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Abstract

Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over
wireless networks. Even when packet loss is not present, the bandwidth fluctuation as a result of an arbitrary number
of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the
quality of video streaming applications in wireless home networks via a joint optimization of video coding technique,
admission control algorithm, and Medium Access Control (MAC) protocol. Using an Aloha-like MAC protocol, we
propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the
average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness
results for the optimization problem under various conditions, and propose some heuristic algorithms for finding a
good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well,
although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to
approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework

can improve the video quality up to 26% as compared to those of the existing approaches.

Index Terms

Admission control, Layered video coding, Optimization, Submodular function, Video streaming, WLAN.

I. INTRODUCTION

Recent years have witnessed an explosive growth in multimedia wireless applications such as video streaming
and conferencing [1]. One of the reasons for this tremendous growth is the wide deployment of the IEEE 802.11
wireless LANs (WLANS) in both private home and enterprise networks. Despite of these seemingly successes, many
fundamental problems of transmitting multimedia data over wireless networks remain relatively unsolved. One of the
challenges is how to efficiently guarantee a specified bandwidth for a video flow in a wireless network. The popular
WLAN, patrticularly Distributed Coordination Function (DCF) in typical IEEE 802.11 [2] which operates under a
contention-based channel access mechanism, does not provide a mechanism to guarantee minimum bandwidth for
multiple concurrent flows. As a result, a video application may experience significant quality degradation due to
free admission of an arbitrarily large number of flows. Nevertheless, Point Coordination Function (PCF) in typical
IEEE 802.11 and HCF Controlled Channel Access (HCCA) in IEEE 802.11e [3] are able to provide a polled access
mechanism to guarantee the minimum bandwidth. However, the use of PCF and HCCA mechanisms are rather
limited, and often result in high latencies. Furthermore, a scheduler and queuing mechanism at the AP is needed to
control to regulate the polling frequency in HCCA and PCF to provide flows with the requested throughputs. That
said, this paper considers the a contention-based approach to admission control, similar to the work of Banchs et
al. [4] in which, the parameters of the IEEE 802.11e in the contention-based mode are set appropriately to enable
flows to achieve their requested throughputs, or maximum delay.

Admission control prevents a new flow from joining the network in order to maintain a reasonable quality of the
existing flows. The decision to admit or reject a new flow that requests to enter a wireline link is arguably easier to

make, compared to that of a wireless link. A simple admission control algorithm for a wireline link can keep track
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of the total used bandwidth. The available bandwidth is then equal to the difference between the link capacity and
used bandwidth. A new flow is admitted if its requested bandwidth is smaller than the available bandwidth of the
link by some threshold, otherwise it is rejected. Theoretically, the same algorithm can be applied to a wireless link
if a Time Division Multiple Access (TDMA) scheme is used to allocate bandwidth for each flow. Using a TDMA
scheme, each flow is assigned a set of exclusive time slots for transmitting its data, thus eliminating the multi-user
interference associated with a wireless link. As a result, the admission control algorithm can determine its available
bandwidth precisely and make the decision to admit or reject a new flow accordingly.

However, such a protocol may require a centralized scheduling algorithm, which may not be feasible in a
distributed environment. Therefore, existing Medium Access Control (MAC) protocols such as the IEEE 802.11,
employs a random access approach that allows the flows to compete for shared channel efficiently. That is, IEEE
802.11 protocol enables the flows to achieve high throughputs, while minimizing their collisions. Thus, characterizing
the wasted bandwidth from collisions is specific to a MAC protocol.

The problem of MAC protocols such as the IEEE 802.11 is the multi-user interference, i.e., the collisions between
the new flow and the existing flows, which reduce all the flow’s throughputs. The number of these collisions increases
nonlinearly with the number of competing flows, making it harder for an admission control algorithm to determine
the resulted throughputs of all the flows in order to make the right decision [5]. In particular, for a simple single-hop
wireless network, to decide whether or not to admit a new flow, the admission control algorithm must ensure that
the available bandwidth is at lea&t + H kbps, whereK is the total requested bandwidth including that of the
new flow, andH is the incurred overhead from the collisions. Whiteis given to the algorithm, determining
is non-trivial when using a typical MAC protocol. Computirfg is even more difficult in a multi-hop wireless
network.

Even when an algorithm can determine precisely the collision bandwidth, it is not always beneficial to employ the
traditional admission control framework in which, the decision to admit a new flow is solely based on the bandwidth
and delay requirements of all the flows. Instead, with the advance in video coding techniques, we argue that the
criterion for flow admission should be the visual quality of the video streams. That is, the inputs to the admission
control algorithm are the minimum visual quality of the video streams, not their bandwidth and delay requirements.
The former approach assumes that each video is coded at a certain bit rate, thus any lesser rate provided by the
network, is unacceptable since the video playback will be interrupted frequently. On the other hand, with scalable
video coding techniques, a video can be transmitted at different bit rates, albeit at different visual qualities. The
advantage of this approach is that a larger number of flows can be allowed to enter a network as long as the video
quality of each flow does not fall below a specified minimum threshold. The objective is then to maximize the
average quality of all the admitted videos, given a specified minimum video quality for each stream, and the current
available bandwidth.

That said, our paper aims to enhance the quality of video streaming applications in wireless home networks
via a joint optimization of video coding technique, admission control algorithm, and MAC protocol. While it is

possible to extend our framework to multi-hop wireless ad-hoc environment, for clarity, our discussion is limited to
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a one-hop wireless network, e.g., the network of all the wireless hosts (devices) within a home or a small building
such that every host can hear the transmissions of all other hosts. Using an Aloha-like MAC protocol [6], we present
a novel admission control framework, which can be viewed as an optimization problem that maximizes the average
quality of admitted videos, given a specified minimum video quality for each flow. In particular, using scalable
video streams, our framework allows more flows to enter the network, as long as the video quality of each flow
does not fall below a specified minimum threshold. We then present some hardness results for the optimization
problem under various conditions, and propose two heuristic algorithms for obtaining a good solution. We show
that a simple greedy layer-allocation algorithm can perform reasonable well, although it is typically not optimal.
Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution
within a constant factor.

The outline of paper is as follows. We first discuss a few related work on admission control for wireless networks
and scalable video coding in Section Il. In Section IIl, we describe a MAC protocol to be used in conjunction with
the admission control algorithm. We then formulate the admission control framework as an optimization problem
in Section IV. In Section V, we provide some hardness results for the optimization problem, and corresponding
heuristic algorithms for obtaining good solutions. Simulation results will be given in Section VI. We then summarize

our contributions and conclude our paper with a few remarks in Section VII.

Il. RELATED WORK

Providing QoS for flows on the Internet is extremely difficult, if not impossible, due to its original design to scale
with large networks. The current design places no limit the number of flows entering the network, or attempt to
regulate the bandwidth of individual flows. As a result, bandwidth of multimedia applications over the Internet often
cannot be guaranteed. To that end, many scalable coding techniques have been proposed for video transmission over
the Internet. Scalable video coding techniques are employed to compress a video bit stream in a layered hierarchy
consisting of a base layer and several enhancement layers [7]. The base layer contributes the most to the visual
quality of a video, while the enhancement layers provide successive quality refinements. As such, using a scalable
video bit stream, the sender is able to adapt the video bit rate to the current available network bandwidth by sending
the base layer and an appropriate number of enhancement layers [8],[9],[10],[11],[12]. The receiver is then able to
view the video at a certain visual quality, depending on network conditions.

Scalable video coding techniques can mitigate the insufficient bandwidth problem, but the fundamental issue is
the lack of bandwidth to accommodate all the flows. Thus, admission control must be used. While it is difficult to
implement admission control on a large and heterogeneous network, e.g., the Internet, it is possible to implement
some form of control or regulation in small networks, e.g., WLAN. Consequently, there have been many researches
on providing some form of QoS for media traffic in WLANSs [13],[14],[15],[16],[17],[18],[19].

