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BACKGROUND Despite major advances in pharmacological treatment for patients with heart failure, residual mortality

remains high. This suggests that important pathways are not yet targeted by current heart failure therapies.

OBJECTIVES We sought integration of genetic, transcriptomic, and proteomic data in a large cohort of patients with

heart failure to detect major pathways related to progression of heart failure leading to death.

METHODS We used machine learning methodology based on stacked generalization framework and gradient boosting

algorithms, using 54 clinical phenotypes, 403 circulating plasma proteins, 36,046 transcript expression levels in whole

blood, and 6 million genomic markers to model all-cause mortality in 2,516 patients with heart failure from the BIOSTAT-

CHF (Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure) study. Results were validated in an inde-

pendent cohort of 1,738 patients.

RESULTS The mean age of the patients was 70 years (Q1-Q3: 61-78 years), 27% were female, median N-terminal pro–B-

type natriuretic peptide was 4,275 ng/L (Q1-Q3: 2,360-8,486 ng/L), and 7% had heart failure with preserved ejection

fraction. During a median follow-up of 21 months, 657 (26%) of patients died. The 4 major pathways with a significant

association to all-cause mortality were: 1) the PI3K/Akt pathway; 2) the MAPK pathway; 3) the Ras signaling pathway; and

4) epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results were validated in an independent cohort

of 1,738 patients.

CONCLUSIONS A systems biology approach integrating genomic, transcriptomic, and proteomic data identified 4 major

pathways related to mortality. These pathways are related to decreased activation of the cardioprotective ERBB2

receptor, which can be modified by neuregulin. (J Am Coll Cardiol 2023;82:1921–1931) © 2023 by the American College

of Cardiology Foundation.
N 0735-1097/$36.00 https://doi.org/10.1016/j.jacc.2023.08.053
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D espite all recent advances in phar-
macological treatment of heart
failure, residual mortality remains

high. This suggests that there are still impor-
tant pathways not adequately targeted by
current guideline therapies.1

Capturing these pathways requires inte-
gration of genetic, transcriptomic, proteo-
mic, and phenotypic markers using a systems
biology -omics approach.2 With recent ad-
vancements in bioinformatics,3 and high-
throughput -omics data, the integration and subse-
quent interpretation of multiple high-dimensional
-omic data sets have become increasingly feasible
tools for revealing novel biological insights. Previous
efforts revealed putative markers related to patho-
logical lipid abundance4 and cancer.5
SEE PAGE 1932
Such a deep analysis of heart failure requires an
enormous repository of data with robust and repro-
ducible observations that can also be validated in an
independent population.6 The BIOSTAT-CHF (Sys-
tems BIOlogy Study to TAilored Treatment in Chronic
Heart Failure) study has already generated multiple
new insights partially unraveling processes on single
-omics data.7-16 However, integration of multiple
-omics data sets in the BIOSTAT-CHF study has never
been done before.

Here, we present a multiomics approach integrating
phenotypic, proteomic, transcriptomic, and genetic
data sets using advanced machine learning. The pri-
mary aim of this study is to identify, validate, and
understand disease pathways that are associated with
progression of heart failure leading to early mortality.

METHODS

PATIENT POPULATION AND STUDY DESIGN. The
BIOSTAT-CHF study was designed to identify
ardiovascular and Renal Clinical Trialists, French Institute of He

rdiology, Ninewells Hospital and Medical School, Dundee, Unit
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received June 22, 2023; revised manuscript received August 16,
pathophysiological pathways related to heart failure
progression using a systems biology approach on
multiomics data. The design and baseline charac-
teristics of this study have been previously re-
ported.17 Briefly, the BIOSTAT-CHF study consists of
2 independent (index and validation) cohorts. In-
clusion criteria were similar in both cohorts. The
index cohort consisted of 2,516 patients with wors-
ening signs and/or symptoms of heart failure,
included from 69 centers in 11 European countries
during 2010-2014. The validation cohort consisted of
a comparable cohort of 1,738 patients from 6 centers
in Scotland, United Kingdom. Patients were enrolled
as inpatients or outpatients, with a median follow-
up in each cohort of 21 months (Q1-Q3: 15-
27 months). The endpoint of interest for the present
study was 1-year all-cause mortality. Patient char-
acteristics of both cohorts are presented in the
Supplemental Appendix.17

The study complied with the Declaration of Hel-
sinki and was approved by the participating centers’
medical ethics committees. All patients provided
written informed consent.

