10 research outputs found

    ANTARES: the first undersea neutrino telescope

    Get PDF
    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given

    Multi-purpose InSTRument for Astronomy at Low-resolution: MISTRAL@OHP

    No full text
    International audienceMISTRAL is the new Faint Object Spectroscopic Camera mounted at the folded Cassegrain focus of the 1.93m telescope of Haute-Provence Observatory. We describe the design and components of the instrument and give some details about its operation. We emphasise in particular the various observing modes and the performances of the detector. A short description is also given about the working environment. Various types of objects, including stars, nebulae, comets, novae, galaxies have been observed during various test phases to evaluate the performances of the instrument. The instrument covers the range of 4000 to 8000A with the blue setting, or from 6000 to 10000A with the red setting, at an average spectral resolution of 700. Its peak efficiency is about 22% at 6000A. In spectroscopy, a limiting magnitude of 19.5 can be achieved for a point source in one hour with a signal to noise of 3 in the continuum (and better if emission lines are present). In imaging mode, limiting magnitudes of 20-21 can be obtained in 10-20mn (with average seing conditions of 2.5 arcsec at OHP). The instrument is very users-friendly and can be put into operations in less than 15mn (rapid change-over from the other instrument in use) if required by the science (like for Gamma-Rays Bursts). Some first scientific results are described for various types of objects, and in particular for the follow-up of GRBs. While some further improvements are still under way, in particular to ease the switch from blue to red setting and add more grisms or filters, MISTRAL is ready for the follow-up of transients and other variable objects, in the soon-to-come era of e.g. the SVOM satellite and of the Rubin telescope

    Multi-purpose InSTRument for Astronomy at Low-resolution: MISTRAL@OHP

    No full text
    International audienceMISTRAL is the new Faint Object Spectroscopic Camera mounted at the folded Cassegrain focus of the 1.93m telescope of Haute-Provence Observatory. We describe the design and components of the instrument and give some details about its operation. We emphasise in particular the various observing modes and the performances of the detector. A short description is also given about the working environment. Various types of objects, including stars, nebulae, comets, novae, galaxies have been observed during various test phases to evaluate the performances of the instrument. The instrument covers the range of 4000 to 8000A with the blue setting, or from 6000 to 10000A with the red setting, at an average spectral resolution of 700. Its peak efficiency is about 22% at 6000A. In spectroscopy, a limiting magnitude of 19.5 can be achieved for a point source in one hour with a signal to noise of 3 in the continuum (and better if emission lines are present). In imaging mode, limiting magnitudes of 20-21 can be obtained in 10-20mn (with average seing conditions of 2.5 arcsec at OHP). The instrument is very users-friendly and can be put into operations in less than 15mn (rapid change-over from the other instrument in use) if required by the science (like for Gamma-Rays Bursts). Some first scientific results are described for various types of objects, and in particular for the follow-up of GRBs. While some further improvements are still under way, in particular to ease the switch from blue to red setting and add more grisms or filters, MISTRAL is ready for the follow-up of transients and other variable objects, in the soon-to-come era of e.g. the SVOM satellite and of the Rubin telescope

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300 GeV at an incident angle θ of about 11c is well-described by the expression σ/E = ((46.5 ± 6.0)%/√E + (1.2 ± 0.3)%) ⊗ (3.2 ± 0.4)GeV/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    No full text
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS, These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300 GeV at an incident angle a of about 11 degrees is well-described by the expression sigma/E = ((46.5 +/- 6.0)%/root E + (1.2 +/- 0.3)%) + (3.2 +/- 0.4) GeV/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300 GeV at an incident angle θ of about 11c is well-described by the expression σ/E = ((46.5 ± 6.0)%/√E + (1.2 ± 0.3)%) ⊗ (3.2 ± 0.4)GeV/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    FRIPON: A worldwide network to track incoming meteoroids

    No full text
    Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 106km2. Methods. The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results. Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag < -5; meteoroid size ≥∼1 cm) amounts to 1250/yr/106km2. This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project

    FRIPON: a worldwide network to track incoming meteoroids

    No full text
    (IF 5.80; Q1)International audienceContext. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile-hence precious-meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 10 6 km 2. Methods. The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results. Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag <-5; meteoroid size ≥∼1 cm) amounts to 1250/yr/10 6 km 2. This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project

    FRIPON: A worldwide network to track incoming meteoroids

    No full text
    Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 106km2. Methods. The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results. Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag < -5; meteoroid size ≥∼1 cm) amounts to 1250/yr/106km2. This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project

    FRIPON: a worldwide network to track incoming meteoroids

    Get PDF
    Context: Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile – hence precious – meteorites must be recovered rapidly to avoid their alteration. Aims: The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 106 km2. Methods: The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results: Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag < –5; meteoroid size ≥~1 cm) amounts to 1250/yr/106 km2. This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project
    corecore