Many existing admission control algorithms for WLANs have been proposed. Gao et al. [20] provided an
admission control by using a physical rate based scheme in IEEE 802.11e. They use the long-term average physical

rates to compute the reservation of the channel for some amount of time called the Transmission Opportunity
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(TXOP) for each station then distribute TXOP’s to everyone. Their framework provides some certain level of
admission control. Xiao and Li [21] used the measurements to provide flow protection (isolation) in the IEEE
802.11e network. Their algorithm is simple, yet effective. The algorithm requires the Access Point (AP) to broadcast
the necessary information to other wireless stations. In particular, the AP announces the budget in terms of the
remaining transmission time for each traffic class (there are 4 traffic classes in the IEEE 802.11e) through the beacon
frames. When the time budget for a class is depleted, the new streams of this class will not be admitted. Xiao and
Li's work set a fixed limit on the transmission time for the entire session, resulting in low bandwidth utilization
when not every traffic class approaches its limit. Recently, Bai et al. [22] improved the bandwidth utilization of Xiao
and Li's work by dynamically changing the transmission time of each class based on the current traffic condition.
There are also other admission control schemes implemented at different layers of the network stack. For example,
Barry et al. [23] proposed to monitor the channel using virtual MAC frames and estimate the local service level
by measuring virtual frames. Shah et al. [24] proposed an application layer admission control based on MAC layer
measurement using data packets. Valaee et al. [25] proposed a service curve based admission procedure using probe
packets. Pong and Moors [26] proposed admission control strategy for QoS of flows in IEEE 802.11 by adjusting
the contention windows size and the transmission opportunity. All these admission control schemes do not take
quality of the traffic, particularly video quality in our framework, into consideration directly. On the other hand,
we advocate a direct cross-layer optimization of video quality, admission control algorithm, and MAC protocol,
simultaneously. Most similar to our work is that of Banchs et al. [4]. Since we will be using this scheme for

performance comparisions, we delay the discussion until Section VI.

I1l. MAC PRoTOCOL

As discussed previously, the amount wasted bandwidth from collisions in a wireless network is different when
using different MAC protocol. In this section, we describe an Aloha-like MAC protocol [6] to be used in the
proposed admission control framework that aims to maximize the average quality of admitted videos, given a
specified minimum video quality for each flow.

In order to contrast the advantages of the new MAC protocol, we first briefly describe the existing IEEE 802.11e
protocol, more specifically in a contention-based channel access scheme called Enhanced Distributed Channel Access
(EDCA), which defines a set of QoS enhancements for WLAN applications through modifications to the MAC layer.
To access the channel, a host first senses the channel. If the channel is idle for more than the Arbitration Interframe
Space (AIFS) time, it starts sending the data. Otherwise, it sets a backoff timer for a random number of time slots
between|0, CW,,;,] where CW,,,;,, is the minimum contention window size. The backoff timer is decremented
by one for each idle time slot after the AIFS time, and halts decrementing when a transmission is detected. The
decrementing resumes when the channel is sensed idle again for an AIFS time. A host can begin transmission
on the channel as soon as its backoff timer reaches zero. If a collision occurs, i.e., no acknowledgment packet is
received after a short period of time, the backoff timer is chosen randomly betg€riv,,,;, + 1)2¢ — 1] where

1 is the number of retransmission attempts. In effect, the contention window size is doubled for each retransmission
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in order to reduce the traffic in a heavily loaded network. Every time a host obtains the channel successfully, it
can reserve the channel for some amount of time (TXOP). Unlike the IEEE 802.11b, IEEE 802.11e can tune the
transmission parameters (€.6:Win, CWiaz, TXOP, AIFS) to provide QoS support for certain applications.

We note again that while PCF and HCCA can guarantee bandwidth for a flow, they require an AP (infrastructure
mode) and tend to result in high latencies. As such, the focus of our paper is to provide admission control in a
contention-based mode which is also applicable in adhoc mode settings.

However, the advantage of the existing IEEE 802.11 protocol is that it is bandwidth efficient. That is, based on
the current traffic condition, each host adjusts its rate to achieve high throughput while minimizing the number of
collisions. On the other hand, the rate of a flow cannot be controlled precisely unless we use PCF or HCCA. Often,
this is problematic for video applications. Consequently, we argue for a different MAC protocol which, when used,
would produce a stable throughput for a flow. Furthermore, it is preferable to implement the new MAC protocol
with minimal hardware modification to the existing IEEE 802.11 devices. Indeed, this is possible.

In the new MAC protocol, the contention window size is not doubled after every unsuccessful retransmission
attempt. Instead, depending on the rate requested by a host, it is assigned a fixed value. All other operations are
exactly identical to those of the IEEE 802.11 protocol. We argue that when a proper admission control is employed,
eliminating the doubling o€ W in the IEEE 802.11 protocol, helps to increase the bandwidth efficiency since the
rate of each host is not reduced unnecessarily. Based on the above discussion, it is crucial for an admission control
algorithm to determine whether or not there exists a set'@f’s for each host that satisfies their requested rates
without doublingCWW’s. To answer this question, we now proceed with an analysis of the new MAC protocol.

We assume the use of reservation packets, i.e., Request-To-Send/Clear-To-Send (RTS/CTS) packets. RTS/CTS
packets are employed to reduce the collision traffic as well as eliminating the hidden terminal problem [27]. The
main idea is to send small packets to reserve the channel for the actual data transmission. By doing so, collisions
only occur with the small packets, hence reducing the amount of wasted bandwidth. Since we assume that all the
hosts can hear each other’s transmissions, we do not have the hidden terminal problem. Our use of RTS/CTS is
simply to reduce the collision bandwidth.

Our analysis is based on time-slotted, reservation based protocols similar to the Aloha protocol, where the time
taken to make a reservation is a geometrically distributed random variable with paran@tesignificant difference
between the our protocol and the Aloha protocol is that all the hosts in our network are assumed to be able to hear
transmissions of other. Therefore, a host will not attempt to transmit if it determines that the channel is busy, i.e.,
some host is sending. Thus, a host will attempt to send an RTS packet with probaloitity if it determines that
the channel is idle.

Assume the host transmits the packets with some probabilifyo translate the transmission probabilitypack
to the contention window size used in IEEE 802.11 proto€8ly can be set td /p. We note that this is only an
approximation sinc&'W in the IEEE 802.11 protocol is not reset at every time slot. To simplify the analysis, we
further assume that every host can start at most one flow at any point in time. A straightforward generalization

to support multiple flows per host is to consider all the flows from one host as one single large flow with the
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transmission probability. Whenever a host successfully obtains the channel, it selects a packet from one of its
flows to send. The probability of a packet selected from a particular flow then equals to the ratio of that flow’s
throughput to the total throughput of all the flows on the same host. This approach would result in the correct
average required throughputs for all the flows.

For a network withNV flows, our objective is to determine whether or not there exists a gatof,...pn and for
each flow such that all the flows achieve their specified throughputB.,...,R, taking into account of collisions.
Since the rate®;’s depend on the percentages of successful slots, we first characterize the percentages of collided,
successful, and idle slots, given's for each flowi. To that end, let us denote

o I: percentage of idle slots

« S;: percentage of successful RTS slots for flow

o C: percentage of collided slots

« R}: throughput of flow: as a fraction of the channel capacity.
Note that/ +C' + . S; = 1. Suppose the transmission probability for a new flow,ishen forC — type slots, in
which collisions occur, the new traffic would have no impact on it. For type slots, with probabilityp, it may
cause a collision. For ah — type slots, with probabilityp, it would become & — type slot. Otherwise it stays
the same. Using the above argument, we can calcillate andC after the new flow starts. In particular, the new

idle, collided, and successful probabilities can be calculated using the cufrénhtsS, andp as:

Sne'w = Scurrent(l - p) + Icurrentp (1)
Inew = Icurrent - Icurrentp (2)
Cnew = 1- Inew - Snew- (3)

Here, we denotes = ). S;. Similarly, we can calculate the successful probabifityas
Simew = Si,current(1 — D), 4)
for any existing flow:, and the successful probability for the new flogn() as
SN = ILeurrentp- (5)

Using the equations above, one can compute/theC’s, and.S;’s for N flows, given the transmission probabilities
p1, P2, .-, PN IN particular, the following algorithm can be used to compute the collision probabilityhich will

be used in the admission control algorithm later.