The BIOSTAT-CHF study has generated a large re-
pository of clinical phenotypic data and biological
data over the years. Biological data consisted of high-
dimensional proteomic, transcriptomic, and genetic
data.

SAMPLE HANDLING. Samples were collected and
centrifuged and stored at preferably �80 �C or �70 �C,
else �20 �C for a maximum of 1 month. Shipments
from the site to the central biobank were
done periodically.

Blood was drawn by venipuncture. First, plastic
vacutainer tubes were used to collect approximately
83.5 mL of blood. Second, the following samples were
collected: 1) EDTA plasma, 56 samples of 10 mL con-
tent each; 2) serum with gel, 12 samples of 8.5 mL
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content; 3) and PAXgene Blood RNA tubes, 2 samples
of approximately 2.5 mL content each.

Details on the entire process of sample handling is
described in the Laboratory Handbook in the
Supplemental Appendix.

PHENOTYPIC (CLINICAL) PANEL. We collected 54
clinical markers in the BIOSTAT-CHF study (see
Phenotypic Parameters in the Supplemental
Appendix). Phenotypic data consisted of de-
mographic data (eg, age, sex, medical history,
comorbidities) and data derived during physical ex-
amination (eg, body mass index, systolic and diastolic
blood pressure, left ventricular ejection fraction). The
estimated glomerular filtration rate (eGFR) is calcu-
lated using the Chronic Kidney Disease Epidemiology
Collaboration formula.18 Clinical data were coordi-
nated by the Trial Coordination Center, a contract
research organization affiliated with the University
Medical Center Groningen. A local investigator
collected clinical data and was monitored by the Trial
Coordination Center. Data were electronically stored
in a centralized database at the University Medical
Center Groningen.

PROTEIN PANEL FROM PERIPHERAL BLOOD: PERFORMED

BY OLINK AND LOCALLY AT CENTER LABORATORIES. We
measured 403 serum/plasma biomarkers (see Protein
Listings in the Supplemental Appendix) from several
pathophysiological domains, including markers of
inflammation, apoptosis, remodeling, myocyte stress/
injury, angiogenesis, endothelial function, and
several markers of renal function. The protein
biomarker data used for this study have been
described in recent papers.7-9 In brief, the biomarkers
included standard biochemical blood parameters (eg,
hemoglobin, hematocrit, blood urea nitrogen, heart
failure–related markers [N-terminal pro–B-type
natriuretic peptide and B-type natriuretic peptide]).
In addition, 4 biomarker panels comprising each of 92
protein biomarkers provided by the Olink Bioscience
analysis service were measured. These respective
panels were cardiovascular II, cardiovascular III, im-
mune response, and oncology II panels. The proteins
were profiled using Olink Proseek Multiplex Inflam-
matory 96�96 platform. The Proseek kit uses prox-
imity extension assay technology, whereby
oligonucleotide-labeled antibody probe pairs bind to
their respective targets. Quantification was achieved
using a Fluidigm BioMark real-time polymerase chain
reaction platform. The platform provides normalized
protein expression (log2-normalized), rather than an
absolute quantification.

TRANSCRIPTOMIC PANEL: PERFORMED BY UNIVERSITY

OF LEICESTER. Whole blood transcriptomic profiles
from 944 patients (626 survivors and 318 non-
survivors who died from cardiovascular causes) from
the index cohort were obtained using the GeneChip
Human Transcriptomic Array 2.0 (HTA 2.0) developed
by Affymetrix, Inc (part of Thermo Fisher Scientific).
Patients were age- and sex-matched. Details on the
protocols and methodology used to assess and
confirm the quality of the raw transcriptomic data
and the processes used to integrate signals from in-
dividual probes on the array to determine the
expression levels of each gene and to assess the
quality of the summarized RNA expression set data
have been previously published.19 In total, 36,046
(17,924 protein coding and 18,122 nonprotein coding)
transcripts were analyzed.

