200 research outputs found

    Etiology of Teen Dating Violence among Adolescent Children of Alcoholics

    Get PDF
    Family processes in early life have been impli- cated in adolescent involvement in teen dating violence, yet the developmental pathways through which this occurs are not well understood. In this study, etiological pathways from parental psychopathology and marital conflict in infancy to involvement in dating violence in late adoles- cence were examined in a sample of children at high-risk due to parental alcohol problems. Families (N = 227) recruited when the child was 12 months of age were assessed at 12-, 24-, 36-months, kindergarten, 6th, 8th, and 12th grades. Slightly more than half of the children were female (51%) and the majority were of European American descent (91%). Parental psychopathology in infancy was indirectly associated with teen dating violence in late adolescence via low maternal warmth and self-regulation in early childhood, externalizing behavior from kindergarten to early adolescence, and sibling problems in middle childhood. Marital conflict was also indirectly associated with teen dating violence via child externalizing behavior. Maternal warmth and sensitivity in early childhood emerged as an important protective factor and was associated with reduced marital conflict and increased child self-regulation in the preschool years as well as increased parental monitoring in middle childhood and early adolescence. Family processes occurring in the preschool years and in middle childhood appear to be critical periods for creating condi- tions that contribute to dating violence risk in late adoles- cence. These findings underscore the need for early intervention and prevention with at-risk families

    SUMOylation of nuclear actin

    Get PDF
    Actin, a major component of the cytoplasm, is also abundant in the nucleus. Nuclear actin is involved in a variety of nuclear processes including transcription, chromatin remodeling, and intranuclear transport. Nevertheless, the regulation of nuclear actin by posttranslational modifications has not been investigated. We now show that nuclear actin is modified by SUMO2 and SUMO3 and that computational modeling and site-directed mutagenesis identified K68 and K284 as critical sites for SUMOylating actin. We also present a model for the actin–SUMO complex and show that SUMOylation is required for the nuclear localization of actin

    Rescue of skeletal muscle Ξ±-actin–null mice by cardiac (fetal) Ξ±-actin

    Get PDF
    Skeletal muscle Ξ±-actin (ACTA1) is the major actin in postnatal skeletal muscle. Mutations of ACTA1 cause mostly fatal congenital myopathies. Cardiac Ξ±-actin (ACTC) is the major striated actin in adult heart and fetal skeletal muscle. It is unknown why ACTC and ACTA1 expression switch during development. We investigated whether ACTC can replace ACTA1 in postnatal skeletal muscle. Two ACTC transgenic mouse lines were crossed with Acta1 knockout mice (which all die by 9 d after birth). Offspring resulting from the cross with the high expressing line survive to old age, and their skeletal muscles show no gross pathological features. The mice are not impaired on grip strength, rotarod, or locomotor activity. These findings indicate that ACTC is sufficiently similar to ACTA1 to produce adequate function in postnatal skeletal muscle. This raises the prospect that ACTC reactivation might provide a therapy for ACTA1 diseases. In addition, the mouse model will allow analysis of the precise functional differences between ACTA1 and ACTC

    Variants at multiple loci implicated in both innate and adaptive immune responses are associated with SjΓΆgren’s syndrome

    Get PDF
    SjΓΆgren’s syndrome is a common autoimmune disease (~0.7% of European Americans) typically presenting as keratoconjunctivitis sicca and xerostomia. In addition to strong association within the HLA region at 6p21 (Pmeta=7.65Γ—10βˆ’114), we establish associations with IRF5-TNPO3 (Pmeta=2.73Γ—10βˆ’19), STAT4 (Pmeta=6.80Γ—10βˆ’15), IL12A (Pmeta =1.17Γ—10βˆ’10), FAM167A-BLK (Pmeta=4.97Γ—10βˆ’10), DDX6-CXCR5 (Pmeta=1.10Γ—10βˆ’8), and TNIP1 (Pmeta=3.30Γ—10βˆ’8). Suggestive associations with Pmeta<5Γ—10βˆ’5 were observed with 29 regions including TNFAIP3, PTTG1, PRDM1, DGKQ, FCGR2A, IRAK1BP1, ITSN2, and PHIP amongst others. These results highlight the importance of genes involved in both innate and adaptive immunity in SjΓΆgren’s syndrome

    Biodiversity on Broadway - Enigmatic Diversity of the Societies of Ants (Formicidae) on the Streets of New York City

    Get PDF
    Each year, a larger proportion of the Earth's surface is urbanized, and a larger proportion of the people on Earth lives in those urban areas. The everyday nature, however, that humans encounter in cities remains poorly understood. Here, we consider perhaps the most urban green habitat, street medians. We sampled ants from forty-four medians along three boulevards in New York City and examined how median properties affect the abundance and species richness of native and introduced ants found on them. Ant species richness varied among streets and increased with area but was independent of the other median attributes measured. Ant assemblages were highly nested, with three numerically dominant species present at all medians and additional species present at a subset of medians. The most common ant species were the introduced Pavement ant (Tetramorium caespitum) and the native Thief ant (Solenopsis molesta) and Cornfield ant (Lasius neoniger). The common introduced species on the medians responded differently to natural and disturbed elements of medians. Tetramorium caespitum was most abundant in small medians, with the greatest edge/area ratio, particularly if those medians had few trees, whereas Nylanderia flavipes was most abundant in the largest medians, particularly if they had more trees. Many of the species encountered in Manhattan were similar to those found in other large North American cities, such that a relatively small subset of ant species probably represent most of the encounters humans have with ants in North America

    Genome-Wide DNA Methylation Scan in Major Depressive Disorder

    Get PDF
    While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD), epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm) scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM) platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12–15% increased DNAm in MDD (pβ€Š=β€Š0.0002–0.0003), and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (nβ€Š=β€Š16), which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at pβ€Š=β€Š0.08

    Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

    Get PDF
    Background: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings: Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm 2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm 2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance: We conclude that CTGF is important in the regulation of cytoskeletal tension mediated AS

    Runx1 Loss Minimally Impacts Long-Term Hematopoietic Stem Cells

    Get PDF
    RUNX1 encodes a DNA binding subunit of the core-binding transcription factors and is frequently mutated in acute leukemia, therapy-related leukemia, myelodysplastic syndrome, and chronic myelomonocytic leukemia. Mutations in RUNX1 are thought to confer upon hematopoietic stem cells (HSCs) a pre-leukemic state, but the fundamental properties of Runx1 deficient pre-leukemic HSCs are not well defined. Here we show that Runx1 deficiency decreases both apoptosis and proliferation, but only minimally impacts the frequency of long term repopulating HSCs (LT-HSCs). It has been variously reported that Runx1 loss increases LT-HSC numbers, decreases LT-HSC numbers, or causes age-related HSC exhaustion. We attempt to resolve these discrepancies by showing that Runx1 deficiency alters the expression of several key HSC markers, and that the number of functional LT-HSCs varies depending on the criteria used to score them. Finally, we identify genes and pathways, including the cell cycle and p53 pathways that are dysregulated in Runx1 deficient HSCs
    • …
    corecore