Algorithm 1: ComputingC, given the transmission probabilitigs’s

C = Compute_C(py, p2,...,pn, N)

I=1
C=0
S=0
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for i =1toN do
S=8x1—-pi)+1Ixp;

I=1-1xp;
C=1-1-S
end for
return C

Algorithm 1 enables us to compute the successful probability precisely based on the given transmission prob-
abilities p;'s. On the other hand, one typically wants to determine the transmission probabhilisegiven the
requested rateR;'s from each flowi. Since the rateR; is proportional to the corresponding successful probability
S;, we now show how to computg;’s based onS;’s. We then show how to relat§;’s to R;}’s, completing our
objective.

In principle, (1)-(5) enable us to write down a set &8f equations withN unknown variableg,ps,...pn N
terms of the known variableS;’s, and solve forp;’s. Unfortunately, these equations are not linear, and therefore
difficult to solve. We propose an algorithm to find thgs given S;’'s based on the following observation: When a
flow ¢ stops,! will increase bysS;. If flows i starts again with the same transmission probabijlitys before, its

successful probability remains; as before. Hence, the following equations hold:

I+ Si)pi=5S;
I+ S

This is true becausgé+S; is the probability of idle slots without flovi. Hence, after the flow starts, its successful

Di (6)

probability is (I + S;)p; which should also equal precisely 1, the successful probability before it stops. Thus,

we haveN such equations corresponding A6 flows. We also have the constraint:
I+C+5=1 ()

whereC and S are the collision and successful probabilities for all the flows. We noteltigmthe same for every
equation since it is the probability of idle slots when all flows are active. Now, we can solvé fot unknowns,
i.e. N for p;'s and one forl. Solving this set ofN + 1 equations is simple since each equation is linear except
(7). Equation (7) is non-linear ip; becauseC and .S are polynomials inp; which are the results from (1)-(5).
However, (7) will be used as a constraint. Since [0, 1], one can systematically try different values bfrom
large to small, i.e., 1 to 0. For each value fwe computep;’s according to (6). All thep;'s are then input to
Algorithm 1 to compute”. We then test to see whether or ot C + S approximately equals to 1. If so, we have
an admissible set of solutions. If not, we incredsby a small value and repeat the procedure. If the algorithm
cannot find such for the entire range of € [0, 1], then the solution does not exist. This indicates invaljis.
Typically, R;'s, not S,’s, are given. Therefore, to use the procedure above, we first calculat;’shie terms of
R;’s. With minimal modification from IEEE 802.11e standard, our framework uses IEEE 802.11e frame formats and

the timing diagram as shown in Fig. 1. After the channel is idle for a period time equal to a Distributed Interframe
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Fig. 1. Timing diagram with RTS/CTS for our proposed framework.

Space (DIFS) time slots, instead of counting do@i’ before beginning a new transmission, the host sends RTS
with probability p to reserve the shared channel. That means we set AIFS=DIFS as same as the one in typical IEEE
802.11 standard [2]. Because all hosts can listen each other transmissions, the collision will occur only if there are
more than one hosts initiating RTS’s at exactly the same time slot. Otherwise, the host successfully reserves the
channel then that host can begin the transmissior/ 81O P time slots without further collision. A host detects
unsuccessful transmission of an RTS if none of the CTS arrives within DIFS time slots. Note that a host needs to
wait for a short period of time called Short Interframe Space (SIFS) where S8IB8S before sending an ACK
as shown in Fig. 1. To be fair among all the flows with the same traffic class [3], i.e. video streams, everyone uses
the samel’ XOP whereT X O P=CTS+PHY,,4,+MAC 1,4, +PAYLOAD+ACK+3SIFS+DIFS.

Suppose aftef’ time slots wheréel” is large, we observe that there akg successful transmissions of RTS and

K; x TXOP slots of data transmission for each flawThen by definition, we have:

K;
S = -
T-. KixTXOP
B K; x TXOP/T
TXOP x (1-NK; x TXOP/T)
R!

= TXOPx(1- SV R ®)

where R, = K; x TXOP/T can be thought of as the hogs requested bandwidth in terms of a fraction of the
channel capacity and’ is the number of flows. If the channel capacityB$1/, then the transmission rate; can
be computed such tha; = R, x BW. For example, if channel capacity3{V) is 54 Mbps, and host requests
the rate R;) of 27 Mbps, thenR; = 0.5.

Using (8), given the specified ratdg’s, one can compute the correspondifigs, which are then used in the

following algorithm to determine the transmission probabiliig’s, if there are such’s.
Algorithm 2: Computep;’s given all R}'s
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[p1,Dp2, ..., DN, Success] = Compute_p(R}, Rh, ..., Ry, N)
e=0.01

I'=1

{I' is the percentage of idle sldts

search_step = 0.01

success = (

for i=1to N do

_ R}

- TXOPx(1-)_" R))
end for

while I’ < 1 do

for i=1to N do

L S
pl - I’Jrlsi

end for

9

{run Algorithm 1 to compute collision probabilit¢'}
C = Compute_C(p1,p2,...,pN, N)
total = I' + C(RTS + DIFS) + S~ Si(RTS)
{check for boundary condition smallerresults in higher accuragy
if (abs(total — 1) <€) then
success = 1
return [p1,pa, ..., PN, Success]
end if
I' =I' — search_step
end while{fail to find p, success = p
return [0,0, ..., 0, success]
We note that for each unsuccessful RTS transmission, we waste the channel equal to RTS+DIFS time slots. On
the other hand, each successful RTS transmission uses only RTS time slots. Furthermore, Algorithm 2 explicitly
considers the percentage of collided, successful, and idle slots with respect to RTS transmissions to reserve the
channel. This results imotal = I' + C(RTS + DIFS) + va Si;(RTS) wheretotal is close to (or equal to) 1.

We now describe our proposed admission control framework.

IV. ADMISSION CONTROL FRAMEWORK
A. Architecture

Due to a typical small size of a single-hop network, our admission control algorithm runs at the AP or an elected
host. We assume that all hosts are collaborative. That is, each host obeys the admission protocol which operates as

follows.
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For simplicity, in this paper, we assume that there is no cross-traffic of any kinds except videos. In general,
to accommodate other non-time sensitive traffic in the proposed framework, one can perhaps set the minimal
throughput requirements for the traffic. Each host can send videos to and receive from the Internet, or they can
send videos among each other. When a host wants to inject a new video stream into the network, it first requests to
join the network by sending a message to the AP. For video streaming applications, the message may contain the
rate distortion profile of the video, which specifies the different distortion amounts and the corresponding number
of layers used. The message also contains the maximum allowable distortion for a video. Note that for live video
applications, the rate-distortion profile is typically not known ahead of time, but can be estimated. That said, the
focus of this paper will be on streaming applications. Upon receiving the request, the AP (or some elected host) will
run the admission control algorithm to produce a set transmission probahilitef®or each flow: that maximizes
the average visual quality of all the flows, given the maximum distortion levels for each video and overall bandwidth
constraint. If such transmission probabilities exist, the AP will broadcast the transmission probaghiktits all
the hosts.