GENOMIC PANEL: PERFORMED BY UNIVERSITY OF

LEICESTER. Both cohorts were processed, geno-
typed, quality controlled, and imputed indepen-
dently using identical protocols.12 Genotyping of all
patients was performed using the Affymetrix Axiom
Genome-Wide UKB WCSG genotyping array. Sample-
level quality control was performed for X chromo-
some homozygosity (sex mismatch) and identity by
descent estimates (relatedness and duplicates).
Before imputation, variants were removed if their call
rate was <95% for variants with minor allele
frequency $5% or <99% with minor allele frequency
<5%, or a Hardy-Weinberg equilibrium P < 1 � 10�6.
Imputation was performed using SHAPEIT220 and
IMPUTE221 with the phase 3 release 1000G refer-
ence panel.22

STATISTICAL ANALYSES. We used machine learning
methods, particularly gradient boosting (with tailored
loss functions), with stacked regularization,23 to
model all-cause mortality. This method combines
multiple -omics data in a nonlinear manner by
learning how to combine predictions given by models
trained on the individual -omics sets into a single
coherent output.

It is specifically designed, in contrast to standard
modern statistical methods (Benefits of Machine
Learning for Multi-omics Analysis in the
Supplemental Appendix), to handle not only high-
dimensional -omics data, in which the number of pa-
tients is significantly smaller than the number of
variables (n<<p), but also when different data sour-
ces are collectively used to estimate the core mecha-
nism present in all data sources.

In brief, we used a combination of stacking
generalization framework with multiple gradient
boosting classifiers to improve prediction accuracy.
For each -omics set, we built a level 0 model. These
level 0 models were subsequently combined to form

https://doi.org/10.1016/j.jacc.2023.08.053
https://doi.org/10.1016/j.jacc.2023.08.053
https://doi.org/10.1016/j.jacc.2023.08.053
https://doi.org/10.1016/j.jacc.2023.08.053
https://doi.org/10.1016/j.jacc.2023.08.053


CENTRAL ILLUSTRATION Flowchart of Multiomics Model
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Ouwerkerk W, et al. J Am Coll Cardiol. 2023;82(20):1921–1931.

The machine learning pipeline of our multiomics prediction model. The flowchart is divided into 2 sections: the left side shows the process of training the

model with 50 stability runs, using the discovery data set, which is divided into a training set and an internal validation set iteratively using k-fold cross-

validation. The right side shows the process of validating the model with the external validation set by means of receiver-operating characteristic–area

under the curve (ROC-AUC) and permutation importance metrics. The final stacked model makes predictions using multiple omics models, which are

optimized simultaneously.
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the level 1 model.23 This allows us to use all data
available in each panel (eg, phenotype data from all
2,516 patients are used to create the level 0 model of
the phenotype panel, and the level 0 transcriptomic
model was estimated using 944 patients). A figure
visually summarizing this approach can be seen in the
Central Illustration.

One of the challenges in machine learning is tuning
the various models’ hyperparameters. Typically, each
model is optimized separately, leading to a local op-
timum. We optimized all the models simultaneously
using Bayesian optimization,24 achieving a global
optimum. To avoid overfitting, we used stratified
cross-validation over the training partition.25

To ensure the feature signatures’ reliability and
robustness, we conducted stability selection.26 The
complete analysis was repeated 50 times. Receiver-
operating characteristic–area under curves were
computed each time and averaged over the repeated
analyses in both the index and validation cohorts. A
permutation (randomization test)27 was used to
evaluate the results’ statistical validity.

We evaluated the model’s quality separately in the
validation cohort. In the validation cohort, tran-
scriptomic data were not measured and did not
include the corresponding level 0 model. Neverthe-
less, our approach can validate the results of the other
phenotype, protein, and genomic panels.

PATHWAY ENRICHMENT. To identify novel path-
ways related to mortality, we performed an over-
representation analysis. We determined the effect of



TABLE 1 Baseline Demographics of the Index and Validation Cohorts

Index Validation

Alive
(n ¼ 1,859, 74%)

Died
(n ¼ 657, 26%) P Value

Alive
(n ¼ 1,214, 75%)

Died
(n ¼ 401, 25%) P Value

Age, y 68.0 � 11.9 73.0 � 11.2 <0.0001 73.0 � 10.5 78.0 � 9.7 <0.0001

Male 1,370 (74) 476 (72) 0.57 801 (66) 270 (67) 0.66

LVEF, % 31.0 � 9.8 32.0 � 12.5 0.03 41.0 � 13 41.0 � 13.3 0.63

BMI, kg/m2 28.0 � 5.5 27.0 � 5.5 0.001 29.0 � 6.4 28.0 � 6.1 <0.0001

Ischemic heart disease 946 (51) 412 (63) <0.0001 776 (64) 286 (71) 0.008

Heart failure hospitalization in last year 531 (29) 263 (40) <0.0001 301 (25) 130 (32) 0.003

