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Abstract

Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over

wireless networks. Even when packet loss is not present, the bandwidth fluctuation as a result of an arbitrary number

of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the

quality of video streaming applications in wireless home networks via a joint optimization of video coding technique,

admission control algorithm, and Medium Access Control (MAC) protocol. Using an Aloha-like MAC protocol, we

propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the

average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness

results for the optimization problem under various conditions, and propose some heuristic algorithms for finding a

good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well,

although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to

approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework

can improve the video quality up to 26% as compared to those of the existing approaches.

Index Terms

Admission control, Layered video coding, Optimization, Submodular function, Video streaming, WLAN.

I. I NTRODUCTION

Recent years have witnessed an explosive growth in multimedia wireless applications such as video streaming

and conferencing [1]. One of the reasons for this tremendous growth is the wide deployment of the IEEE 802.11

wireless LANs (WLANs) in both private home and enterprise networks. Despite of these seemingly successes, many

fundamental problems of transmitting multimedia data over wireless networks remain relatively unsolved. One of the

challenges is how to efficiently guarantee a specified bandwidth for a video flow in a wireless network. The popular

WLAN, particularly Distributed Coordination Function (DCF) in typical IEEE 802.11 [2] which operates under a

contention-based channel access mechanism, does not provide a mechanism to guarantee minimum bandwidth for

multiple concurrent flows. As a result, a video application may experience significant quality degradation due to

free admission of an arbitrarily large number of flows. Nevertheless, Point Coordination Function (PCF) in typical

IEEE 802.11 and HCF Controlled Channel Access (HCCA) in IEEE 802.11e [3] are able to provide a polled access

mechanism to guarantee the minimum bandwidth. However, the use of PCF and HCCA mechanisms are rather

limited, and often result in high latencies. Furthermore, a scheduler and queuing mechanism at the AP is needed to

control to regulate the polling frequency in HCCA and PCF to provide flows with the requested throughputs. That

said, this paper considers the a contention-based approach to admission control, similar to the work of Banchs et

al. [4] in which, the parameters of the IEEE 802.11e in the contention-based mode are set appropriately to enable

flows to achieve their requested throughputs, or maximum delay.

Admission control prevents a new flow from joining the network in order to maintain a reasonable quality of the

existing flows. The decision to admit or reject a new flow that requests to enter a wireline link is arguably easier to

make, compared to that of a wireless link. A simple admission control algorithm for a wireline link can keep track
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of the total used bandwidth. The available bandwidth is then equal to the difference between the link capacity and

used bandwidth. A new flow is admitted if its requested bandwidth is smaller than the available bandwidth of the

link by some threshold, otherwise it is rejected. Theoretically, the same algorithm can be applied to a wireless link

if a Time Division Multiple Access (TDMA) scheme is used to allocate bandwidth for each flow. Using a TDMA

scheme, each flow is assigned a set of exclusive time slots for transmitting its data, thus eliminating the multi-user

interference associated with a wireless link. As a result, the admission control algorithm can determine its available

bandwidth precisely and make the decision to admit or reject a new flow accordingly.

However, such a protocol may require a centralized scheduling algorithm, which may not be feasible in a

distributed environment. Therefore, existing Medium Access Control (MAC) protocols such as the IEEE 802.11,

employs a random access approach that allows the flows to compete for shared channel efficiently. That is, IEEE

802.11 protocol enables the flows to achieve high throughputs, while minimizing their collisions. Thus, characterizing

the wasted bandwidth from collisions is specific to a MAC protocol.

The problem of MAC protocols such as the IEEE 802.11 is the multi-user interference, i.e., the collisions between

the new flow and the existing flows, which reduce all the flow’s throughputs. The number of these collisions increases

nonlinearly with the number of competing flows, making it harder for an admission control algorithm to determine

the resulted throughputs of all the flows in order to make the right decision [5]. In particular, for a simple single-hop

wireless network, to decide whether or not to admit a new flow, the admission control algorithm must ensure that

the available bandwidth is at leastK + H kbps, whereK is the total requested bandwidth including that of the

new flow, andH is the incurred overhead from the collisions. WhileK is given to the algorithm, determiningH

is non-trivial when using a typical MAC protocol. ComputingH is even more difficult in a multi-hop wireless

network.

Even when an algorithm can determine precisely the collision bandwidth, it is not always beneficial to employ the

traditional admission control framework in which, the decision to admit a new flow is solely based on the bandwidth

and delay requirements of all the flows. Instead, with the advance in video coding techniques, we argue that the

criterion for flow admission should be the visual quality of the video streams. That is, the inputs to the admission

control algorithm are the minimum visual quality of the video streams, not their bandwidth and delay requirements.

The former approach assumes that each video is coded at a certain bit rate, thus any lesser rate provided by the

network, is unacceptable since the video playback will be interrupted frequently. On the other hand, with scalable

video coding techniques, a video can be transmitted at different bit rates, albeit at different visual qualities. The

advantage of this approach is that a larger number of flows can be allowed to enter a network as long as the video

quality of each flow does not fall below a specified minimum threshold. The objective is then to maximize the

average quality of all the admitted videos, given a specified minimum video quality for each stream, and the current

available bandwidth.

That said, our paper aims to enhance the quality of video streaming applications in wireless home networks

via a joint optimization of video coding technique, admission control algorithm, and MAC protocol. While it is

possible to extend our framework to multi-hop wireless ad-hoc environment, for clarity, our discussion is limited to
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a one-hop wireless network, e.g., the network of all the wireless hosts (devices) within a home or a small building

such that every host can hear the transmissions of all other hosts. Using an Aloha-like MAC protocol [6], we present

a novel admission control framework, which can be viewed as an optimization problem that maximizes the average

quality of admitted videos, given a specified minimum video quality for each flow. In particular, using scalable

video streams, our framework allows more flows to enter the network, as long as the video quality of each flow

does not fall below a specified minimum threshold. We then present some hardness results for the optimization

problem under various conditions, and propose two heuristic algorithms for obtaining a good solution. We show

that a simple greedy layer-allocation algorithm can perform reasonable well, although it is typically not optimal.

Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution

within a constant factor.

The outline of paper is as follows. We first discuss a few related work on admission control for wireless networks

and scalable video coding in Section II. In Section III, we describe a MAC protocol to be used in conjunction with

the admission control algorithm. We then formulate the admission control framework as an optimization problem

in Section IV. In Section V, we provide some hardness results for the optimization problem, and corresponding

heuristic algorithms for obtaining good solutions. Simulation results will be given in Section VI. We then summarize

our contributions and conclude our paper with a few remarks in Section VII.

II. RELATED WORK

Providing QoS for flows on the Internet is extremely difficult, if not impossible, due to its original design to scale

with large networks. The current design places no limit the number of flows entering the network, or attempt to

regulate the bandwidth of individual flows. As a result, bandwidth of multimedia applications over the Internet often

cannot be guaranteed. To that end, many scalable coding techniques have been proposed for video transmission over

the Internet. Scalable video coding techniques are employed to compress a video bit stream in a layered hierarchy

consisting of a base layer and several enhancement layers [7]. The base layer contributes the most to the visual

quality of a video, while the enhancement layers provide successive quality refinements. As such, using a scalable

video bit stream, the sender is able to adapt the video bit rate to the current available network bandwidth by sending

the base layer and an appropriate number of enhancement layers [8],[9],[10],[11],[12]. The receiver is then able to

view the video at a certain visual quality, depending on network conditions.

Scalable video coding techniques can mitigate the insufficient bandwidth problem, but the fundamental issue is

the lack of bandwidth to accommodate all the flows. Thus, admission control must be used. While it is difficult to

implement admission control on a large and heterogeneous network, e.g., the Internet, it is possible to implement

some form of control or regulation in small networks, e.g., WLAN. Consequently, there have been many researches

on providing some form of QoS for media traffic in WLANs [13],[14],[15],[16],[17],[18],[19].

Many existing admission control algorithms for WLANs have been proposed. Gao et al. [20] provided an

admission control by using a physical rate based scheme in IEEE 802.11e. They use the long-term average physical

rates to compute the reservation of the channel for some amount of time called the Transmission Opportunity
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(TXOP) for each station then distribute TXOP’s to everyone. Their framework provides some certain level of

admission control. Xiao and Li [21] used the measurements to provide flow protection (isolation) in the IEEE

802.11e network. Their algorithm is simple, yet effective. The algorithm requires the Access Point (AP) to broadcast

the necessary information to other wireless stations. In particular, the AP announces the budget in terms of the

remaining transmission time for each traffic class (there are 4 traffic classes in the IEEE 802.11e) through the beacon

frames. When the time budget for a class is depleted, the new streams of this class will not be admitted. Xiao and

Li’s work set a fixed limit on the transmission time for the entire session, resulting in low bandwidth utilization

when not every traffic class approaches its limit. Recently, Bai et al. [22] improved the bandwidth utilization of Xiao

and Li’s work by dynamically changing the transmission time of each class based on the current traffic condition.

There are also other admission control schemes implemented at different layers of the network stack. For example,

Barry et al. [23] proposed to monitor the channel using virtual MAC frames and estimate the local service level

by measuring virtual frames. Shah et al. [24] proposed an application layer admission control based on MAC layer

measurement using data packets. Valaee et al. [25] proposed a service curve based admission procedure using probe

packets. Pong and Moors [26] proposed admission control strategy for QoS of flows in IEEE 802.11 by adjusting

the contention windows size and the transmission opportunity. All these admission control schemes do not take

quality of the traffic, particularly video quality in our framework, into consideration directly. On the other hand,

we advocate a direct cross-layer optimization of video quality, admission control algorithm, and MAC protocol,

simultaneously. Most similar to our work is that of Banchs et al. [4]. Since we will be using this scheme for

performance comparisions, we delay the discussion until Section VI.