Upon receiving AP’s instructions, each hasbegins to transmit its packets with probability (or roughly
setting its contention window td/p;) when it observes that the channel is idle. Each transmission probahility
corresponds to a particular rate (or number of layers). If there is no feasible set of transmission probabilities, the
AP will inform the new flow that it cannot join the network at this moment. Note that our proposed protocol is
able to extend to serve the services for other flow types while the AP requires to know their rate-distortion profiles

in order to minimize overall distortion effectively.

B. Problem Formulation

We are now at the position to formulate a rate-distortion optimization problem for multiple layered video streams
under bandwidth and distortion constraints. We note that the average throughput per unit time or transmission rate
R, for flow ¢ can be achieved by setting its transmission probabjlityWhen there is enough bandwidth for
everyone,p;'s are set to large values so that all the layers of all the video streams would be sent. When there
is not enough bandwidth, e.g. due to too many flows, the layers from certain videos are dropped resulting in the
least average distortion over all the videos. For a simple scenario, we assume that there is no packet loss during
transmission. The transmission rakg(l;) for flow ¢ is proportional to the number of transmitted video laykrs

The optimization problem studied in this paper is to select the optimal number of video layers to transmit
for each of N hosts (orN flows) while maximizing the overall video quality. Furthermore, the inclusion of the
bandwidth overhead terfd = C 4+ S due to channel contention access (collision and reservation bandwidth used
for RTS/CTS packets) makes our optimization problem distinct from other optimization problems. In particular, the
problem is specified by giving: for each host, a functibp(l;), that gives the reduction in distortion when using
l; layers at host; a rate functionR; (I;), that gives the required bandwidth for transmittihdayers from host;
an overhead functio (11, ...,lx), that gives the amount of bandwidth consumed by overhead (e.g., due to the

channel contention) for a given assignment of layers to hosts; lower bounds on the reduction in distortion for each
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1 denoted byZ;; and finally a bound on the total bandwidBi¥. Given these quantities, the optimization problem

is as follows:

N

maximize > D; (L)
=1

over l;

subject to D; ;) > Z;
N
> Ri(li)+ H(ly,....lx) < BW 9)
=1

That is, we must find the optimal assignment of layers to each host that maximizes the reduction in total distortion
subject to bandwidth and local minimum reduction in distortion constraints. In particular, there exists a solution iff
we are able to compute a set of transmission probabilitjisscorresponding to an optimal assignment of layers
for everyone. A necessary condition is that each fliois required to maximize its total reduction in distortion
D, at leastZ;. Nevertheless, the way to select the layer depends on what layer-selection strategies we use (e.g.,
greedy algorithm, exhaustive search). Note that propagation delay and processing delay can be negligible due to
operating in a single-hop network. However, the delay variation or jitter, would likely affect the performance of the
protocol. The detail analysis of throughput jitter is discussed in Section VI-C. Next, we will study the computational
properties of the layer-selection problem and show that while in general the problem is computationally hard, under
certain reasonable conditions, a simple greedy layer-allocation algorithm can be guaranteed to perform close to

optimal.

V. COMPUTATIONAL COMPLEXITY OF LAYER OPTIMIZATION

In this section, we study the computational complexity of the layer allocation problem described above, showing
both hardness results and conditions under which optimal and approximate solutions can be guaranteed in polynomial
time. Our optimization problem is distinct from most other bandwidth optimization problems by its inclusion of the
overhead ternf{ in the bandwidth constraint. Thus, existing algorithms and complexity proofs do not directly apply
to our problem. Below we first consider the complexity of solving the problem optimally and then we consider

efficient approximation algorithms.

A. Computing Optimal Solutions

Here we analyze the computational complexity of problem classes with the form given in the previous section.
We begin by stating three assumptions about the optimization problem and consider the complexity under various

subsets of these assumptions.

Assumption 1: Uniform rate increase per level

Ri(I+1)—R;(l)=R; (I'+1)— R; (') ; for any i, j,1, andl’ (10)
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Assumption 2: Diminishing returns
D;(I+1)—D;(l) <D;(I)—D;(I—1) ; for anyi and! (11)

Assumption 3: Invariant overhead
H(.,l;+1,.)=H(.,l;+1,..) ;foranyly,..,In (12)

Below we will also refer to the property of additive overhead which meansHhdt, ..., [y ) can be factored as

a sum of the individual overhead functidii;. That is,

N
H(ly,..,In) = ZHi (L) (13)
i=1

Intuitively the first assumption states that the amount by which the rate function increases is constant across all
layers of all streams. The second assumption states that within a particular stream, higher layers may never reduce
distortion more than the lower layers. Thus, it will never be the case that a stream must include many lower layers
with low distortion reduction in order to get a big distortion reduction at a higher layer. The third assumption states
that given a particular layer allocation across layers, incrementing any layer by one produces the same increase
in the overhead function. This means that the overhead function is impartial to both the particular stream that is
incremented and the current number of layers allocated to that stream.

Our first result is that given the above three assumptions (10)-(12), we can solve the optimization problem using
an efficient greedy layer-allocation algorithm. The algorithm proceeds as follows:

1) For each stream, we initialize the layer coun}; to the smallest; such thatD;(l;) > Z;. If for somei this

is not possible, then return “no solution”.

2) If it is not possible to increment the layer count of any stream without violating the bandwidth constraints
then terminate and return the current layer counts. In other words, it is not possible to find a feasible set of
transmission probabilities for each host using the Algorithm 2 in Section 11

3) Increment the layer count of streainiy 1, where stream is the stream that when incremented produces the

greatest reduction in distortion without violating bandwidth constraints.

Proposition 1 The greedy layer-allocation algorithm is optimal for any problem where Assumptions 1, 2, and 3
hold.

Proof: We first introduce some notation. We will use an allocation vedtos (ly,...,Ix) to specify the
layer allocation; to each host where N is the total number of hosts. We will denote B(L) the reduction in
distortion resulting from allocation vectdr. A layer increment sequence is a sequence of host indiges ., i),
indicating the order of layers to increment finally arriving at a final allocation vector whéer¢he total increments
in layers.

Note that with invariant overhead and uniform rate increase, each increment in the layer counts results in exactly

the same increase in bandwidth. This means that all optimal layer allocations will Sg}jsfy= k for some value
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k. That is, all optimal layer allocations will be a result of exadtlyncrements to layer counts. Thus, finding the
optimal layer allocation is equivalent to finding a lendthayer increment sequence that results in the best layer
allocation starting from the null allocation.

Now consider any layer allocatioh and let:* be the index of the host that would be selected by the greedy
algorithm starting fron. and letA* be the reduction in distortion resulting from the greedy step. Now consider any
layer increment sequendce, . . . ,4,) Starting atL resulting in an allocation vectak,. We say that the sequence
is an optimalv-step completion of_ if the value of D(L,) is the maximum possible when starting fralnand
incrementingv layers.

Our key claim is that there is always an optimastep completion td. that includes an increment 6. Assume
that this was not the case and that the above sequence was an optimal completion, implying that it does not contain
an increment ta*. We show that this leads to a contradiction. FirstAgtequal the reduction in distortion resulting
after adding the'th layer increment and note th&(L,) is equal to the sum of this sequence. By the diminishing
returns assumption we have thiat > A; for all j. This is true because the greedy algorithm selected the iifdex
with the largest decrease in distortion across all layers and thus any further decreases resulting from incrementing
any layer must not be greater than that, otherwise this would violate diminishing returns. Given this fact consider
the new layer increment sequen@é, i,...,l,—1) and letL* equal the result of applying this sequence starting
at L. It can be easily verified that this is a legal sequence and that the corresponding sequence of reductions in
distortion is equal to(A*, Aq,...,A,_1). Since D(L*) is simply the sum of this sequence and we know that
A* > A, this implies D(L*) > D(L,). Thus, we have shown an optimaistep completion that includes an
increment toi*, which gives a contradiction.