Myocardial infarction 657 (35) 306 (47) <0.0001 575 (48) 223 (56) 0.006

DM 577 (31) 242 (37) 0.007 367 (30) 155 (39) 0.002

COPD 279 (15) 157 (24) <0.0001 191 (16) 104 (26) <0.0001

History of renal disease 402 (22) 294 (45) <0.0001 491 (41) 241 (61) <0.0001

NYHA functional class I 50 (2) 6 (1) <0.0001 15 (1) 1 (0) <0.0001

NYHA functional class II 711 (39) 157 (24) 575 (47) 92 (23)

NYHA functional class III 853 (47) 375 (58) 516 (43) 200 (50)

NYHA functional class VI 196 (10) 98 (15) 108 (9) 107 (27)

Values are mean � SD or n (%).

BMI ¼ body mass index; COPD ¼ chronic obstructive pulmonary disease; DM ¼ diabetes mellitus; LVEF ¼ left ventricular ejection fraction.
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each variant using Ensembl Variant Effect Predic-
tor28 and converted all selected markers to
Ensembl IDs.

We performed enrichment using Gprofiler for Gene
Ontology, Kyoto Encyclopedia of Genes and Ge-
nomes, Reactome, CORUM, and WikiPathways path-
ways. We report a corrected value of P < 0.05 as
significant.

To test statistical differences between patients
with and without activated pathways and their asso-
ciation to up-titration, we used principal component
analysis, using missMDA,29,30 to reduce the dimen-
sionality of the biomarkers present in the pathways,
in a similar manner as previously published.10 A
weighted score (first principal component) was
generated to which each selected biomarker contrib-
uted to a greater or lesser extent, based on how much
population variance they explained. First, we used
the weighted score to identify associated clinical
characteristics in a penalized linear regression.31

Second, we performed multivariable regression ana-
lyses including percentage achieved target doses of
angiotensin-converting enzyme (ACE) inhibitors/
angiotensin receptor blockers (ARBs), beta-blockers,
and mineralocorticoid receptor antagonists,1 and age
and sex. For this analysis, we only included heart
failure with reduced ejection fraction (HFrEF) pa-
tients. Last, we associated activation of pathways to
all-cause mortality, using Cox proportional hazards
modeling.

Data are presented as mean � SD when normally
distributed, median (Q1-Q3) for skewed variables, and
frequency and percentage for categorical variables.
Differences between patients who died and those
who did not in the index and validation cohort were
tested using the Student’s independent Student’s
t-test or Mann-Whitney U test, where appropriate, for
continuous parameters. Differences in categorical
variables were tested with chi-square tests.

We used Python version 3.8 (Python Software
Foundation), with packages Numpy, Scipy, and scikit-
learn for implementing the stacking model and R
version 4.0 (R Foundation for Statistical Computing)
for visualizations.

RESULTS

CLINICAL CHARACTERISTICS. Data were available
for 2,516 patients in the phenotypic and protein
panels, 944 in the transcriptomic and 2,470 in the
genomic panels in the index cohort (Supplemental
Figure 1A). The validation cohort had data available
for 1,738 patients in the phenotypic and protein
panels and for 1,693 patients in the genomic panel
(Supplemental Figure 1B).

During a median follow-up of 21 months (Q1-Q3: 11-
32 months) and 21 months (Q1-Q3: 15-27 months), 657
(26%) and 501 (32%) patients died in the index and
validation cohorts, respectively. Baseline character-
istics of the patients who died and those who sur-
vived in the index and validation cohorts are
presented in Table 1. Patients who died in the index
cohort were older (73 � 11 years vs 68 � 12 years;
P < 0.001), had a higher NYHA functional class

https://doi.org/10.1016/j.jacc.2023.08.053
https://doi.org/10.1016/j.jacc.2023.08.053
https://doi.org/10.1016/j.jacc.2023.08.053


FIGURE 1 The 15 Most Predictive Variables of Mortality in Each Panel
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Disease Epidemiology Collaboration; DBP ¼ diastolic blood pressure; eGFR ¼ estimated glomerular filtration rate; Hosp. ¼ hospitalization; JVP ¼ elevated jugular

venous pressure; NT-proBNP ¼ N-terminal pro–B-type natriuretic peptide; RBBB ¼ right bundle branch block.
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(III/IV 74% vs 58%; P < 0.001), and more comorbid-
ities. These differences were similar in the validation
cohort (Table 1).

