100 research outputs found

    Scalable Video Streaming for Single-Hop Wireless Networks Using a Contention-Based Access MAC Protocol

    Get PDF
    Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over wireless networks. Even when packet loss is not present, the bandwidth fluctuation, as a result of an arbitrary number of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the quality of video streaming applications in wireless home networks via a joint optimization of video layer-allocation technique, admission control algorithm, and medium access control (MAC) protocol. Using an Aloha-like MAC protocol, we propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness results for the optimization problem under various conditions and propose some heuristic algorithms for finding a good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well, although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework can improve the video quality up to 26% as compared to those of the existing approaches

    New thermal insulation fiberboards from cake generated during biorefinery of sunflower whole plant in a twin-screw extruder

    Get PDF
    The objective of this study was to manufacture new thermal insulation fiberboards by thermo-pressing. The starting material was a slightly deoiled cake (17.6% oil content), generated during the biorefinery of sunflower (Helianthus annuus L.) whole plant in a co-rotating (Clextral BC 45, France) twin-screw extruder. All fiberboards produced were cohesive mixtures of proteins and lignocellulosic fibers, acting respectively as binder and reinforcing fillers in what could be considered as a natural composite. The molding experiments were conducted using a 400 ton capacity heated hydraulic press (Pinette Emidecau Industries, France). The influence of molding conditions on board density, mechanical properties and heat insulation properties was examined. Molding conditions included mold temperature (140-200°C), pressure applied (150-250 kgf/cm²) and molding time (40-76 s), and these greatly affected board density and thus the mechanical and heat insulation properties. Board density increased with increasingly extreme molding conditions, rising from 500 to 858 kg/m³. The mechanical properties increased at the same time (from 52 to 660 kPa for flexural strength at break, from 5.9 to 49.4 MPa for elastic modulus, from 0.5 to 7.7 kJ/m² for Charpy impact strength, and from 19.2 to 47.1° for Shore D surface hardness). Conversely, heat insulation properties improved with decreasing board density, and the lowest thermal conductivity (88.5 mW/m K at 25°C) was obtained with the least dense fiberboard. The latter was produced with a 140°C mold temperature, a 150 kgf/cm² pressure applied and a 40 s molding time. A medium mold temperature (160°C) was needed to obtain a good compromise between mechanical properties (272 kPa for flexural strength at break, 26.3 MPa for elastic modulus, 3.2 kJ/m² for Charpy impact strength, and 37.3° for Shore D surface hardness), and heat insulation properties (99.5 mW/m K for thermal conductivity).The corresponding board density was medium (687 kg/m³). Because of their promising heat insulation properties, these new fiberboards could be positioned on walls and ceilings for thermal insulation of buildings. The bulk cake also revealed very low thermal conductivity properties (only 65.6 mW/m K at 25°C) due to its very low bulk density (204 kg/m³). It could be used as loose fill in the attics of houses

    A contribution to the thermal insulation performance characterization of corn cob particleboards

    Get PDF
    An alternative expedite experimental set-up is proposed to evaluate the thermal insulation performance of corn cob particleboards. Testing in situ thermal insulation performance under real thermal and hygrometric conditions, using more realistic sample dimensions, testing simultaneously several samples and monitoring continuously for several days the thermal behavior of a product are some advantages of this proposed technique. Therefore, it has shown to be accurate and versatile. Through this experimental methodology, a parametric thermal insulation study of the corn cob particleboard in which the impact of its thickness on its thermal insulation performance was also possible to perform. © 2011 Elsevier B.V

    Thermoplastic cassava starch-chitosan bilayer films containing essential oils

    Full text link
    [EN] Starch-chitosan bilayer films, containing or not essential oils in the casted chitosan layer were obtained by thermo-compression. Bilayer films exhibited a good interfacial adhesion and better mechanical resistance than starch monolayers, although they were less stretchable and less transparent. Starchchitosan films were effective at controlling the bacterial growth in pork meat, but the thermal treatment applied to obtain the bilayers reduced their antimicrobial properties as compared to chitosan monolayers. The addition of essential oils did not promote any antimicrobial action in chitosan mono and bilayer films applied to pork meat. The final amount of essential oils in the films was very limited probably due to the losses occurred during film processing method. Other strategies to incorporate the essential oils into chitosan-based films should be used to improve their final retention in the film matrix and their effective release into the coated food. (C) 2017 Elsevier Ltd. All rights reserved.The authors acknowledge the financial support provided by the Spanish Ministerio de Economia y Competividad (Projects AGL2013-42989-R and AGL2016-76699-R). Author Cristina Valencia-Sullca thanks the Peruvian Grant National Program (PRONABEC).Valencia-Sullca, CE.; Vargas, M.; Atarés Huerta, LM.; Chiralt, A. (2018). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids. 75:107-115. https://doi.org/10.1016/j.foodhyd.2017.09.008S1071157

    Application of polymeric nanoparticles in food sector

    Get PDF
    Nanotechnology presents opportunities to create new and better products. Nano technology has huge impact in many applications including food industry. Product of nanotechnology, such as polymeric nanoparticle, can be utilized to improve food quality by extending food shelf life, increase food safety, lower the cost and enhance the nutritional benefits. This chapter provides an overview of the properties of polymeric nanoparticle, preparation techniques, as well as the role polymeric nano-particles in the food industr

    Design of bio-nanosystems for oral delivery of functional compounds

    Get PDF
    Nanotechnology has been referred to as one of the most interesting topics in food technology due to the potentialities of its use by food industry. This calls for studying the behavior of nanosystems as carriers of biological and functional compounds aiming at their utilization for delivery, controlled release and protection of such compounds during food processing and oral ingestion. This review highlights the principles of design and production of bio-nanosystems for oral delivery and their behavior within the human gastrointestinal (GI) tract, while providing an insight into the application of reverse engineering approach to the design of those bio-nanosystems. Nanocapsules, nanohydrogels, lipid-based and multilayer nanosystems are discussed (in terms of their main ingredients, production techniques, predominant forces and properties) and some examples of possible food applications are given. Phenomena occurring in in vitro digestion models are presented, mainly using examples related to the utilization of lipid-based nanosystems and their physicochemical behavior throughout the GI tract. Furthermore, it is shown how a reverse engineering approach, through two main steps, can be used to design bio-nanosystems for food applications, and finally a last section is presented to discuss future trends and consumer perception on food nanotechnology.Miguel A. Cerqueira, Ana C. Pinheiro, Helder D. Silva, Philippe E. Ramos, Ana I. Bourbon, Oscar L. Ramos (SFRH/BPD/72753/2010, SFRH/BD/48120/2008, SFRH/BD/81288/2011, SFRH/BD/80800/2011, SFRH/BD/73178/2010 and SFRH/BPD/80766/2011, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE Portugal). Maria L. Flores-Lopez thanks Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT Grant number: 215499/310847). The support of EU Cost Actions FA0904 and FA1001 is gratefully acknowledged
    corecore