Using the above fact, it is straightforward to show by induction on the number of greedykstieasthe greedy
algorithm always maintains an optimaistep completion of the null set, which completes the proof. [ ]

We now show that in a sense the above assumptions are necessary for the greedy algorithm to be optimal.
Furthermore, they are necessary for there to exist any efficient solution algorithm, unless P=NP. In particular, the
next series of propositions show that if we remove any one of the assumptions the problem becomes NP-hard.
Below our results concern the decision-problem version of the above optimization problem. That is, the problem
of deciding whether there is a feasible solution given a particular distortion threshold as input. Note that if the
optimization problem can be solved efficiently then so can the decision problem. Thus, hardness results about the
decision problem pertain to optimization as well.

Our hardness proofs are all based on reductions from the 0-1 knapsack problem [28], [29]. A 0-1 knapsack
problem provides us with a finite set of objects, each having a specified value and cost, along with a total value
goal and a total cost limit. We are asked to decide whether there is a subset of objects whose total value meets the

goal, but has cost less than the specified limit. More formally, a 0-1 knapsack problem is a 4-tuple,

<{1}1,...,’UN},{Cl,...,CN},‘/,C> (14)

wherev; andc¢;, and give the value and cost of thh item, V' is the value goal and’ is the cost limit. We are
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asked to decide whether there is a sulssetf 1, ..., N such that
iV, Y a<C (15)
€S €S

In this section, we will specify our layer-allocation decision problem by the following 6-tuple,

{My, ... My}, {D1(lh),.... Dn(IN)}, {R1(l1), ..., Rnv(IN)}, H(l4,y ...y IN), D, BW) (16)

where for each flow, )/; is the maximum number of layer®);(I;) is the reduction in distortion functiom®;(l;) is

the rate functionH is the overheadD is the (reduction in) distortion bound, atgl¥” is the bandwidth limit. For

the purposes of complexity analysis, we will make the reasonable assumptions tiAdt #re encoded itog M;

bits and that theD;, R;, and H functions can be evaluated in polynomial time in the size of the problem encoding.
Given an instance of the layer-allocation decision problem as in (17), we are asked to decide whether there is

an assignment of non-negative integers to variables..., [y} such that
l; < M;

S Di(li) > D

M=

R (l;) + H (l1, ...,In) < BW (17)

i=1

Note that this formulation of the problem ignores the local distortion constréiptg) > Z; that were present
in our original problem. It turns out that a problem with such constraints can be easily normalized to one without
the constrainfsand hence for simplicity we ignore the constraints in this section.

We now consider in Propositions 2-4, the complexity of this problem when each one of the above assumptions
is lifted.

Proposition 2 The class of decision problems for which Assumptions 2 and 3 hold but Assumption 1 does not is
NP-complete even if we restrict the overhead to be the constant zero function.

Proof. Our problem is clearly in NP, as it is possible to enumerate possible layer allocations and check them
in polynomial time. Each layer-allocation certificate is polynomial-size implying the decision problem is in NP. To
show NP-hardness we reduce from 0-1 knapsack problem. Given an instance of 0-1 knapsack as shown in (14),

we will form the following version of our problem as in (18),

({1, .. 13, {D1(l1), ..., DN(In) } AR (I1), ooy Rv(IN) }, H (D o I ), V. C) (18)

where D;(l;) = v;, R;(l;) = ¢;, and H(l4,...,Ix) = 0 for all inputs. That is, we have only one layer to allocate.
The reduction in distortion and the rate function for that layer are equal &mdc; of the 0-1 knapsack problem,

respectively. Note that this problem does not satisfy the constant rate increase; stacebe different for each

1In particular, one can easily determine the minimum number of layers required by each stream to meet the local distortion constraint. One
can then formulate the problem of optimizing the layer allocation beyond those minimal layers, which does not need to include local distortion

constraints.
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However, it does satisfy Assumptions 2 and 3 trivially. Considering (17) it is straightforward to show that the answer
to the layer-allocation problem given by (18) will be “yes” if and only if the answer is “yes” for the corresponding

0-1 knapsack problem. ]

Proposition 3 The class of problems for which Assumptions 1 and 3 hold but Assumption 2 does not is NP-complete
even if we restrict the overhead to be the constant zero function.

Proof: The problem is in NP for the same reasons as above. For the purposes of this problem we will only
consider the 0-1 knapsack problem with integer values of;, V', andC'. We can do this without loss of generality
since we can always multiply all numbers by the appropriate power of 10. Given an instance of the 0-1 knapsack

problem as specified in (14), our reduction constructs the following layer allocation problem,

<{Cl7 ceey CN}, {D1(11)7 ceey DN(IN)}, {Rl(ll), ceey RN(IN)}, .E[(ll7 ceey ZN), ‘/, C> (19)

whereD;(l;) = 0 for I; < ¢;, Di(c;) = vi, Ri(l;) = l;, and H(l4,...,lny) = 0. The intuition here is that we have
many layers in each stream, but only the last layer actually reduces the distortion. This type of behavior violates
Assumption 2. Each layer adds exactly one unit of bandwidth which satisfies Assumption 1 and the overhead is
zero, which satisfies Assumption 3. Note also that the number of layers forifisw:;. So in order to get a
reduction in distortion of;, we must pay a bandwidth @f, which aligns with the 0-1 knapsack problem.

Given this reduction, it shows that there is a “yes” answer for the constructed layer allocation problem iff there
is a “yes” answer for the 0-1 knapsack instance. [ ]

Finally, we show that Assumption 3 is also necessary in some sense. In particular, when it is lifted the problem

becomes computationally hard even when restricted to the class of problems with additive overhead.

Proposition 4 The class of problems for which Assumptions 1 and 2 hold but Assumption 3 does not is NP-complete
even if we restrict to additive overhead.
Proof: Again here we will only consider the integer knapsack problem. Given an instance of an integer 0-1

knapsack problem, we construct the following instance of the layer allocation problem,

<{’Ul7 ...JJN}, {Dl(ll), ceey DN(ZN)}, {Rl(ll), ceey RN(ZN)},H(Zl, ceey lN), V, C> (20)

whereD;(l;) = 1;, R;(l;) =0, andH (l4,...,In) = ZHi(li) whereH,(l;) = ¢; for I; > 0 and H;(0) = 0. So here
we have the diminishing return property since fé)r each layer we add a single unit of reduction in distortion. We
have the constant bandwidth property trivially. But we do not have invariant overhead since when we move a layer
l; from 0 to 1 we get an increase ip. Only the overhead function occupies the bandwidth since all the rates are
equal to zero. Given this reduction it is easy to verify that there is a “yes” answer to the 0-1 knapsack instance iff
there is a “yes” answer to the constructed layer allocation problem. [ ]

Together these complexity results show that if we remove any one of three assumptions, the problem becomes
NP-hard and hence is not likely to be solved by an efficient algorithm, in particular the greedy algorithm. The
results also show that this is true even if we place strict restrictions on the form of the overhead function. Even if

the overhead is additive the problem is hard as shown by Proposition 4.
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In practice, it may often be possible to satisfy assumptions 1 and 2. Unfortunately, we can show that the overhead
function arising in our protocol is not invariant as required by Assumption 3 and hence an efficient optimal solution

is still unlikely.