III. MAC P ROTOCOL

As discussed previously, the amount wasted bandwidth from collisions in a wireless network is different when

using different MAC protocol. In this section, we describe an Aloha-like MAC protocol [6] to be used in the

proposed admission control framework that aims to maximize the average quality of admitted videos, given a

specified minimum video quality for each flow.

In order to contrast the advantages of the new MAC protocol, we first briefly describe the existing IEEE 802.11e

protocol, more specifically in a contention-based channel access scheme called Enhanced Distributed Channel Access

(EDCA), which defines a set of QoS enhancements for WLAN applications through modifications to the MAC layer.

To access the channel, a host first senses the channel. If the channel is idle for more than the Arbitration Interframe

Space (AIFS) time, it starts sending the data. Otherwise, it sets a backoff timer for a random number of time slots

between[0, CWmin] whereCWmin is the minimum contention window size. The backoff timer is decremented

by one for each idle time slot after the AIFS time, and halts decrementing when a transmission is detected. The

decrementing resumes when the channel is sensed idle again for an AIFS time. A host can begin transmission

on the channel as soon as its backoff timer reaches zero. If a collision occurs, i.e., no acknowledgment packet is

received after a short period of time, the backoff timer is chosen randomly between[0, (CWmin + 1)2i− 1] where

i is the number of retransmission attempts. In effect, the contention window size is doubled for each retransmission
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in order to reduce the traffic in a heavily loaded network. Every time a host obtains the channel successfully, it

can reserve the channel for some amount of time (TXOP). Unlike the IEEE 802.11b, IEEE 802.11e can tune the

transmission parameters (e.g.,CWmin, CWmax, TXOP, AIFS) to provide QoS support for certain applications.

We note again that while PCF and HCCA can guarantee bandwidth for a flow, they require an AP (infrastructure

mode) and tend to result in high latencies. As such, the focus of our paper is to provide admission control in a

contention-based mode which is also applicable in adhoc mode settings.

However, the advantage of the existing IEEE 802.11 protocol is that it is bandwidth efficient. That is, based on

the current traffic condition, each host adjusts its rate to achieve high throughput while minimizing the number of

collisions. On the other hand, the rate of a flow cannot be controlled precisely unless we use PCF or HCCA. Often,

this is problematic for video applications. Consequently, we argue for a different MAC protocol which, when used,

would produce a stable throughput for a flow. Furthermore, it is preferable to implement the new MAC protocol

with minimal hardware modification to the existing IEEE 802.11 devices. Indeed, this is possible.

In the new MAC protocol, the contention window size is not doubled after every unsuccessful retransmission

attempt. Instead, depending on the rate requested by a host, it is assigned a fixed value. All other operations are

exactly identical to those of the IEEE 802.11 protocol. We argue that when a proper admission control is employed,

eliminating the doubling ofCW in the IEEE 802.11 protocol, helps to increase the bandwidth efficiency since the

rate of each host is not reduced unnecessarily. Based on the above discussion, it is crucial for an admission control

algorithm to determine whether or not there exists a set ofCW ’s for each host that satisfies their requested rates

without doublingCW ’s. To answer this question, we now proceed with an analysis of the new MAC protocol.

We assume the use of reservation packets, i.e., Request-To-Send/Clear-To-Send (RTS/CTS) packets. RTS/CTS

packets are employed to reduce the collision traffic as well as eliminating the hidden terminal problem [27]. The

main idea is to send small packets to reserve the channel for the actual data transmission. By doing so, collisions

only occur with the small packets, hence reducing the amount of wasted bandwidth. Since we assume that all the

hosts can hear each other’s transmissions, we do not have the hidden terminal problem. Our use of RTS/CTS is

simply to reduce the collision bandwidth.

Our analysis is based on time-slotted, reservation based protocols similar to the Aloha protocol, where the time

taken to make a reservation is a geometrically distributed random variable with parameterp. On significant difference

between the our protocol and the Aloha protocol is that all the hosts in our network are assumed to be able to hear

transmissions of other. Therefore, a host will not attempt to transmit if it determines that the channel is busy, i.e.,

some host is sending. Thus, a host will attempt to send an RTS packet with probabilityp only if it determines that

the channel is idle.

Assume the host transmits the packets with some probabilityp. To translate the transmission probabilityp back

to the contention window size used in IEEE 802.11 protocol,CW can be set to1/p. We note that this is only an

approximation sinceCW in the IEEE 802.11 protocol is not reset at every time slot. To simplify the analysis, we

further assume that every host can start at most one flow at any point in time. A straightforward generalization

to support multiple flows per host is to consider all the flows from one host as one single large flow with the
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transmission probabilityp. Whenever a host successfully obtains the channel, it selects a packet from one of its

flows to send. The probability of a packet selected from a particular flow then equals to the ratio of that flow’s

throughput to the total throughput of all the flows on the same host. This approach would result in the correct

average required throughputs for all the flows.

For a network withN flows, our objective is to determine whether or not there exists a set ofp1,p2,...,pN and for

each flow such that all the flows achieve their specified throughputsR1,R2,...,RN , taking into account of collisions.

Since the ratesRi’s depend on the percentages of successful slots, we first characterize the percentages of collided,

successful, and idle slots, givenpi’s for each flowi. To that end, let us denote

• I: percentage of idle slots

• Si: percentage of successful RTS slots for flowi

• C: percentage of collided slots

• R′i: throughput of flowi as a fraction of the channel capacity.

Note thatI + C +
∑

i Si = 1. Suppose the transmission probability for a new flow isp, then forC − type slots, in

which collisions occur, the new traffic would have no impact on it. ForS − type slots, with probabilityp, it may

cause a collision. For anI − type slots, with probabilityp, it would become aS − type slot. Otherwise it stays

the same. Using the above argument, we can calculateI, S, andC after the new flow starts. In particular, the new

idle, collided, and successful probabilities can be calculated using the currentI, C, S, andp as:

Snew = Scurrent(1− p) + Icurrentp (1)

Inew = Icurrent − Icurrentp (2)

Cnew = 1− Inew − Snew. (3)

Here, we denoteS =
∑

i Si. Similarly, we can calculate the successful probabilitySi as

Si,new = Si,current(1− p), (4)

for any existing flowi, and the successful probability for the new flow (SN ) as

SN = Icurrentp. (5)

Using the equations above, one can compute theI ’s, C ’s, andSi’s for N flows, given the transmission probabilities

p1, p2, ..., pN . In particular, the following algorithm can be used to compute the collision probabilityC, which will

be used in the admission control algorithm later.

Algorithm 1: ComputingC, given the transmission probabilitiespi’s

C = Compute C(p1, p2, ..., pN , N)

I = 1

C = 0

S = 0
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for i = 1 to N do

S = S × (1− pi) + I × pi

I = I − I × pi

C = 1− I − S

end for

return C

Algorithm 1 enables us to compute the successful probability precisely based on the given transmission prob-

abilities pi’s. On the other hand, one typically wants to determine the transmission probabilitiespi’s, given the

requested ratesR′i’s from each flowi. Since the rateR′i is proportional to the corresponding successful probability

Si, we now show how to computepi’s based onSi’s. We then show how to relateSi’s to R′i’s, completing our

objective.

In principle, (1)-(5) enable us to write down a set ofN equations withN unknown variablesp1,p2,...,pN in

terms of the known variablesSi’s, and solve forpi’s. Unfortunately, these equations are not linear, and therefore

difficult to solve. We propose an algorithm to find thepi’s given Si’s based on the following observation: When a

flow i stops,I will increase bySi. If flows i starts again with the same transmission probabilitypi as before, its

successful probability remainsSi as before. Hence, the following equations hold:

(I + Si)pi = Si

pi =
Si

I + Si
(6)

This is true becauseI +Si is the probability of idle slots without flowi. Hence, after the flowi starts, its successful

probability is (I + Si)pi which should also equal precisely toSi, the successful probability before it stops. Thus,

we haveN such equations corresponding toN flows. We also have the constraint:

I + C + S = 1 (7)

whereC andS are the collision and successful probabilities for all the flows. We note thatI is the same for every

equation since it is the probability of idle slots when all flows are active. Now, we can solve forN + 1 unknowns,

i.e. N for pi’s and one forI. Solving this set ofN + 1 equations is simple since each equation is linear except

(7). Equation (7) is non-linear inpi becauseC and S are polynomials inpi which are the results from (1)-(5).

However, (7) will be used as a constraint. SinceI ∈ [0, 1], one can systematically try different values ofI from

large to small, i.e., 1 to 0. For each value ofI, we computepi’s according to (6). All thepi’s are then input to

Algorithm 1 to computeC. We then test to see whether or notI +C +S approximately equals to 1. If so, we have

an admissible set of solutions. If not, we increaseI by a small value and repeat the procedure. If the algorithm

cannot find suchI for the entire range ofI ∈ [0, 1], then the solution does not exist. This indicates invalidSi’s.

Typically, R′i’s, not Si’s, are given. Therefore, to use the procedure above, we first calculate theSi’s in terms of

R′i’s. With minimal modification from IEEE 802.11e standard, our framework uses IEEE 802.11e frame formats and

the timing diagram as shown in Fig. 1. After the channel is idle for a period time equal to a Distributed Interframe
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RTS SIFS PAYLOADCTS SIFS
MAC 
hdr

PHY 
hdr SIFS ACK

AIFS
=DIFS Next Frame 

TXOP
Send RTS with transmission 
probability p

. . .