MULTIOMICS MORTALITY MODEL. Our final risk pre-
diction model, combining phenotypic, proteomic,
transcriptomic, and genomic data achieved a signifi-
cant receiver-operating characteristic–area under
curve value of 0.81 � 0.02 in the stratified cross-
validated part of the index cohort and 0.85 � 0.03
in the validation cohort (Supplemental Figure 2),
both P < 0.001 in permutation tests (Supplemental
Figure 3A).

This optimal model consisted of 60 markers per
panel with a total of 240 markers, all associated with
mortality and closely related to each other
(Supplemental Table 1, Supplemental Figure 3B).
The relative importance of the top 15 markers for each
data set and in the level 1 model is visualized in
Figure 1. The direction of the association between
each marker and mortality is presented in the spider
plot of Supplemental Figure 4.

ENRICHMENT. We performed overrepresentation anal-
ysis, using 180 markers (60 proteomic, 60 tran-
scriptomic, and 60 genomic) (see Supplemental
Table 1 for selected markers from our level 1 model
set against all the markers in our data set). We found
that there were 177 pathways significantly over-
represented (Supplemental Figure 5A, Supplemental
Table 2) These pathways were associated with
immunological processes (eg, immune system
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TABLE 2 Results of Penalized Linear Regression of Pathway Activation and Clinical

Parameters From the Index Cohort and Multivariable Analysis of Pathway Activation on

Drug Up-Titration Levels in Patients With Heart Failure With Reduced Ejection Fraction

From the Index Cohort

Estimate SE T Value P Value

Penalized linear regression

(Intercept) �4.76 1.017 �4.67 0.001

Age 0.04 0.01 5.24 <0.001

AF 0.50 0.15 3.24 0.001

DM 0.51 0.16 3.10 0.002

Renal failure 2.05 0.17 12.30 <0.0001

DBP �0.03 0.01 �4.20 <0.0001

Pulmonary congestion 0.11 0.09 1.32 0.188

Edema 0.92 0.10 9.07 <0.0001

Hepatomegaly 0.63 0.22 2.83 0.005

Third heart tone 1.08 0.25 4.35 <0.0001

NYHA functional class 0.46 0.12 3.78 0.001

Orthopnea 0.43 0.18 2.35 0.020

Multivariable analysis

(Intercept) �4.15 0.70 �5.91 <0.0001

% ACE inhibitor/ARB target dose �1.53 0.29 �5.25 <0.0001

% BB target dose �0.12 0.38 �0.33 0.741

% MRA target dose 0.63 0.34 1.81 0.070

Age 0.07 0.01 6.90 <0.0001

Female �0.70 0.27 �2.57 0.010

ACE ¼ angiotensin-converting enzyme; AF ¼ atrial fibrillation; ARB ¼ angiotensin receptor blocker; BB ¼ beta-
blocker; DBP ¼ diastolic blood pressure; DM ¼ diabetes mellitus; MRA ¼ mineralocorticoid receptor antagonist.
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process [Gene Ontology (GO) and Reactome], inflam-
matory response [GO]), involved various cell surface
receptor signaling pathways (eg, cell surface receptor
signaling pathway [GO:BP (biological process)],
cytokine-cytokine receptor interaction [Kyoto Ency-
clopedia of Genes and Genomes]). Among the most
significant pathways were the closely related PI3K/
Akt signaling pathway, MAPK Akt signaling pathway,
Ras signaling pathway, and EGFR tyrosine kinase
inhibitor resistance (Supplemental Table 1).
Supplemental Figure 5B visualizes the close relation
between the markers (n ¼ 18) and their connection to
the pathways.