Proposition 5 The overhead of the proposed MAC protocol is not invariant.
Proof: We will show that the overhead of proposed MAC protocol is not invariant by contradiction. Assuming

that the bandwidth overheadd = C + S, bandwidth involved in reservation, is invariant, then:
H'(i) = H'(j) (21)

where H'(i) and H'(j) denote the overhead resulted from addihdps (one layer) into flowi and flow j,

respectively. Sincd + C + S =1+ H =1, we have
I'(i) = I'(j) (22)

where I'(i) and I'(j) denote the idle slots resulted from addifigops into flow: and flow j, respectively. In

particular, addingy bps into flows results in the increase &; by A. We can represent in terms ofS; as:

I
—
7 N
—
|

~
| :
=
N——

; H(S) -

(rar ) Llrmes) - Goraa) D ts) @

Expand the product on both sides of (24). All product terms, except the one with SjtleerS;, will be canceled

That is,

out, leading to:
(I'(1) + (S + A)) (I'(d) + S;) = (I'(4) + Si) (I'(4) + (S; + A)) (25)

Sincel’(i) = I'(j), (25) is true iff S; = S;. Since.S; is directly proportional taR;, this implies that in order to
achieveH’(i) = H'(j), the current sending rate of any two video stream must be equal to each other. This is not
true in general, therefore the bandwidth overhead of the proposed MAC protocol is not invariant. [ ]

The result shows that adding a video layer from different flows causes an uncertain amount of overhead bandwidth.
Thus, the bandwidth overhead of the MAC protocol is neither additive nor invariant. It is correlated to all active
flows in the system, not individual flows. This shows that the greedy allocation algorithm is not guaranteed to
be optimal for the proposed MAC protocol, though it may still provide practically useful solutions. These results
motivate investigating whether there are variants of the protocol that are overhead invariant to allow for tractable
optimization in the presence of Assumptions 1 and 2, which will often be satisfied in practice. Alternatively,
our results below show that a slight variation on the greedy algorithm allows for the efficient computation of

approximately optimal solutions under only Assumption 1.
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B. Computing Approximate Solutions

Of the three assumptions above, Assumption 2, diminishing returns, is the one that is most likely to be satisfied
in application settings, since most coding schemes exhibit diminishing returns behavior. Assumption 1, uniform
rate increase, will also often be satisfied, though it will rule out non-uniform rate coding schemes. Assumption 3,
invariant overhead, as we have seen is violated by the our protocol and we are unaware of other protocols that satisfy
the assumption. In this light, it is interesting to consider what can be said theoretically when only Assumption 2 is
satisfied. We know from Propositions 2 and 3 that in general the problem is NP-hard to solve optimally with only
Assumption 2, however, this does not rule out the existence of efficient approximation algorithms. In this section,
we show that small extensions to the greedy layer-allocation algorithm can result in algorithms that are guaranteed
to return a solution within a factor dft — e~!) > 0.63 from the optimal solution.

Our approximation results are based on an extension to recent approximation results for the constrained max-
imization of submodular set functions. Below we first introduce the concept of submodular functions, describe

existing approximation results, our extensions to them, and how they apply to the layer allocation problem.

Optimizing Submodular Functions. Given a finite setE’ of elements and a functiof’ on subsets of, we
say thatF is non-decreasingf F(A) < F(A’) for any subsetsA and A’ such thatA C A’. We say thatF is
submodulaif

F(AU{z}) - F(A) = F(A"U{z}) — F(4') (26)

for any subsetsA and A’ such thatA C A’ and anyz € E. Intuitively speaking, a function is submodular if it
exhibits a diminishing returns property, where the increasg' iresulting from adding an element o is at least
as large as adding the same element to a supédrset A.

Submodular functions have nice properties with respect to optimization. A classic result concerns finding the
subsetd C F of size k that maximizes a submodular and non-decreasing fundiioft has been shown [30]
that the simple greedy allocation algorithm we described earlier—i.e. greedily add the next elemett thamn
increases” the most—achieves an approximation factor(bf- e=1). That is, for anyF' that is submodular and
non-decreasing, the set that results from the greedy algorithm will satisfy(A) > (1 — e~1)F(A*), where A*
is the optimal solution to the maximization problem.

Note that the above approximation result concerns finding the best subsetierhents, which implicitly means
that the cost of each elementiis the same and equal to 1. In many cases, we are rather interested in the situation
where each elementhas a cost(x) and the goal is to find the subsétthat maximizesF” subject to the constraint
that the total additive cost of elements ihis less than a budgeB. We will call this problem theadditive-cost
submodular maximization problerfihe original approximation result does not apply to this problem and in fact the
greedy algorithm can be shown to yield arbitrarily poor results [31]. Recent results, however, have shown that slight
extensions to the greedy algorithm can result in approximation bounds for additive-cost submodular maximization
[31], [32].
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For the first approximation result, from [32], consider a modified version of the greedy algorithm, where at each
step instead of adding the elemanthat most increaseg, we add the element that achieves the largest ratio of
the increase irf’ to ¢(x), provided that adding: does not violate the budgé?. That is, we initialize the sefl to
null and then at each iteration add thewith maximum value of F(A U {x}) — F(A)) /c(x), such that the cost
of AU {x} is less thanB. The iteration repeats until no element can be added toithout violating the budget.

Thus, in order to justify adding an elementwith a large cost to the current set, it must yield a large increase
in F. It can be shown that even this modified algorithm can yield arbitrarily poor results compared to the optimal
solution. However, if one returns the best solution found by either the original greedy algorithm or the modified
greedy algorithm then one can guarantee an approximation factob@f— e=1). We will call this algorithm the
Double-Greedy algorithmThis shows that by increasing the computation time by a factor of two over the original
greedy algorithm (i.e. we must now run both greedy and modified greedy) it is possible to achieve a non-trivial
approximation bound.

It turns out that by increasing the computation further, but remaining polynomial time, it is possible to improve
the approximation bound tfl — e~!) for the constrained optimization problem, which matches the result for the
unconstrained problem, as proven in both [31], [32]. The new algorithm simply enumerates all triples of elements
from E that do not violate the budget constraint. For each tfipl¢he algorithm runs the modified greedy algorithm
initialized to the sefl” resulting in a final seidr. The algorithm then returns the sdt- among all of the triples
that achieved the highest value 6f We will refer to this algorithm as théll-Triples-Greedy algorithm This
algorithm increases the runtime by a factor @f|E|®) over the original greedy algorithm, but yields a much
stronger approximation result.

Unfortunately, we found that it was not possible to cast our layer-allocation problem as an instance of additive-cost
submodular optimization. The primary reason is the inclusion of the overhead term in the bandwidth constraint,
which does not allow for an additive cost model in the general case. This led us to extend the results of [31],
[32] to handle a more general maximization problem sufficient for our purposes. In particular, we now assume
in addition to a submodular, non-decreasing functionthat we have a monotonically increasing cost function
on subsets off. That is, adding an element to a set always increases the cost of the set. Note that additive cost
functions are a special case of this formulation, when all element epstsare positive, but that many other cost
functions are now also included. Our problem now is to find the A¢hat maximizes the functio” subject
to the constrainC'(A) < B. We will call this problem themonotonic-cost submodular maximization probldin
turns out that one can prove identical approximation results to the above with only slight modifications to the

Double-Greedyand All-Triples-Greedyalgorithms. In particular, rather than greedily select elements according to

2Technically it is not necessary to run the full greedy algorithm in order to achieve the approximation bound. Rather one need only run the
original greedy algorithm for one iteration (i.e. selecting the best single element of the set) and then return the maximum of the best single
element and the result of the modified greedy algorithm. The resulBooble-Greedyare guaranteed to be at least as good as this and often
better, but with an increase in computation time.
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(F(Au{z}) — F(A)) /c(x), one selects elements according to

F(AU{z}) - F(4)
C(AU{z}) - C(A)

That is, rather than normalize accordingd) we normalize according the increase in the cost associated with

(27)

addingz to A. Note that when the cost functiafi is additive this difference is always equald@:) and hence the
algorithms are identical to those described above. We will refer to these modified algorithbmibke-Greedy*

and All-Triples-Greedy*respectively. We can prove the following,

Theorem 1 The Double-Greedy*algorithm achieves a constant factor approximation bound.6f1 — e=!) for

the monotonic-cost submodular maximization problem.

Theorem 2 The All-Triples-Greedy*algorithm achieves a constant factor approximation boundlof ¢~!) for
the monotonic-cost submodular maximization problem.