Tsuccess

RTS DIFS 

Tcollision 

Fig. 1. Timing diagram with RTS/CTS for our proposed framework.

Space (DIFS) time slots, instead of counting downCW before beginning a new transmission, the host sends RTS

with probabilityp to reserve the shared channel. That means we set AIFS=DIFS as same as the one in typical IEEE

802.11 standard [2]. Because all hosts can listen each other transmissions, the collision will occur only if there are

more than one hosts initiating RTS’s at exactly the same time slot. Otherwise, the host successfully reserves the

channel then that host can begin the transmission forTXOP time slots without further collision. A host detects

unsuccessful transmission of an RTS if none of the CTS arrives within DIFS time slots. Note that a host needs to

wait for a short period of time called Short Interframe Space (SIFS) where SIFS< DIFS before sending an ACK

as shown in Fig. 1. To be fair among all the flows with the same traffic class [3], i.e. video streams, everyone uses

the sameTXOP whereTXOP=CTS+PHYhdr+MAChdr+PAYLOAD+ACK+3SIFS+DIFS.

Suppose afterT time slots whereT is large, we observe that there areKi successful transmissions of RTS and

Ki × TXOP slots of data transmission for each flowi. Then by definition, we have:

Si =
Ki

T −∑N
i Ki × TXOP

=
Ki × TXOP/T

TXOP × (1−∑N
i Ki × TXOP/T )

=
R′i

TXOP × (1−∑N
i R′i)

(8)

whereR′i = Ki × TXOP/T can be thought of as the hosti’s requested bandwidth in terms of a fraction of the

channel capacity andN is the number of flows. If the channel capacity isBW , then the transmission rateRi can

be computed such thatRi = R′i × BW . For example, if channel capacity (BW ) is 54 Mbps, and hosti requests

the rate (Ri) of 27 Mbps, thenR′i = 0.5.

Using (8), given the specified ratesR′i’s, one can compute the correspondingSi’s, which are then used in the

following algorithm to determine the transmission probabilitiespi’s, if there are suchp’s.

Algorithm 2: Computepi’s given all R′i’s
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[p1, p2, ..., pN , success] = Compute p(R′1, R
′
2, ..., R

′
N , N)

ε = 0.01

I ′ = 1

{I ′ is the percentage of idle slots}
search step = 0.01

success = 0

for i = 1 to N do

Si = R′i
TXOP×(1−

∑N

i
R′

i
)

end for

while I ′ < 1 do

for i = 1 to N do

pi = Si

I′+Si

end for

{run Algorithm 1 to compute collision probabilityC}
C = Compute C(p1, p2, ..., pN , N)

total = I ′ + C(RTS + DIFS) +
∑N

i Si(RTS)

{check for boundary condition smallerε results in higher accuracy}
if (abs(total − 1) < ε) then

success = 1

return [p1, p2, ..., pN , success]

end if

I ′ = I ′ − search step

end while{fail to find p, success = 0}
return [0, 0, ..., 0, success]

We note that for each unsuccessful RTS transmission, we waste the channel equal to RTS+DIFS time slots. On

the other hand, each successful RTS transmission uses only RTS time slots. Furthermore, Algorithm 2 explicitly

considers the percentage of collided, successful, and idle slots with respect to RTS transmissions to reserve the

channel. This results intotal = I ′ + C(RTS + DIFS) +
∑N

i Si(RTS) wheretotal is close to (or equal to) 1.

We now describe our proposed admission control framework.

IV. A DMISSION CONTROL FRAMEWORK

A. Architecture

Due to a typical small size of a single-hop network, our admission control algorithm runs at the AP or an elected

host. We assume that all hosts are collaborative. That is, each host obeys the admission protocol which operates as

follows.
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For simplicity, in this paper, we assume that there is no cross-traffic of any kinds except videos. In general,

to accommodate other non-time sensitive traffic in the proposed framework, one can perhaps set the minimal

throughput requirements for the traffic. Each host can send videos to and receive from the Internet, or they can

send videos among each other. When a host wants to inject a new video stream into the network, it first requests to

join the network by sending a message to the AP. For video streaming applications, the message may contain the

rate distortion profile of the video, which specifies the different distortion amounts and the corresponding number

of layers used. The message also contains the maximum allowable distortion for a video. Note that for live video

applications, the rate-distortion profile is typically not known ahead of time, but can be estimated. That said, the

focus of this paper will be on streaming applications. Upon receiving the request, the AP (or some elected host) will

run the admission control algorithm to produce a set transmission probabilitiespi’s for each flowi that maximizes

the average visual quality of all the flows, given the maximum distortion levels for each video and overall bandwidth

constraint. If such transmission probabilities exist, the AP will broadcast the transmission probabilitiespi’s to all

the hosts.

Upon receiving AP’s instructions, each hosti begins to transmit its packets with probabilitypi (or roughly

setting its contention window to1/pi) when it observes that the channel is idle. Each transmission probabilitypi

corresponds to a particular rate (or number of layers). If there is no feasible set of transmission probabilities, the

AP will inform the new flow that it cannot join the network at this moment. Note that our proposed protocol is

able to extend to serve the services for other flow types while the AP requires to know their rate-distortion profiles

in order to minimize overall distortion effectively.

B. Problem Formulation

We are now at the position to formulate a rate-distortion optimization problem for multiple layered video streams

under bandwidth and distortion constraints. We note that the average throughput per unit time or transmission rate

Ri for flow i can be achieved by setting its transmission probabilitypi. When there is enough bandwidth for

everyone,pi’s are set to large values so that all the layers of all the video streams would be sent. When there

is not enough bandwidth, e.g. due to too many flows, the layers from certain videos are dropped resulting in the

least average distortion over all the videos. For a simple scenario, we assume that there is no packet loss during

transmission. The transmission rateRi(li) for flow i is proportional to the number of transmitted video layersli.

The optimization problem studied in this paper is to select the optimal number of video layers to transmit

for each ofN hosts (orN flows) while maximizing the overall video quality. Furthermore, the inclusion of the

bandwidth overhead termH = C + S due to channel contention access (collision and reservation bandwidth used

for RTS/CTS packets) makes our optimization problem distinct from other optimization problems. In particular, the

problem is specified by giving: for each host, a functionDi (li), that gives the reduction in distortion when using

li layers at hosti; a rate functionRi (li), that gives the required bandwidth for transmittingli layers from hosti;

an overhead functionH (l1, ..., lN ), that gives the amount of bandwidth consumed by overhead (e.g., due to the

channel contention) for a given assignment of layers to hosts; lower bounds on the reduction in distortion for each
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i denoted byZi; and finally a bound on the total bandwidthBW . Given these quantities, the optimization problem

is as follows:

maximize
N∑

i=1

Di (li)

over li

subject to Di (li) ≥ Zi

N∑

i=1

Ri (li) + H (l1, ..., lN ) ≤ BW (9)

That is, we must find the optimal assignment of layers to each host that maximizes the reduction in total distortion

subject to bandwidth and local minimum reduction in distortion constraints. In particular, there exists a solution iff

we are able to compute a set of transmission probabilitiespi’s corresponding to an optimal assignment of layers

for everyone. A necessary condition is that each flowi is required to maximize its total reduction in distortion

Di at leastZi. Nevertheless, the way to select the layer depends on what layer-selection strategies we use (e.g.,

greedy algorithm, exhaustive search). Note that propagation delay and processing delay can be negligible due to

operating in a single-hop network. However, the delay variation or jitter, would likely affect the performance of the

protocol. The detail analysis of throughput jitter is discussed in Section VI-C. Next, we will study the computational

properties of the layer-selection problem and show that while in general the problem is computationally hard, under

certain reasonable conditions, a simple greedy layer-allocation algorithm can be guaranteed to perform close to

optimal.

V. COMPUTATIONAL COMPLEXITY OF LAYER OPTIMIZATION

In this section, we study the computational complexity of the layer allocation problem described above, showing

both hardness results and conditions under which optimal and approximate solutions can be guaranteed in polynomial

time. Our optimization problem is distinct from most other bandwidth optimization problems by its inclusion of the

overhead termH in the bandwidth constraint. Thus, existing algorithms and complexity proofs do not directly apply

to our problem. Below we first consider the complexity of solving the problem optimally and then we consider

efficient approximation algorithms.

A. Computing Optimal Solutions

Here we analyze the computational complexity of problem classes with the form given in the previous section.

We begin by stating three assumptions about the optimization problem and consider the complexity under various

subsets of these assumptions.

Assumption 1: Uniform rate increase per level

Ri (l + 1)−Ri (l) = Rj (l′ + 1)−Rj (l′) ; for any i, j, l, and l′ (10)
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Assumption 2: Diminishing returns

Di (l + 1)−Di (l) ≤ Di (l)−Di (l − 1) ; for any i and l (11)

Assumption 3: Invariant overhead

H (..., li + 1, ...) = H (..., lj + 1, ...) ; for any l1, ..., lN (12)

Below we will also refer to the property of additive overhead which means thatH (l1, ..., lN ) can be factored as

a sum of the individual overhead functionHi. That is,

H (l1, ..., lN ) =
N∑

i=1

Hi (li) (13)

Intuitively the first assumption states that the amount by which the rate function increases is constant across all

layers of all streams. The second assumption states that within a particular stream, higher layers may never reduce

distortion more than the lower layers. Thus, it will never be the case that a stream must include many lower layers

with low distortion reduction in order to get a big distortion reduction at a higher layer. The third assumption states

that given a particular layer allocation across layers, incrementing any layer by one produces the same increase

in the overhead function. This means that the overhead function is impartial to both the particular stream that is

incremented and the current number of layers allocated to that stream.

