microbiota composition, which is associated with beneficial changes in plasma metabolites and markers of steatohepatitis.Peer reviewe

    Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition

    Get PDF
    The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.Peer reviewe

    Standards in semen examination:publishing reproducible and reliable data based on high-quality methodology

    Get PDF
    Biomedical science is rapidly developing in terms of more transparency, openness and reproducibility of scientific publications. This is even more important for all studies that are based on results from basic semen examination. Recently two concordant documents have been published: the 6th edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen, and the International Standard ISO 23162:2021. With these tools, we propose that authors should be instructed to follow these laboratory methods in order to publish studies in peer-reviewed journals, preferable by using a checklist as suggested in an Appendix to this article.Peer reviewe

    Standards in semen examination: publishing reproducible and reliable data based on high-quality methodology

    Get PDF
    Biomedical science is rapidly developing in terms of more transparency, openness and reproducibility of scientific publications. This is even more important for all studies that are based on results from basic semen examination. Recently two concordant documents have been published: the 6th edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen, and the International Standard ISO 23162:2021. With these tools, we propose that authors should be instructed to follow these laboratory methods in order to publish studies in peer-reviewed journals, preferable by using a checklist as suggested in an Appendix to this article

    Intestinal Fungal Dysbiosis Is Associated With Visceral Hypersensitivity in Patients With Irritable Bowel Syndrome and Rats

    Get PDF
    BACKGROUND & AIMS: Visceral hypersensitivity is one feature of irritable bowel syndrome (IBS). Bacterial dysbiosis might be involved in the activation of nociceptive sensory pathways, but there have been few studies of the role of the mycobiome (the fungal microbiome) in the development of IBS. We analyzed intestinal mycobiomes of patients with IBS and a rat model of visceral hypersensitivity. METHODS: We used internal transcribed spacer 1-based metabarcoding to compare fecal mycobiomes of 18 healthy volunteers with those of 39 patients with IBS (with visceral hypersensitivity or normal levels of sensitivity). We also compared the mycobiomes of Long-Evans rats separated from their mothers (hypersensitive) with non-handled (normally sensitive) rats. We investigated whether fungi can cause visceral hypersensitivity using rats exposed to fungicide (fluconazole and nystatin). The functional relevance of the gut mycobiome was confirmed in fecal transplantation experiments: adult maternally separated rats were subjected to water avoidance stress (to induce visceral hypersensitivity), then given fungicide and donor cecum content via oral gavage. Other rats subjected to water avoidance stress were given soluble beta-glucans, which antagonize C-type lectin domain family 7 member A (CLEC7A or DECTIN1) signaling via spleen-associated tyrosine kinase (SYK), a SYK inhibitor to reduce visceral hypersensitivity, or vehicle (control). The sensitivity of mast cells to fungi was tested with mesenteric windows (ex vivo) and the human mast cell line HMC-1. RESULTS: a diversity (Shannon index) and mycobiome signature (stability selection) of both groups of IBS patients differed from healthy volunteers, and the mycobiome signature of hypersensitive patients differed from that of normally sensitive patients. We observed mycobiome dysbiosis in rats that had been separated from their mothers compared with nonhandled rats. Administration of fungicide to hypersensitive rats reduced their visceral hypersensitivity to normal levels of sensitivity. Administration of cecal mycobiomes from rats that had been separated from their mothers (but not non-handled mycobiome) restored hypersensitivity to distension. Administration of soluble b-glucans or a SYK inhibitor reduced visceral hypersensitivity, compared with controls. Particulate b-glucan (a DECTIN-1 agonist) induced mast cell degranulation in mesenteric windows and HMC-1 cells responded to fungal antigens by release of histamine. CONCLUSIONS: In an analysis of patients with IBS and controls, we associated fungal dysbiosis with IBS. In studies of rats, we found fungi to promote visceral hypersensitivity, which could be reduced by administration of fungicides, soluble beta-glucans, or a SYK inhibitor. The intestinal fungi might therefore be manipulated for treatment of IBS-related visceral hypersensitivit

    Epigenetic Signatures Discriminate Patients With Primary Sclerosing Cholangitis and Ulcerative Colitis From Patients With Ulcerative Colitis

    No full text
    Background: Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease affecting the intra- and extrahepatic bile ducts, and is strongly associated with ulcerative colitis (UC). In this study, we explored the peripheral blood DNA methylome and its immune cell composition in patients with PSC-UC, UC, and healthy controls (HC) with the aim to develop a predictive assay in distinguishing patients with PSC-UC from those with UC alone. Methods: The peripheral blood DNA methylome of male patients with PSC and concomitant UC, UC and HCs was profiled using the Illumina HumanMethylation Infinium EPIC BeadChip (850K) array. Differentially methylated CpG position (DMP) and region (DMR) analyses were performed alongside gradient boosting classification analyses to discern PSC-UC from UC patients. As observed differences in the DNA methylome could be the result of differences in cellular populations, we additionally employed mass cytometry (CyTOF) to characterize the immune cell compositions. Results: Genome wide methylation analysis did not reveal large differences between PSC-UC and UC patients nor HCs. Nonetheless, using gradient boosting we were capable of discerning PSC-UC from UC with an area under the receiver operator curve (AUROC) of 0.80. Four CpG sites annotated to the NINJ2 gene were found to strongly contribute to the predictive performance. While CyTOF analyses corroborated the largely similar blood cell composition among patients with PSC-UC, UC and HC, a higher abundance of myeloid cells was observed in UC compared to PSC-UC patients. Conclusion: DNA methylation enables discerning PSC-UC from UC patients, with a potential for biomarker development

    Multiomics Analysis Provides Novel Pathways Related to Progression of Heart Failure

    Get PDF
    Background: Despite major advances in pharmacological treatment for patients with heart failure, residual mortality remains high. This suggests that important pathways are not yet targeted by current heart failure therapies. Objectives: We sought integration of genetic, transcriptomic, and proteomic data in a large cohort of patients with heart failure to detect major pathways related to progression of heart failure leading to death. Methods: We used machine learning methodology based on stacked generalization framework and gradient boosting algorithms, using 54 clinical phenotypes, 403 circulating plasma proteins, 36,046 transcript expression levels in whole blood, and 6 million genomic markers to model all-cause mortality in 2,516 patients with heart failure from the BIOSTAT-CHF (Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure) study. Results were validated in an independent cohort of 1,738 patients. Results: The mean age of the patients was 70 years (Q1-Q3: 61-78 years), 27% were female, median N-terminal pro–B-type natriuretic peptide was 4,275 ng/L (Q1-Q3: 2,360-8,486 ng/L), and 7% had heart failure with preserved ejection fraction. During a median follow-up of 21 months, 657 (26%) of patients died. The 4 major pathways with a significant association to all-cause mortality were: 1) the PI3K/Akt pathway; 2) the MAPK pathway; 3) the Ras signaling pathway; and 4) epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results were validated in an independent cohort of 1,738 patients. Conclusions: A systems biology approach integrating genomic, transcriptomic, and proteomic data identified 4 major pathways related to mortality. These pathways are related to decreased activation of the cardioprotective ERBB2 receptor, which can be modified by neuregulin.</p
    corecore