We do not include the proofs of these theorems in this paper as they are quite involved and require only very minor
modifications to the proofs provided in [32]. In particular, one need only verify that replacing occurandas of
with C(Au{x})—C(A) in the proof is correct provided that is a monotonically increasing set function. The main
contribution of our work with respect to submodular optimization is to recognize that the existing approximation
results can be easily extended to the useful and much more general case of arbitrary monotonic cost functions. To

the best of our knowledge this has not been previously observed.

Application to Layer Optimization. Using the above theorems it is straightforward to give approximation
algorithms for our layer optimization problem. The key is to show that the problem can be viewed as one of
optimizing a submodular function, upon which we can apply the above results. To do this consider a problem
with N streams each of which, without loss of generality, hadayers. Now define the sdf = {x; ;|1 < i <
N,1 < j < m}, where we think of each streaimas containingn elements inE indexed byz; ; throughz; ,,.
Consider any sed C FE and letl;(A) denote the number of elements i that correspond to stream i.e.

Li(A) = {zi; € All < j < m}|, and letL(A) = (l1(A4),...,Ix(A4)). In this way, we can view eacd C E

as specifying a layer assignment vecIgrd) across the streams. Also note that for any possible layer assignment
vector L, there is a corresponding sét C F such thatL(A) = L. Thus, searching over subsets Bfcan be
viewed as searching over possible layer assignments.

Using the above definitions we now define the functiBd) = >, D;(l;(A)), which is simply the total
reduction in distortion resulting from the layer assignme(t). Also define the functiol’'(A) = >, R;(l;(A)) +
H(l1(A),...,In(A)), which equals the total bandwidth, including overhead, required by the layer assigh(agnt
It is easy to see that finding the sétthat maximizesF'(A) subject toC(A) < B yields a layer assignmetit(A)
that optimally solves the layer assignment optimization problem. Given this equivalence we are now ready to apply

the tools of submodular optimization by showing tH&tA) is a submodular, non-decreasing function.

February 13, 2008 DRAFT



TECHNICAL REPORT: ECEO07-06-01 21

Lemma 1 If Assumption 2, diminishing returns, holds then F(A) is a submodular, non-decreasing set function over
E.

Proof: The fact thatF'(A) is non-decreasing follows from the fact that the reduction in distortion funcfigns
never decrease with the layer index and that adding elememsnever decreasds(A). To show submodularity,
consider any two setd and A’ such thatA C A’. Now consider any element; ; € £ and letl = [;(AU {z; ;})
and!’ = [;(A" U {z;;}). We can have either one of two cases.;fA) = [;(4’) is true then we know that
Il =1 =1;(A) + 1 and hence the increase i when addingz; ; to A and A’ is identical, which satisfies the
submodularity property. Otherwise, singeC A’ we must have thak(A) < [;(A’). We get that the increase in
F for Aand A" is F(I;(A) +1) — F(I;(A)) and F'(I;(A") + 1) — F(l;(A’)) respectively, which by Assumption 2
shows that the the increase fdrmust be at least as large as f4f. ]

In addition toF" being submodular and non-decreasing, we also havetmabnotonic, since the bandwidth must
increase as we allocate more layers. Thus, the assumptions requirBddbte-Greedy*and All-Triples-Greedy*
to achieve their approximation bounds are satisfied by the layer allocation problem. In particular, these algorithms
will return an A that approximately optimizeg’ subject toC'(A4) < B with a factor given in the above theorems.
The resulting setd corresponds exactly to a layer allocatiéfA) that achieves this same approximation bound
for the layer allocation problem. . Note that in our experimental results we only rubdbéle-Greedy’algorithm
as the results of this algorithm were very close to optimal and so did not justify the increased runtime of the

All-Triples-Greedy*algorithm.

VI. SIMULATION RESULTS

In this section, we provide a comprehensive evaluation of the proposed optimized framework for video streaming
in single-hop networks. In particular, the simulations provide the visual quality of video streams, as measured
by Mean Square Error (MSE), when admission control is employed in conjunction with different layer allocation
algorithms and the proposed MAC protocol. The layer allocation algorithms of interest are the optimal, the equal
rate, the greedy, and the double greedy algorithms. We intentionally omit the results for the triple greedy algorithm
since in our simulations, they are observed to be identical to those of the double greedy algorithm. This suggests
that perhaps for the bit rates and distortion levels of typical video layers, the double greedy algorithm is sufficient
to obtain a good solution.

We note that the optimal algorithm employs an exhaustive search scheme. That is, it examines all the possible
combinations of video layers and chooses the one that results in the lowest distortion, i.e., smallest MSE that satisfies
the bandwidth and distortion constraints. Thus, the optimal algorithm is prohibitively expensive when the numbers
of video layers and hosts are large. The optimal algorithm, however produces the smallest MSE, and is thus used
to evaluate the goodness of other algorithms. The equal rate algorithm allocates an equal amount of bandwidth to
every video (hosts), layer by layer in a round robin fashion until the constraint on total used bandwidth is no longer
satisfied. The greedy and double greedy algorithms are previously described in Section V-A and V-B, respectively.

In all our simulations, we use two sets of standard video profiles, each set consists of three layered videos, as
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shown in Tables | and Il [7],[33],[34],[35],[36]. Depending on the scenarios, a simulation may use either one or

both sets of the video profiles.

TABLE |

STANDARD VIDEO PROFILES- SETI

AKIYO COASTGUARD FOREMAN
LAYER Bit Rates Distortion Reduction in Bit Rates Distortion Reduction in Bit Rates Distortion Reduction in
(kbps) (MSE) Distortion (MSE) (kbps) (MSE) Distortion (MSE) (kbps) (MSE) Distortion (MSE)
1 64 — — 32 123.90 — 64 — —
2 128 83.77 — 112 103.06 20.84 128 71.30 —
3 192 63.54 20.23 160 87.72 15.34 192 56.63 14.67
4 256 50.48 13.06 208 78.18 9.54 256 46.03 10.60
5 320 38.29 12.19 256 71.30 6.88 320 39.18 6.85
6 384 32.59 5.70 304 65.03 6.27 384 33.35 5.83
7 448 27.74 4.85 352 57.95 7.08 448 29.05 4.30
8 512 23.61 4.13 400 51.65 6.30 512 25.89 3.16
TABLE Il
STANDARD VIDEO PROFILES- SETII
FOREMAN 1 (FGS-temporal scalability mode) COASTGUARD (FGS) FOREMAN 2 (FGS-AFP mode)
LAYER Bit Rates Distortion Reduction in Bit Rates Distortion Reduction in Bit Rates Distortion Reduction in
(kbps) (MSE) Distortion (MSE) (kbps) (MSE) Distortion (MSE) (kbps) (MSE) Distortion (MSE)
1 140 57.03 - 110 60.68 - 384 42.96 -
2 240 33.05 23.98 160 51.65 9.03 512 31.12 11.84
3 340 21.89 11.16 240 43.96 7.69 640 26.43 4.69
4 440 16.30 5.59 300 38.29 5.67 768 22.55 3.88
5 540 11.46 4.84 360 3112 717 896 19.19 3.36
6 640 8.67 279 420 26.48 4.63 1024 17.91 1.28
7 740 7.24 1.43 490 24.16 2.33 1152 15.96 1.95
8 840 5.87 1.37 590 20.56 3.60 1280 14.22 174
9 940 4.59 1.28 730 17.50 3.06 1408 13.27 0.95
10 850 14.89 2.61
11 900 11.56 3.33

A. Protocol Evaluation

We first compare the performance of the proposed MAC protocol against the standard IEEE 802.11 without

admission control [2] and the IEEE 802.11e with admission control. In particular, for the IEEE 802.11e with

admission control, we use the mechanism proposed by Banchs et al. [4]. This mechanism is somewhat similar to

ours, in the sense that each flewachieves its throughput by setting the contention winddW, to an appropriate

size. For our proposed MAC, we can approximé&t®; = 1/p;. The fundamental difference, however is in the

formulation which leads to two different algorithms, and consequently different behaviors. In the IEEE 802.11e

with admission control, Banchs et al. formulated the admission control process as maximizing the total throughput

from all the flows subject to the constraint on the relative throughput for each flow. In particular, the algorithm tries

to set the values of the contention window for each flow in such a way to maxiRiizeR; + Rs + ...Ry, while
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ensuring thatR, /Ry = n1, Re/Ry = na, ... Ry/R; = ny where N, R;, and{ny,...,ny} are the number of

flows, the throughput rate for floy and a set of given requirements, respectively. Note that we randomly choose
R, as a reference flow. As a direct result, the throughput obtained by each flow might be higher than what is
specified, especially when the specified aggregate throughput is much smaller than the network capacity. On the
other hand, our algorithm produces precisely the specified rate for each flow. As will explained shortly, the ability
to precisely control the rate will enable an efficient cross-layer optimization.