Our first result is that given the above three assumptions (10)-(12), we can solve the optimization problem using

an efficient greedy layer-allocation algorithm. The algorithm proceeds as follows:

1) For each streami, we initialize the layer countli to the smallestli such thatDi(li) ≥ Zi. If for somei this

is not possible, then return “no solution”.

2) If it is not possible to increment the layer count of any stream without violating the bandwidth constraints

then terminate and return the current layer counts. In other words, it is not possible to find a feasible set of

transmission probabilities for each host using the Algorithm 2 in Section III.

3) Increment the layer count of streami by 1, where streami is the stream that when incremented produces the

greatest reduction in distortion without violating bandwidth constraints.

Proposition 1 The greedy layer-allocation algorithm is optimal for any problem where Assumptions 1, 2, and 3

hold.

Proof: We first introduce some notation. We will use an allocation vectorL = 〈l1, . . . , lN 〉 to specify the

layer allocationli to each hosti whereN is the total number of hosts. We will denote byD(L) the reduction in

distortion resulting from allocation vectorL. A layer increment sequence is a sequence of host indices(i1, . . . , ik),

indicating the order of layers to increment finally arriving at a final allocation vector wherek is the total increments

in layers.

Note that with invariant overhead and uniform rate increase, each increment in the layer counts results in exactly

the same increase in bandwidth. This means that all optimal layer allocations will satisfy
∑

i li = k for some value
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k. That is, all optimal layer allocations will be a result of exactlyk increments to layer counts. Thus, finding the

optimal layer allocation is equivalent to finding a lengthk layer increment sequence that results in the best layer

allocation starting from the null allocation.

Now consider any layer allocationL and let i∗ be the index of the host that would be selected by the greedy

algorithm starting fromL and let∆∗ be the reduction in distortion resulting from the greedy step. Now consider any

layer increment sequence(i1, . . . , iv) starting atL resulting in an allocation vectorLv. We say that the sequence

is an optimalv-step completion ofL if the value ofD(Lv) is the maximum possible when starting fromL and

incrementingv layers.

Our key claim is that there is always an optimalv-step completion toL that includes an increment toi∗. Assume

that this was not the case and that the above sequence was an optimal completion, implying that it does not contain

an increment toi∗. We show that this leads to a contradiction. First, let∆j equal the reduction in distortion resulting

after adding thej’th layer increment and note thatD(Lv) is equal to the sum of this sequence. By the diminishing

returns assumption we have that∆∗ ≥ ∆j for all j. This is true because the greedy algorithm selected the indexi∗

with the largest decrease in distortion across all layers and thus any further decreases resulting from incrementing

any layer must not be greater than that, otherwise this would violate diminishing returns. Given this fact consider

the new layer increment sequence(i∗, i1, . . . , lv−1) and letL∗ equal the result of applying this sequence starting

at L. It can be easily verified that this is a legal sequence and that the corresponding sequence of reductions in

distortion is equal to(∆∗, ∆1, . . . , ∆v−1). SinceD(L∗) is simply the sum of this sequence and we know that

∆∗ ≥ ∆v this implies D(L∗) ≥ D(Lv). Thus, we have shown an optimalk-step completion that includes an

increment toi∗, which gives a contradiction.

Using the above fact, it is straightforward to show by induction on the number of greedy stepsk that the greedy

algorithm always maintains an optimalk-step completion of the null set, which completes the proof.

We now show that in a sense the above assumptions are necessary for the greedy algorithm to be optimal.

Furthermore, they are necessary for there to exist any efficient solution algorithm, unless P=NP. In particular, the

next series of propositions show that if we remove any one of the assumptions the problem becomes NP-hard.

Below our results concern the decision-problem version of the above optimization problem. That is, the problem

of deciding whether there is a feasible solution given a particular distortion threshold as input. Note that if the

optimization problem can be solved efficiently then so can the decision problem. Thus, hardness results about the

decision problem pertain to optimization as well.

Our hardness proofs are all based on reductions from the 0-1 knapsack problem [28], [29]. A 0-1 knapsack

problem provides us with a finite set of objects, each having a specified value and cost, along with a total value

goal and a total cost limit. We are asked to decide whether there is a subset of objects whose total value meets the

goal, but has cost less than the specified limit. More formally, a 0-1 knapsack problem is a 4-tuple,

〈{v1, ..., vN}, {c1, ..., cN}, V, C〉 (14)

wherevi and ci, and give the value and cost of thei’th item, V is the value goal andC is the cost limit. We are
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asked to decide whether there is a subsetS of 1, ..., N such that

∑

i∈S

vi ≥ V,
∑

i∈S

ci ≤ C (15)

In this section, we will specify our layer-allocation decision problem by the following 6-tuple,

〈{M1, ...,MN}, {D1(l1), ..., DN (lN )}, {R1(l1), ..., RN (lN )}, H(l1, ..., lN ), D, BW 〉 (16)

where for each flowi, Mi is the maximum number of layers,Di(li) is the reduction in distortion function,Ri(li) is

the rate function,H is the overhead,D is the (reduction in) distortion bound, andBW is the bandwidth limit. For

the purposes of complexity analysis, we will make the reasonable assumptions that theMi are encoded inlog Mi

bits and that theDi, Ri, andH functions can be evaluated in polynomial time in the size of the problem encoding.

Given an instance of the layer-allocation decision problem as in (17), we are asked to decide whether there is

an assignment of non-negative integers to variables{l1, ..., lN} such that

li ≤ Mi

∑
i

Di(li) ≥ D

N∑
i=1

Ri (li) + H (l1, ..., lN ) ≤ BW (17)

Note that this formulation of the problem ignores the local distortion constraintsDi(li) ≥ Zi that were present

in our original problem. It turns out that a problem with such constraints can be easily normalized to one without

the constraints1 and hence for simplicity we ignore the constraints in this section.

We now consider in Propositions 2-4, the complexity of this problem when each one of the above assumptions

is lifted.

Proposition 2 The class of decision problems for which Assumptions 2 and 3 hold but Assumption 1 does not is

NP-complete even if we restrict the overhead to be the constant zero function.

Proof: Our problem is clearly in NP, as it is possible to enumerate possible layer allocations and check them

in polynomial time. Each layer-allocation certificate is polynomial-size implying the decision problem is in NP. To

show NP-hardness we reduce from 0-1 knapsack problem. Given an instance of 0-1 knapsack as shown in (14),

we will form the following version of our problem as in (18),

〈{1, ..., 1}, {D1(l1), ..., DN (lN )}, {R1(l1), ..., RN (lN )},H(l1, ..., lN ), V, C〉 (18)

whereDi(li) = vi, Ri(li) = ci, andH(l1, ..., lN ) = 0 for all inputs. That is, we have only one layer to allocate.

The reduction in distortion and the rate function for that layer are equal tovi andci of the 0-1 knapsack problem,

respectively. Note that this problem does not satisfy the constant rate increase sinceci can be different for eachi.

1In particular, one can easily determine the minimum number of layers required by each stream to meet the local distortion constraint. One

can then formulate the problem of optimizing the layer allocation beyond those minimal layers, which does not need to include local distortion

constraints.
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However, it does satisfy Assumptions 2 and 3 trivially. Considering (17) it is straightforward to show that the answer

to the layer-allocation problem given by (18) will be “yes” if and only if the answer is “yes” for the corresponding

0-1 knapsack problem.

Proposition 3 The class of problems for which Assumptions 1 and 3 hold but Assumption 2 does not is NP-complete

even if we restrict the overhead to be the constant zero function.

Proof: The problem is in NP for the same reasons as above. For the purposes of this problem we will only

consider the 0-1 knapsack problem with integer values ofvi, ci, V , andC. We can do this without loss of generality

since we can always multiply all numbers by the appropriate power of 10. Given an instance of the 0-1 knapsack

problem as specified in (14), our reduction constructs the following layer allocation problem,

〈{c1, ..., cN}, {D1(l1), ..., DN (lN )}, {R1(l1), ..., RN (lN )},H(l1, ..., lN ), V, C〉 (19)

whereDi(li) = 0 for li < ci, Di(ci) = vi, Ri(li) = li, andH(l1, ..., lN ) = 0. The intuition here is that we have

many layers in each stream, but only the last layer actually reduces the distortion. This type of behavior violates

Assumption 2. Each layer adds exactly one unit of bandwidth which satisfies Assumption 1 and the overhead is

zero, which satisfies Assumption 3. Note also that the number of layers for flowi is ci. So in order to get a

reduction in distortion ofvi, we must pay a bandwidth ofci, which aligns with the 0-1 knapsack problem.

Given this reduction, it shows that there is a “yes” answer for the constructed layer allocation problem iff there

is a “yes” answer for the 0-1 knapsack instance.

Finally, we show that Assumption 3 is also necessary in some sense. In particular, when it is lifted the problem

becomes computationally hard even when restricted to the class of problems with additive overhead.

Proposition 4 The class of problems for which Assumptions 1 and 2 hold but Assumption 3 does not is NP-complete

even if we restrict to additive overhead.

Proof: Again here we will only consider the integer knapsack problem. Given an instance of an integer 0-1

knapsack problem, we construct the following instance of the layer allocation problem,

〈{v1, ..., vN}, {D1(l1), ..., DN (lN )}, {R1(l1), ..., RN (lN )},H(l1, ..., lN ), V, C〉 (20)

whereDi(li) = li, Ri(li) = 0, andH(l1, ..., lN ) =
∑
i

Hi(li) whereHi(li) = ci for li > 0 andHi(0) = 0. So here

we have the diminishing return property since for each layer we add a single unit of reduction in distortion. We

have the constant bandwidth property trivially. But we do not have invariant overhead since when we move a layer

li from 0 to 1 we get an increase inci. Only the overhead function occupies the bandwidth since all the rates are

equal to zero. Given this reduction it is easy to verify that there is a “yes” answer to the 0-1 knapsack instance iff

there is a “yes” answer to the constructed layer allocation problem.