Although not directly connected in the pathways,
markers from the cytokine-cytokine receptor inter-
action pathways are also involved. IL1RL1 is involved
in negative regulation of the PI3K/Akt network and
TNFRSF6B in turn is upregulated by the PI3K/Akt-
dependent pathway. The strongest of these
connecting markers were GDF15-ERBB2 and VEGFR2-
S1PR1-ERK1/2-PKC-alpha complexes. These com-
plexes are located at the intersection of the PI3K-Akt,
MAPK, and EGFR tyrosine kinase pathways
(Supplemental Figure 5C).

Clinical parameters associated with activation of
the selected pathways are presented in Table 2. These
characteristics are comparable to the features
selected in the phenotype panel of our level 1 model.
History of renal disease and peripheral edema are
most significant related to the pathways, but diabetes
also plays a role. Based on these clinical parameters,
we could reasonably predict which patients would
have activation of pathways (C-statistic: 0.75; 95% CI:
0.74-0.77). Pathways are significantly less activated
in patients with HFrEF compared with patients with
higher ejection fractions (P < 0.0001). Please note
that the measurement of pathway activation is per-
formed at baseline and before up-titration. Mean ACE
inhibitor dose of the group of patients with activated
pathways (n ¼ 892) was 42.8% � 37.6% of the target
dose, compared with 55.5% � 38.0% in the patients
who did not have activated pathways (n ¼ 1,208).
Patients with activated pathways had higher risk of
dying, with an HR of 2.67 (95% CI: 2.25-3.16; all
P < 0.0001 corrected for age and sex).

DISCUSSION

This systems biology multiomics approach inte-
grating genomic, transcriptomic, and proteomic data
identified 4 major pathways in the progression of
heart failure: PI3K-Akt, MAPK, and Ras signaling
pathways, and EGFR tyrosine kinase inhibitor resis-
tance. These pathways were identified using 18 of the
180 significant markers in our model spread over all
biomarker panels. Activation of these signaling
pathways was strongly and independently associated
with higher mortality.

Interestingly, these pathways are known to be
strongly related to each other, and the Ras/Raf/MAPK
pathway cascade is able to stimulate angiogenesis
through changes in expression of genes directly
involved in the formation of new blood vessels.32,33

Signaling through the Ras/Raf/MAPK also regulates a
variety of cellular functions that are important for
tumorigenesis. Ras also interacts with the PI3K/AKT
and EGFR tyrosine kinase inhibitor pathways.34,35

MAPK is activated in response to a wide variety of
extracellular stimuli and induces changes in critical
intracellular processes promoting cell growth,
apoptosis, and transformation. It can transduce
multiple extracellular signals through various
receptors, such as hypertrophic signals mediated by
G-protein–coupled receptors, transforming growth
factor-b signals mediated by receptor serine/
threonine kinases, and insulin-like growth factor-1
signals mediated by receptor tyrosine kinase.36

The PI3K/Akt pathway is important in mediating
signals of cell growth and proliferation. It plays an
important role in regulating cardiac growth,
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myocardial angiogenesis, glucose metabolism, and
cell death in cardiac myocyte.37,38

The EGFR tyrosine kinase inhibitor resistance
pathway is important in the treatment of various
cancers. These treatments report a high risk of car-
diotoxicity. Although a mechanistic explanation for
the cardiotoxicity of EGFR tyrosine kinase inhibitor is
not fully understood, disruption of ERBB family re-
ceptors impairs downstream signaling to Ras-ERK
and PI3K/Akt pathways and normal cardiac myocyte
stress response.39,40 The association between these
pathways and cardiotoxicity became apparent after
the presentation of phase 3 trials on the use of tras-
tuzimab (herceptin) in patients with breast cancer.
Unexpectedly, an increased risk of the development
of congestive heart failure was observed in patients
treated with trastuzumab.41,42 This finding was
explained by the ERBB signaling pathway. Activation
of the ERBB2 and ERBB4 receptors leads to down-
stream activation of the PI3K/Akt and MAPK path-
ways,43 which on the one hand promotes
proliferation of tumor cells but on the other hand
promotes cardiomyocyte survival. These mechanisms
are supported by data from cardiac myocyte–specific
ERBB2– and ERBB4– conditional knockout mice, who
developed a cardiomyopathy by 8 to 12 weeks of
life.44 In other words, stimulation of the ERBB2 and
ERBB4 receptors seem to exert cardioprotective ef-
fects through activation of the PI3K and MAPK path-
ways.45 Importantly, the ERBB receptors can be
stimulated by neuregulin and parenteral administra-
tion of recombinant human neuregulin-1 to patients
with stable chronic heart failure resulted in an in-
crease in stroke volume and cardiac output.46-49