Together these complexity results show that if we remove any one of three assumptions, the problem becomes

NP-hard and hence is not likely to be solved by an efficient algorithm, in particular the greedy algorithm. The

results also show that this is true even if we place strict restrictions on the form of the overhead function. Even if

the overhead is additive the problem is hard as shown by Proposition 4.
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In practice, it may often be possible to satisfy assumptions 1 and 2. Unfortunately, we can show that the overhead

function arising in our protocol is not invariant as required by Assumption 3 and hence an efficient optimal solution

is still unlikely.

Proposition 5 The overhead of the proposed MAC protocol is not invariant.

Proof: We will show that the overhead of proposed MAC protocol is not invariant by contradiction. Assuming

that the bandwidth overheadH = C + S, bandwidth involved in reservation, is invariant, then:

H ′(i) = H ′(j) (21)

where H ′(i) and H ′(j) denote the overhead resulted from addingδ bps (one layer) into flowi and flow j,

respectively. SinceI + C + S = I + H = 1, we have

I ′(i) = I ′(j) (22)

where I ′(i) and I ′(j) denote the idle slots resulted from addingδ bps into flow i and flow j, respectively. In

particular, addingδ bps into flowi results in the increase ofSi by ∆. We can representI in terms ofSi as:

I =
∏

i

(1− pi)

=
∏

i

(
1− Si

I + Si

)

=
∏

i

(
I

I + Si

)
(23)

That is, (
I ′(i)

I ′(i) + (Si + ∆)

) ∏

k 6=i

(
I ′(i)

I ′(i) + Sk

)
=

(
I ′(j)

I ′(j) + (Sj + ∆)

) ∏

k 6=j

(
I ′(j)

I ′(j) + Sk

)
(24)

Expand the product on both sides of (24). All product terms, except the one with eitherSi or Sj , will be canceled

out, leading to:

(I ′(i) + (Si + ∆)) (I ′(i) + Sj) = (I ′(j) + Si) (I ′(j) + (Sj + ∆)) (25)

SinceI ′(i) = I ′(j), (25) is true iff Si = Sj . SinceSi is directly proportional toRi, this implies that in order to

achieveH ′(i) = H ′(j), the current sending rate of any two video stream must be equal to each other. This is not

true in general, therefore the bandwidth overhead of the proposed MAC protocol is not invariant.

The result shows that adding a video layer from different flows causes an uncertain amount of overhead bandwidth.

Thus, the bandwidth overhead of the MAC protocol is neither additive nor invariant. It is correlated to all active

flows in the system, not individual flows. This shows that the greedy allocation algorithm is not guaranteed to

be optimal for the proposed MAC protocol, though it may still provide practically useful solutions. These results

motivate investigating whether there are variants of the protocol that are overhead invariant to allow for tractable

optimization in the presence of Assumptions 1 and 2, which will often be satisfied in practice. Alternatively,

our results below show that a slight variation on the greedy algorithm allows for the efficient computation of

approximately optimal solutions under only Assumption 1.
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B. Computing Approximate Solutions

Of the three assumptions above, Assumption 2, diminishing returns, is the one that is most likely to be satisfied

in application settings, since most coding schemes exhibit diminishing returns behavior. Assumption 1, uniform

rate increase, will also often be satisfied, though it will rule out non-uniform rate coding schemes. Assumption 3,

invariant overhead, as we have seen is violated by the our protocol and we are unaware of other protocols that satisfy

the assumption. In this light, it is interesting to consider what can be said theoretically when only Assumption 2 is

satisfied. We know from Propositions 2 and 3 that in general the problem is NP-hard to solve optimally with only

Assumption 2, however, this does not rule out the existence of efficient approximation algorithms. In this section,

we show that small extensions to the greedy layer-allocation algorithm can result in algorithms that are guaranteed

to return a solution within a factor of(1− e−1) ≥ 0.63 from the optimal solution.

Our approximation results are based on an extension to recent approximation results for the constrained max-

imization of submodular set functions. Below we first introduce the concept of submodular functions, describe

existing approximation results, our extensions to them, and how they apply to the layer allocation problem.

Optimizing Submodular Functions. Given a finite setE of elements and a functionF on subsets ofE, we

say thatF is non-decreasingif F (A) ≤ F (A′) for any subsetsA and A′ such thatA ⊆ A′. We say thatF is

submodularif

F (A ∪ {x})− F (A) ≥ F (A′ ∪ {x})− F (A′) (26)

for any subsetsA and A′ such thatA ⊆ A′ and anyx ∈ E. Intuitively speaking, a function is submodular if it

exhibits a diminishing returns property, where the increase inF resulting from adding an element toA is at least

as large as adding the same element to a supersetA′ of A.

Submodular functions have nice properties with respect to optimization. A classic result concerns finding the

subsetA ⊆ E of size k that maximizes a submodular and non-decreasing functionF . It has been shown [30]

that the simple greedy allocation algorithm we described earlier—i.e. greedily add the next element fromE that

increasesF the most—achieves an approximation factor of(1 − e−1). That is, for anyF that is submodular and

non-decreasing, the setA that results from the greedy algorithm will satisfyF (A) ≥ (1− e−1)F (A∗), whereA∗

is the optimal solution to the maximization problem.

Note that the above approximation result concerns finding the best subset ofk elements, which implicitly means

that the cost of each element inE is the same and equal to 1. In many cases, we are rather interested in the situation

where each elementx has a costc(x) and the goal is to find the subsetA that maximizesF subject to the constraint

that the total additive cost of elements inA is less than a budgetB. We will call this problem theadditive-cost

submodular maximization problem. The original approximation result does not apply to this problem and in fact the

greedy algorithm can be shown to yield arbitrarily poor results [31]. Recent results, however, have shown that slight

extensions to the greedy algorithm can result in approximation bounds for additive-cost submodular maximization

[31], [32].
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For the first approximation result, from [32], consider a modified version of the greedy algorithm, where at each

step instead of adding the elementx that most increasesF , we add the elementx that achieves the largest ratio of

the increase inF to c(x), provided that addingx does not violate the budgetB. That is, we initialize the setA to

null and then at each iteration add thex with maximum value of(F (A ∪ {x})− F (A)) /c(x), such that the cost

of A ∪ {x} is less thanB. The iteration repeats until no element can be added toA without violating the budget.

Thus, in order to justify adding an elementx with a large cost to the current set, it must yield a large increase

in F . It can be shown that even this modified algorithm can yield arbitrarily poor results compared to the optimal

solution. However, if one returns the best solution found by either the original greedy algorithm or the modified

greedy algorithm then one can guarantee an approximation factor of0.5(1− e−1). We will call this algorithm the

Double-Greedy algorithm. This shows that by increasing the computation time by a factor of two over the original

greedy algorithm (i.e. we must now run both greedy and modified greedy) it is possible to achieve a non-trivial

approximation bound.2

It turns out that by increasing the computation further, but remaining polynomial time, it is possible to improve

the approximation bound to(1− e−1) for the constrained optimization problem, which matches the result for the

unconstrained problem, as proven in both [31], [32]. The new algorithm simply enumerates all triples of elements

from E that do not violate the budget constraint. For each tripleT , the algorithm runs the modified greedy algorithm

initialized to the setT resulting in a final setAT . The algorithm then returns the setAT among all of the triples

that achieved the highest value ofF . We will refer to this algorithm as theAll-Triples-Greedy algorithm. This

algorithm increases the runtime by a factor ofO(|E|3) over the original greedy algorithm, but yields a much

stronger approximation result.

Unfortunately, we found that it was not possible to cast our layer-allocation problem as an instance of additive-cost

submodular optimization. The primary reason is the inclusion of the overhead term in the bandwidth constraint,

which does not allow for an additive cost model in the general case. This led us to extend the results of [31],

[32] to handle a more general maximization problem sufficient for our purposes. In particular, we now assume

in addition to a submodular, non-decreasing functionF that we have a monotonically increasing cost functionC

on subsets ofE. That is, adding an element to a set always increases the cost of the set. Note that additive cost

functions are a special case of this formulation, when all element costsc(x) are positive, but that many other cost

functions are now also included. Our problem now is to find the setA that maximizes the functionF subject

to the constraintC(A) ≤ B. We will call this problem themonotonic-cost submodular maximization problem. It

turns out that one can prove identical approximation results to the above with only slight modifications to the

Double-GreedyandAll-Triples-Greedyalgorithms. In particular, rather than greedily select elements according to

2Technically it is not necessary to run the full greedy algorithm in order to achieve the approximation bound. Rather one need only run the

original greedy algorithm for one iteration (i.e. selecting the best single element of the set) and then return the maximum of the best single

element and the result of the modified greedy algorithm. The results ofDouble-Greedyare guaranteed to be at least as good as this and often

better, but with an increase in computation time.
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(F (A ∪ {x})− F (A)) /c(x), one selects elements according to

F (A ∪ {x})− F (A)
C(A ∪ {x})− C(A)

(27)

That is, rather than normalize according toc(x) we normalize according the increase in the cost associated with

addingx to A. Note that when the cost functionC is additive this difference is always equal toc(x) and hence the

algorithms are identical to those described above. We will refer to these modified algorithms asDouble-Greedy*

andAll-Triples-Greedy* respectively. We can prove the following,

Theorem 1 The Double-Greedy*algorithm achieves a constant factor approximation bound of0.5(1 − e−1) for

the monotonic-cost submodular maximization problem.

Theorem 2 The All-Triples-Greedy* algorithm achieves a constant factor approximation bound of(1 − e−1) for

the monotonic-cost submodular maximization problem.

We do not include the proofs of these theorems in this paper as they are quite involved and require only very minor

modifications to the proofs provided in [32]. In particular, one need only verify that replacing occurances ofc(x)

with C(A∪{x})−C(A) in the proof is correct provided thatC is a monotonically increasing set function. The main

contribution of our work with respect to submodular optimization is to recognize that the existing approximation

results can be easily extended to the useful and much more general case of arbitrary monotonic cost functions. To

the best of our knowledge this has not been previously observed.

Application to Layer Optimization. Using the above theorems it is straightforward to give approximation

algorithms for our layer optimization problem. The key is to show that the problem can be viewed as one of

optimizing a submodular function, upon which we can apply the above results. To do this consider a problem

with N streams each of which, without loss of generality, hasm layers. Now define the setE = {xi,j |1 ≤ i ≤
N, 1 ≤ j ≤ m}, where we think of each streami as containingm elements inE indexed byxi,1 throughxi,m.

Consider any setA ⊆ E and let li(A) denote the number of elements inA that correspond to streami, i.e.

li(A) = |{xi,j ∈ A|1 ≤ j ≤ m}|, and letL(A) = 〈l1(A), . . . , lN (A)〉. In this way, we can view eachA ⊆ E

as specifying a layer assignment vectorL(A) across the streams. Also note that for any possible layer assignment

vector L, there is a corresponding setA ⊆ E such thatL(A) = L. Thus, searching over subsets ofE can be

viewed as searching over possible layer assignments.

Using the above definitions we now define the functionF (A) =
∑

i Di(li(A)), which is simply the total

reduction in distortion resulting from the layer assignmentL(A). Also define the functionC(A) =
∑

i Ri(li(A))+

H(l1(A), . . . , lN (A)), which equals the total bandwidth, including overhead, required by the layer assignmentL(A).

It is easy to see that finding the setA that maximizesF (A) subject toC(A) ≤ B yields a layer assignmentL(A)

that optimally solves the layer assignment optimization problem. Given this equivalence we are now ready to apply

the tools of submodular optimization by showing thatF (A) is a submodular, non-decreasing function.
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Lemma 1 If Assumption 2, diminishing returns, holds then F(A) is a submodular, non-decreasing set function over

E.

Proof: The fact thatF (A) is non-decreasing follows from the fact that the reduction in distortion functionsDi

never decrease with the layer index and that adding elements toA never decreasesli(A). To show submodularity,

consider any two setsA andA′ such thatA ⊆ A′. Now consider any elementxi,j ∈ E and letl = li(A ∪ {xi,j})
and l′ = li(A′ ∪ {xi,j}). We can have either one of two cases. Ifli(A) = li(A′) is true then we know that

l = l′ = li(A) + 1 and hence the increase inF when addingxi,j to A and A′ is identical, which satisfies the

submodularity property. Otherwise, sinceA ⊆ A′ we must have thatli(A) < li(A′). We get that the increase in

F for A andA′ is F (li(A) + 1)− F (li(A)) andF (li(A′) + 1)− F (li(A′)) respectively, which by Assumption 2

shows that the the increase forA must be at least as large as forA′.

In addition toF being submodular and non-decreasing, we also have thatC monotonic, since the bandwidth must

increase as we allocate more layers. Thus, the assumptions required forDouble-Greedy*andAll-Triples-Greedy*

to achieve their approximation bounds are satisfied by the layer allocation problem. In particular, these algorithms

will return anA that approximately optimizesF subject toC(A) ≤ B with a factor given in the above theorems.

The resulting setA corresponds exactly to a layer allocationL(A) that achieves this same approximation bound

for the layer allocation problem. . Note that in our experimental results we only run theDouble-Greedy*algorithm

as the results of this algorithm were very close to optimal and so did not justify the increased runtime of the

All-Triples-Greedy*algorithm.

VI. SIMULATION RESULTS

In this section, we provide a comprehensive evaluation of the proposed optimized framework for video streaming

in single-hop networks. In particular, the simulations provide the visual quality of video streams, as measured

by Mean Square Error (MSE), when admission control is employed in conjunction with different layer allocation

algorithms and the proposed MAC protocol. The layer allocation algorithms of interest are the optimal, the equal

rate, the greedy, and the double greedy algorithms. We intentionally omit the results for the triple greedy algorithm

since in our simulations, they are observed to be identical to those of the double greedy algorithm. This suggests

that perhaps for the bit rates and distortion levels of typical video layers, the double greedy algorithm is sufficient

to obtain a good solution.

We note that the optimal algorithm employs an exhaustive search scheme. That is, it examines all the possible

combinations of video layers and chooses the one that results in the lowest distortion, i.e., smallest MSE that satisfies

the bandwidth and distortion constraints. Thus, the optimal algorithm is prohibitively expensive when the numbers

of video layers and hosts are large. The optimal algorithm, however produces the smallest MSE, and is thus used

to evaluate the goodness of other algorithms. The equal rate algorithm allocates an equal amount of bandwidth to

every video (hosts), layer by layer in a round robin fashion until the constraint on total used bandwidth is no longer

satisfied. The greedy and double greedy algorithms are previously described in Section V-A and V-B, respectively.

In all our simulations, we use two sets of standard video profiles, each set consists of three layered videos, as
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shown in Tables I and II [7],[33],[34],[35],[36]. Depending on the scenarios, a simulation may use either one or

both sets of the video profiles.

TABLE I

STANDARD VIDEO PROFILES- SET I

AKIYO COASTGUARD FOREMAN

LAYER Bit Rates Distortion Reduction in Bit Rates Distortion Reduction in Bit Rates Distortion Reduction in

(kbps) (MSE) Distortion (MSE) (kbps) (MSE) Distortion (MSE) (kbps) (MSE) Distortion (MSE)

1 64 − − 32 123.90 − 64 − −
2 128 83.77 − 112 103.06 20.84 128 71.30 −
3 192 63.54 20.23 160 87.72 15.34 192 56.63 14.67

4 256 50.48 13.06 208 78.18 9.54 256 46.03 10.60

5 320 38.29 12.19 256 71.30 6.88 320 39.18 6.85

6 384 32.59 5.70 304 65.03 6.27 384 33.35 5.83

7 448 27.74 4.85 352 57.95 7.08 448 29.05 4.30

8 512 23.61 4.13 400 51.65 6.30 512 25.89 3.16

TABLE II

STANDARD VIDEO PROFILES- SET II

FOREMAN 1 (FGS-temporal scalability mode) COASTGUARD (FGS) FOREMAN 2 (FGS-AFP mode)

LAYER Bit Rates Distortion Reduction in Bit Rates Distortion Reduction in Bit Rates Distortion Reduction in

(kbps) (MSE) Distortion (MSE) (kbps) (MSE) Distortion (MSE) (kbps) (MSE) Distortion (MSE)

1 140 57.03 − 110 60.68 − 384 42.96 −
2 240 33.05 23.98 160 51.65 9.03 512 31.12 11.84

3 340 21.89 11.16 240 43.96 7.69 640 26.43 4.69

4 440 16.30 5.59 300 38.29 5.67 768 22.55 3.88

5 540 11.46 4.84 360 31.12 7.17 896 19.19 3.36

6 640 8.67 2.79 420 26.48 4.63 1024 17.91 1.28

7 740 7.24 1.43 490 24.16 2.33 1152 15.96 1.95

8 840 5.87 1.37 590 20.56 3.60 1280 14.22 1.74

9 940 4.59 1.28 730 17.50 3.06 1408 13.27 0.95

10 850 14.89 2.61

11 900 11.56 3.33

A. Protocol Evaluation

We first compare the performance of the proposed MAC protocol against the standard IEEE 802.11 without

admission control [2] and the IEEE 802.11e with admission control. In particular, for the IEEE 802.11e with

admission control, we use the mechanism proposed by Banchs et al. [4]. This mechanism is somewhat similar to

ours, in the sense that each flowi achieves its throughput by setting the contention windowCWi to an appropriate

size. For our proposed MAC, we can approximateCWi = 1/pi. The fundamental difference, however is in the

formulation which leads to two different algorithms, and consequently different behaviors. In the IEEE 802.11e

with admission control, Banchs et al. formulated the admission control process as maximizing the total throughput

from all the flows subject to the constraint on the relative throughput for each flow. In particular, the algorithm tries

to set the values of the contention window for each flow in such a way to maximizeR = R1 + R2 + ...RN , while
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ensuring thatR1/R1 = n1, R2/R1 = n2, ... RN/R1 = nN whereN , Ri, and {n1, ..., nN} are the number of

flows, the throughput rate for flowi, and a set of given requirements, respectively. Note that we randomly choose

R1 as a reference flow. As a direct result, the throughput obtained by each flow might be higher than what is

specified, especially when the specified aggregate throughput is much smaller than the network capacity. On the

other hand, our algorithm produces precisely the specified rate for each flow. As will explained shortly, the ability

to precisely control the rate will enable an efficient cross-layer optimization.

Our simulator is a time-driven, packet-based simulator written in MatLab. It is designed to mimic as close as

possible to the real operations using all the critical parameters in the IEEE 802.11e protocol. For all the simulations,

the parameters specified for Frequency Hopping Spread Spectrum (FHSS) PHY layer with the channel capacity of

1 Mbps are shown in Table III. We note that the MAChdr for IEEE 802.11e contains 2 bytes for a QoS field in

addition to that of IEEE 802.11. We also assume that the processing and propagation delays are zero.