FUTURE PERSPECTIVES

With the present study, we showed the role and op-
portunities of systems biology in unravelling under-
lying pathology of complex diseases, which is
attracting increasing attention in the field of in car-
diology.50-53 However, as far as we know, there has
not yet been a study using this advanced methodol-
ogy in such a data-rich cohort with the ability of
validating the results.54

This comprehensive picture of markers involved in
the pathophysiological disease processes underlying
all-cause mortality already yielded a potential future
therapeutic intervention target, which is currently in
the early phase of development for the treatment of
patients with HFrEF. The literature also suggests that
neuregulins might also be beneficial in patients with
preserved ejection fraction and other cardiovascular
diseases.55,56
STUDY LIMITATIONS. The transcriptomic panel con-
sisted of 944 patients selected from the index cohort
and matched on age and sex.19 This is an extensive
transcriptomic data set, but unfortunately, data were
measured in a preselected group of patients from the
index cohort and none from the validation cohort.
The selection of patients was not random and skewed
toward cardiovascular mortality. Transcriptomic
markers are therefore better suited to predict car-
diovascular mortality. This might explain the lower
contribution of the markers from the transcriptomic
panel in our combined systems biology model. The
absence of this panel had no impact on the (level 0)
model development and validation of the other
panels because our methods are able to handle
changes in data sources. Also, despite the rigorous
selection process, the effects of patient selection
cannot be determined.

Unfortunately, because of the nature of this study,
we are not able to draw causal conclusions on the
pathways we found. However, it is apparent that
when developing the models for predicting mortality,
so many markers from all panels are independently
selected that are associated with the outcome.

The BIOSTAT-CHF study was carried out between
2010 and 2015 and treatments were based on the
guidelines that were applicable at that particular
time.57 They did not include treatment with sacubi-
tril/valsartan and sodium-glucose cotransporter-2
inhibitors. Therefore, theoretically, additional use of
sacubitril-valsartan and sodium-glucose cotrans-
porter-2 inhibitors might have yielded different re-
sults. Although there are limited data on the
interaction between these treatments and the acti-
vated pathways,58-61 it is unknown to what extent our
results would have been different.

Due to the relatively low percentage of patients in
the index cohort (7%) and the validation cohort
(34%), we were not able to discriminate between
heart failure with preserved ejection fraction and
HFrEF.17

CLINICAL IMPLICATIONS. Treatment of HFrEF has
tremendously improved over the past decades. With
the current therapies, life expectancy for a 70-year-
old patient with HFrEF has increased by 5 years.62

Nevertheless, residual mortality remains high, even
in well-treated patients. This implies that our current
therapies do not adequately target all disease path-
ways that are related to its progression. The present
study identified pathways that remained to be acti-
vated in patients with HFrEF despite treatment with
ACE inhibitors, ARBs, mineralocorticoid receptor an-
tagonists, and beta-blockers. Although the current
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COMPETENCY IN MEDICAL KNOWLEDGE: A systems

biology approach combining multiple large -omics data sets and

machine learning methodology identified 4 major pathways

related to mortality in patients with HFrEF. These pathways are

related to decreased activation of the cardioprotective ERBB2

receptor, which can be modified by neuregulin.

TRANSLATIONAL OUTLOOK: Further research is needed to

establish the causal relationships between activation of the

ERBB2 receptor and adverse clinical outcomes in patients with

HFrEF and identify potential treatment pathways.
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analysis does not show causality, these data might
stimulate to identify potential novel treatments for
HFrEF, targeting the pathways that were identified in
the present study. This might further improve out-
comes of patients who remained to have a high risk of
early mortality.

CONCLUSIONS

Integrating genomic, transcriptomic, proteomic, and
clinical data from a large cohort of patients with heart
failure identified pathways related to progression of
heart failure leading to early mortality. The strongest
pathways were related to the ERBB receptors and
their downstream effects on the PI3K and MAPK
pathways leading to cardioprotective effects. Neu-
regulin, a ligand of the ERBB receptors, is currently in
the early phase of clinical development in patients
with HFrEF.
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