TABLE III

FHSSSYSTEM PARAMETERS FORIEEE 802.11E USED TO OBTAIN NUMERICAL RESULTS

PARAMETER VALUE

Packet payload 1500 bytes

MAC header (MAChdr) 36 bytes

PHY header (PHYhdr) 16 bytes

RTS 20 bytes+PHYhdr

CTS 16 bytes+PHYhdr

ACK 14 bytes+PHYhdr

Channel capacity (BW) 1 Mbps

Slot time 50 µs

SIFS 28 µs

DIFS 128 µs

RTS timeout (RTS/BW×8× 106)+DIFS µs

We first show the simulation results for a single-hop wireless network consisting of 3 hosts. Each host sends

exactly one video to other host over a limited channel capacity (BW ) of 1 Mbps. These flows are assumed to be in

the same traffic class. The minimum throughput requirements for flows 1 (R1) and 2 (R2) are set to 200 kbps and

300 kbps, respectively. The minimum throughput of flow 3 (R3) increases linearly from 115 kbps to 370 kbps with

a step size of 15 kbps. For the IEEE 802.11e with admission control,CWi’s are set according to the admission

control algorithm while for the standard IEEE 802.11 without admission control,CWmin andCWmax are set to

15 and 1023 respectively.

Fig. 2(a)-(c) show the observed throughputs for IEEE 802.11 without admission control, IEEE 802.11e with

admission control, and our proposed admission control as a function of the flow 3’s throughput. As seen, the

standard IEEE 802.11 performs well when the total requested throughput is smaller than the network capacity.

Without admission control, however, flow 3 cannot achieve its requested throughput of greater than 320 kbps. On
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the other hand, the IEEE 802.11e with admission control performs very well as the throughput for each flow is

consistently above its specified minimum requirement. Unlike the IEEE 802.11e, our proposed admission control

produces a precise the requested throughput for each flow. As a result, the collision rate (wasted bandwidth) is

much smaller than that of the standard and the IEEE 802.11e as shown in Fig. 2(d), even when the total useful

throughputs in both schemes are approximately the same. This is an advantage of using the proposed MAC protocol.

Not surprisingly, the total bandwidth usage for our algorithm is much smaller than those of other protocols as shown

in Fig. 2(e) for a specified set of rates.

We now show the simulation results when applying cross-layer optimization for transmitting 3 video flows. First,

to provide some intuitions about the interactions between the proposed MAC protocol and the layer allocation

algorithms described in Section V-B. Specifically, we present the simulation results for various quantities, e.g.

throughputs, transmission probabilities, when using a simple greedy layer allocation. The simulation parameters

are shown in Table III. Since all video streams are in the same traffic class, they use the sameTXOP where

TXOP=CTS+PHYhdr+MAChdr+PAYLOAD+ACK+3SIFS+DIFS. We use standard video profile set I in this sim-

ulation. Fig. 3(a) shows the average throughputs of different video streams increase with the normalized bandwidth

usage. From left to right, each point in the graph represents an additional layer being added to one of the videos

according to the greedy algorithm. The rightmost point denotes the final number of layers for each video. Adding

a layer to any video on each graph at this point would violate the bandwidth constraint. In other words, with the

addition of a new layer, the Algorithm 2 in Section III will not able to find a set of transmission probabilities

that satisfies the requested rates for all the videos. We note that, at this point, the total bandwidth usage is 95%,

indicating a relatively high bandwidth utilization.

Fig. 3(b) shows the transmission probabilities for each host as a function of normalized bandwidth usage. As

expected, as the number of layers increases for each video, their transmission probabilities also increase accordingly

to ensure a higher chance for data transmissions. It is interesting to note that the transmission probabilities increase

almost exponentially to compensate for roughly linear increase in the overall throughput. Fig. 3(c) shows the

corresponding increases percentage of successful slots (over the number of non-data slots) for different video

streams, as a direct result of increase in transmission probabilities.

However, as the transmission probabilities increase, the percentage of collision slots also increases substantially

as shown in Fig. 3(d). Of course, the percentage of idle slots decreases accordingly. This agrees with our intuition

about the proposed MAC protocol. We note that using this MAC protocol, one is able to control the rate of the

flows precisely by tuning their transmission probabilities. These rates, in turn, control the visual quality of the

video streams. Fig. 3(e) shows the visual quality of the three video streams in terms of MSE as a function of

normalized bandwidth usage. In this case, the greedy algorithm which minimizes the total MSE for all the flows

given the bandwidth constraint, yields an MSE of 38, 71, and 46 for Akiyo, Coastguard, and Foreman sequences,

respectively. Fig. 3(f) shows the actual bandwidth percentage for various packet types. As seen, only minimal

bandwidth overhead (2%) is incurred when using the RTS of 36 bytes and packet payload of 1500 bytes.
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Fig. 2. Proposed protocol validation comparing to IEEE 802.11 and IEEE 802.11e protocols. (a) Throughput for flow 1; (b) Throughput for

flow 2; (c) Throughput for flow 3; (d) Overall collision; (e) Overall bandwidth usage.
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Fig. 3. Performance results using the greedy algorithm. (a) Throughput; (b) Transmission probability; (c) Percentage ofS slots; (d) Percentage

of I, C, andS slots; (e) Distortion in MSE; (f) Rate-distortion characteristic.

February 13, 2008 DRAFT



TECHNICAL REPORT: ECE07-06-01 27

184.23
182.64

155.62

129.12

155.62

129.12

184.23

155.62

129.12

185.29

161.54

135.42

100.00

120.00

140.00

160.00

180.00

200.00

BW = 0.8 Mbps BW = 1 Mbps BW = 1.2 MbpsO
v
e
ra

ll 
d
is

to
rt

io
n
 i
n
 m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r 

(M
S

E
) 

.

Optimal solution

Greedy

Double greedy

Equal Rate

(a)

60.49

79.44

60.49

51.7851.78

73.90

60.49

79.44

52.02

73.90

52.60

63.14

0.00

20.00

40.00

60.00

80.00

100.00

BW = 1.6 Mbps BW = 2 Mbps BW = 2.4 Mbps

O
v
e

ra
ll 

d
is

to
rt

io
n

 i
n

 m
e

a
n

 s
q

u
a

re
d

 e
rr

o
r 

(M
S

E
) 

.

Optimal solution

Greedy

Double greedy

Equal Rate

(b)

Fig. 4. Distortion performances of different algorithms for (a) Video profiles in Table I; (b) video profiles in Table II.

B. Layer Allocation Algorithm Performance

We now show the performance of different layer allocation algorithms. For simplicity, we assume there is no

packet loss. Furthermore, by using standard video profiles in Table I ,we require that the distortion levels (MSE)

for Akiyo, Coastguard, and Foreman cannot be greater than 63, 103, and 56, respectively. For this simulation, these

MSE values are chosen rather arbitrarily, but in practice a user can specify his or her visual quality requirement.

Fig. 4(a) and Fig. 4(b) show the distortions resulted from using different algorithms for video profiles in Tables I

and II, respectively. For Table II, the maximum distortion requirements for Foreman 1, Coastguard, and Foreman 2

are 21, 51, and 31, respectively. As expected, the optimal (exhaustive search) always produces the lowest distortion,

albeit has the highest computational cost.

Fig. 4(a) shows that the performances of the greedy and the double greedy are all identical for video profiles in

Table I. At 0.8 Mbps, the greedy and the double greedy algorithms fail to find the optimal solutions. However, the

performances of the greedy, the double greedy, and the optimal algorithms are all identical at the capacity channel
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of 1 Mbps and 1.2 Mbps. This suggests that greedy and double greedy algorithms perhaps are sufficient in practice.

As expected, the equal rate algorithm performs worst since it does not even try to minimize the overall distortion.

On the other hand, Fig. 4(b) shows that the greedy algorithm fails to find the optimal solutions in two instances

(BW= 1.6 Mbps and 2.4 Mbps). In contrast, the double greedy algorithm typically finds the optimal solutions.

This is, however, not guaranteed as the double greedy algorithm does not converge to optimal solution forBW=1.6

Mbps. We note that as described in Section V-B, the computational cost of the double greedy algorithm is twice that

of the greedy algorithm since it must run the greedy and modified greedy algorithms, and picks the best one. The

modified greedy algorithm is the basic greedy algorithm, where at each step instead of adding the layer that most

decreases the distortion, we add the layer that achieves the largest ratio of the reduction in distortion to the layer bit

rate, provided that adding the layer does not violate the bandwidth constraint. The modified greedy algorithm might

or might not produce a better solution than that of the greedy algorithm. Both the greedy and modified algorithms

can produce an arbitrarily bad solution, while the double greedy algorithm which returns the best solution (lower

distortion) of the greedy and modified greedy algorithm, guarantees that its solution is a constant approximation

factor to the optimal solution.

Tables IV and V show the detail information associated with different algorithms for the video profiles I and II,

respectively. As seen, the optimal algorithm always achieves in the lowest distortion. In all cases, the bandwidth

overhead is relatively small, indicating the ability of the framework to utilize the bandwidth efficiently. Note that

there are some other overhead bandwidth (i.e., PHYhdr, MAChdr, SIFS, DIFS, ACK) that amount to 8 to 10% of

the total bandwidth.

TABLE IV

DETAIL INFORMATION ASSOCIATED WITH DIFFERENT ALGORITHMS FOR VIDEO PROFILESI (BW=1.2MB/S)

Distortion Normalized Bandwidth Usage (%) Transmission probability

(MSE) Total Overhead S Overhead C Throughput Others AKIYO COASTGUARD FOREMAN

Optimal Solution 129.12 98.47 2.11 0.07 87.86 8.43 0.0215 0.0269 0.0215

Greedy 129.12 98.47 2.11 0.07 87.86 8.43 0.0215 0.0269 0.0215

Modified Greedy 129.12 98.47 2.11 0.07 87.86 8.43 0.0215 0.0269 0.0215

Double Greedy 129.12 98.47 2.11 0.07 87.86 8.43 0.0215 0.0269 0.0215

Equal Rate 135.42 93.56 2.00 0.02 83.52 8.02 0.0046 0.0051 0.0046

TABLE V

DETAIL INFORMATION ASSOCIATED WITH DIFFERENT ALGORITHMS FOR VIDEO PROFILESII (BW=2.4MB/S)

Distortion Normalized Bandwidth Usage (%) Transmission probability

(MSE) Total Overhead S Overhead C Throughput Others FOREMAN 1 COASTGUARD FOREMAN 2

Optimal Solution 51.78 95.86 2.01 0.06 83.74 10.05 0.0140 0.0129 0.0165

Greedy 52.02 97.14 2.04 0.08 84.84 10.18 0.0203 0.0155 0.0280

Modified Greedy 51.78 95.86 2.01 0.06 83.74 10.05 0.0140 0.0129 0.0165

Double Greedy 51.78 95.86 2.01 0.06 83.74 10.05 0.0140 0.0129 0.0165

Equal Rate 52.60 96.47 2.02 0.07 84.26 10.12 0.0165 0.0186 0.0165
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C. Throughput Jitter Evaluation

The proposed optimization framework guarantees that each flow will achieve its required throughput when it is

averaged over a long period of time. However, the throughputs of the flows may fluctuate within a short period of

time due to the probabilistic nature of the channel contention access. These throughput fluctuations may prevent

smooth playback for many audio and video streaming applications. To alleviate this problem, many streaming

applications employ the prebuffering technique in which, the receiver puts the received data into a buffer for a

short period of time before starting to playback. A longer buffer results in a smoother playback session. On the

other hand, using a larger buffer results in larger initial delay and required memory. Interactive applications such

as video conferencing may not tolerate such large delay, and the low power wireless hosts may not have enough

memory for buffering. Thus, it is important to characterize the throughput jitter resulting from using the protocol.

Fig. 5(a) shows the ratio of the actual throughputs to the requested throughputs of different flows in video profiles

I, averaged over every 300 kbytes. The channel capacity is set to 1 Mbps. Fig. 5(b) shows throughput ratios for

different flows in the video profiles II, averaged over every 600 kbytes, with the capacity channel set to 2 Mbps.

As seen, the throughput ratios fluctuate around 1, indicating all the flows achieve their required throughputs. The

magnitudes of these fluctuations are also small, e.g. 0-20%, suggesting that one can use a small streaming buffer

for smooth playback.

In this simulation, we repeatly transmit three videos from video profiles I for 20 minutes. We want to quantify

how long a streaming buffer should be in order to prevent lost packets due to late arrival. To prevent throughput

fluctuation, we also request a slightly larger bandwidth than the recorded video bit rate. This bandwidth safety

margin provides robustness against possible throughput depletion during a session. Fig. 6(a) to Fig. 6(d) show the

number of late packets as a function of streaming buffer length for various bandwidth safety margins.

As seen, to have no late packet with no bandwidth safety margin, a user receiving Akiyo needs to wait on average,

48 seconds to smoothly playback a 20-minute video. Users receiving Coastguard and Foreman need to wait up to

88 and 40 seconds, respectively. However the required waiting time reduces with the increase in the bandwidth

safety margin. For example, using the bandwidth safety margin of 3%, the waiting times for Akiyo, Coastguard,

and Foreman users are reduced to 24, 32, and 12 seconds, respectively.

We also quantify the throughput jitter of a flow as the normalized standard deviation of its fractional throughput

within a number of time slots. Specifically,

Stdevn(Xi(T )) =
Stdev(Xi(T ))

R′i
, (28)

whereXi(T ) is a fraction of the data slots of the flowi measured withinT time slots, andR′i denotes its average

long term fractional throughput. Clearly, a largerT should result in a smaller normalized throughput standard

deviation since we average the throughput over a longer period of time. It is straightforward to show that

Stdevn(Xi(T )) = TXOPi ×

√
(1−∑N

i R′i)× Si × (1− Si)

R′i
√

T
, (29)
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Fig. 5. Throughput jitter for each flow for (a) Video profiles in Table I; (b) Video profiles in Table II.

whereN denotes the number of flows andSi’ denotes the number of successful time slots for flowi. 3.

To quantify the normalized throughput standard deviation, we simulate three flows withR′1, R′2, andR′3 being

set to 0.1, 0.27, and 0.4, respectively. Fig. 7 shows the normalized throughput standard deviations for three different

flows as a function of buffer size (T ). As expected, asT increases, the normalized throughput standard deviation

decreases. However, increasingT implies an increase in playback delay.

3This result can be obtained by noticing that the number of successful transmission slots within a periodT is binomially distributed with

parametersSi andT (1−
∑N

i
R′i).
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Fig. 6. Percentage of late packets as a function of streaming buffer length (in seconds); (a) 0% bandwidth safety margin; (b) 1% bandwidth

safety margin; (c) 2% bandwidth safety margin; d) 3% bandwidth safety margin. The bit rates of Akiyo, Coastguard, and Foreman are 192,

160, and 256kbps, respectively.
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Fig. 7. Normalized throughput standard deviation as a function of buffer size (T ).
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D. Overall Performance

We now compare the performance of our proposed framework against the existing IEEE 802.11 without admission

control and IEEE 802.11e with admission control proposed by Banchs et al. [4]. To simulate realistic settings, packet

losses are introduced into the simulations. For simplicity, we assume that packet loss rates are identical for all the

receivers. We also assume that a packet will be transmitted repeatedly until it is received successfully. As a result, the

useful throughput reduces with an increase in packet loss rate. The admission control module is assumed to be able

to measure the packet loss rate, and thus can determine the overall effective throughput. Using the overall effective

throughput and the video profiles as inputs, it can use different optimization strategies to allocate bandwidths for

receivers so as to minimize the average distortion.

Fig. 8(a) shows the average distortion for various strategies when streaming the videos in profile I. As expected,

the optimal strategy, i.e., exhaustive search, always provides the smallest average distortion. The double greedy

algorithm also performs equally well. The greedy algorithm performs slightly worse, followed by the equal rate

algorithm, the IEEE 802.11 protocol without admission control, and IEEE 802.11e with admission control. The

main reason for the worse performances when using the IEEE 802.11 and the IEEE 802.11e is the lack of layer

allocation optimization. For the IEEE 802.11, due to the random contention-based access where each flow has an

equal chance of accessing the shared channel, all three flows obtain approximately the same throughputs. However,

this is not the optimal allocation for minimizing the overall distortion. Intuitively, the IEEE 802.11 should perform

as well as the equal rate allocation. On the other hand, the equal rate allocation scheme uses the proposed admission

control which results in smaller collision bandwidth as compared to that of IEEE 802.11. As a result, the average

distortion of the equal rate scheme is typically lower than that of the IEEE 802.11.

However, admission control mechanism alone does not improve the quality of the video. To see this, let us

consider the performance of the IEEE 802.11e with admission control. Using this scheme, one is able to guarantee

the minimum throughput rate for each flow. However, if after providing these minimum throughputs for the flows,

there is still much bandwidth available, then as designed, the IEEE 802.11e protocol would allow each flow to

increase its throughput proportionally until the wireless capacity is reached. The final throughput of each flow as

obtained by the admission control algorithm then dictates the quality of a video. In other words, the layer allocation

employed in this case is to allocate the rate proportionally according to the initial conditions. For example, if the

minimum rates (or equivalently maximum distortions) for three flows are specified initially 200 kbps, 400 kbps,

and 400 kbps, then with a channel capacity of 2 Mbps, the IEEE 802.11e protocol will roughly allocate 400 kbps,

800 kbps, and 800 kbps for these flows (for sake of illustration, we assume no collision bandwidth). Clearly, this

allocation is not optimal as it does not take into the account the distortion profile for each video. That said, there is no

reason why the IEEE 802.11e with admission control should perform better than the IEEE 802.11 or other schemes

when there is enough bandwidth. In fact, Fig. 8(b) shows that the IEEE 802.11e results in a larger average distortion

consistently when using video profiles II. Our proposed framework which integrates the admission control with

layer allocation optimization enables us to achieve the lowest distortion. Overall, our proposed framework improves
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the video quality up to 26% over that of a typical IEEE 802.11 based network.
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Fig. 8. Distortions resulted from using various protocols for (a) Using video profiles I with channel capacity set to 1 Mbps; (b) Using video

profiles II with channel capacity set to 2 Mbps.

VII. C ONCLUSIONS

We have proposed a framework to enhance the quality of video streaming applications in wireless home networks

via a joint optimization of video coding technique, admission control algorithm, and MAC protocol. Using an

Aloha-like MAC protocol, our admission control framework which can be viewed as an optimization problem that

maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We

provided some hardness results for the optimization problem under various conditions, and proposed two heuristic

algorithms for obtaining a good solution. In particular, we showed that a simple greedy layer-allocation algorithm

can perform reasonable well, although it is typically not optimal. Consequently, we presented a more expensive
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heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results

demonstrated that our proposed framework can improve the video quality up to 26% as compared to those of the

existing approaches.
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