Our simulator is a time-driven, packet-based simulator written in MatLab. It is designed to mimic as close as
possible to the real operations using all the critical parameters in the IEEE 802.11e protocol. For all the simulations,
the parameters specified for Frequency Hopping Spread Spectrum (FHSS) PHY layer with the channel capacity of
1 Mbps are shown in Table Ill. We note that the MAG for IEEE 802.11e contains 2 bytes for a QoS field in

addition to that of IEEE 802.11. We also assume that the processing and propagation delays are zero.

TABLE Il

FHSSsYSTEM PARAMETERS FOREEE 802.1E USED TO OBTAIN NUMERICAL RESULTS

PARAMETER VALUE
Packet payload 1500 bytes
MAC header (MAG,q4,-) | 36 bytes
PHY header (PHY 4) 16 bytes
RTS 20 bytes+PHY, 4,
CTS 16 bytes+PHY,q.
ACK 14 bytes+PHY, .
Channel capacity (BW) | 1 Mbps
Slot time 50 us
SIFS 28 us
DIFS 128 us
RTS timeout (RTS/BWx8 x 106)+DIFS us

We first show the simulation results for a single-hop wireless network consisting of 3 hosts. Each host sends
exactly one video to other host over a limited channel capaé&fy’§ of 1 Mbps. These flows are assumed to be in
the same traffic class. The minimum throughput requirements for flows, Land 2 R5) are set to 200 kbps and
300 kbps, respectively. The minimum throughput of flow/3) increases linearly from 115 kbps to 370 kbps with
a step size of 15 kbps. For the IEEE 802.11e with admission corifidf;'s are set according to the admission
control algorithm while for the standard IEEE 802.11 without admission conttdl,,,;, and CW,,,, are set to
15 and 1023 respectively.

Fig. 2(a)-(c) show the observed throughputs for IEEE 802.11 without admission control, IEEE 802.11e with
admission control, and our proposed admission control as a function of the flow 3's throughput. As seen, the
standard IEEE 802.11 performs well when the total requested throughput is smaller than the network capacity.

Without admission control, however, flow 3 cannot achieve its requested throughput of greater than 320 kbps. On
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the other hand, the IEEE 802.11e with admission control performs very well as the throughput for each flow is
consistently above its specified minimum requirement. Unlike the IEEE 802.11e, our proposed admission control
produces a precise the requested throughput for each flow. As a result, the collision rate (wasted bandwidth) is
much smaller than that of the standard and the IEEE 802.11e as shown in Fig. 2(d), even when the total useful
throughputs in both schemes are approximately the same. This is an advantage of using the proposed MAC protocol.
Not surprisingly, the total bandwidth usage for our algorithm is much smaller than those of other protocols as shown
in Fig. 2(e) for a specified set of rates.

We now show the simulation results when applying cross-layer optimization for transmitting 3 video flows. First,
to provide some intuitions about the interactions between the proposed MAC protocol and the layer allocation
algorithms described in Section V-B. Specifically, we present the simulation results for various quantities, e.g.
throughputs, transmission probabilities, when using a simple greedy layer allocation. The simulation parameters
are shown in Table lll. Since all video streams are in the same traffic class, they use th& Zanie where
T XOP=CTS+PHY, 4, +MAC,, ;- +PAYLOAD+ACK+3SIFS+DIFS. We use standard video profile set | in this sim-
ulation. Fig. 3(a) shows the average throughputs of different video streams increase with the normalized bandwidth
usage. From left to right, each point in the graph represents an additional layer being added to one of the videos
according to the greedy algorithm. The rightmost point denotes the final number of layers for each video. Adding
a layer to any video on each graph at this point would violate the bandwidth constraint. In other words, with the
addition of a new layer, the Algorithm 2 in Section Il will not able to find a set of transmission probabilities
that satisfies the requested rates for all the videos. We note that, at this point, the total bandwidth usage is 95%,
indicating a relatively high bandwidth utilization.

Fig. 3(b) shows the transmission probabilities for each host as a function of normalized bandwidth usage. As
expected, as the number of layers increases for each video, their transmission probabilities also increase accordingly
to ensure a higher chance for data transmissions. It is interesting to note that the transmission probabilities increase
almost exponentially to compensate for roughly linear increase in the overall throughput. Fig. 3(c) shows the
corresponding increases percentage of successful slots (over the number of non-data slots) for different video
streams, as a direct result of increase in transmission probabilities.

However, as the transmission probabilities increase, the percentage of collision slots also increases substantially
as shown in Fig. 3(d). Of course, the percentage of idle slots decreases accordingly. This agrees with our intuition
about the proposed MAC protocol. We note that using this MAC protocol, one is able to control the rate of the
flows precisely by tuning their transmission probabilities. These rates, in turn, control the visual quality of the
video streams. Fig. 3(e) shows the visual quality of the three video streams in terms of MSE as a function of
normalized bandwidth usage. In this case, the greedy algorithm which minimizes the total MSE for all the flows
given the bandwidth constraint, yields an MSE of 38, 71, and 46 for Akiyo, Coastguard, and Foreman sequences,
respectively. Fig. 3(f) shows the actual bandwidth percentage for various packet types. As seen, only minimal
bandwidth overhead (2%) is incurred when using the RTS of 36 bytes and packet payload of 1500 bytes.
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Fig. 4. Distortion performances of different algorithms for (a) Video profiles in Table I; (b) video profiles in Table II.

B. Layer Allocation Algorithm Performance

We now show the performance of different layer allocation algorithms. For simplicity, we assume there is no
packet loss. Furthermore, by using standard video profiles in Table | ,we require that the distortion levels (MSE)
for Akiyo, Coastguard, and Foreman cannot be greater than 63, 103, and 56, respectively. For this simulation, these
MSE values are chosen rather arbitrarily, but in practice a user can specify his or her visual quality requirement.
Fig. 4(a) and Fig. 4(b) show the distortions resulted from using different algorithms for video profiles in Tables |
and I, respectively. For Table II, the maximum distortion requirements for Foreman 1, Coastguard, and Foreman 2
are 21, 51, and 31, respectively. As expected, the optimal (exhaustive search) always produces the lowest distortion,
albeit has the highest computational cost.

Fig. 4(a) shows that the performances of the greedy and the double greedy are all identical for video profiles in
Table I. At 0.8 Mbps, the greedy and the double greedy algorithms fail to find the optimal solutions. However, the

performances of the greedy, the double greedy, and the optimal algorithms are all identical at the capacity channel
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of 1 Mbps and 1.2 Mbps. This suggests that greedy and double greedy algorithms perhaps are sufficient in practice.
As expected, the equal rate algorithm performs worst since it does not even try to minimize the overall distortion.

On the other hand, Fig. 4(b) shows that the greedy algorithm fails to find the optimal solutions in two instances
(BW= 1.6 Mbps and 2.4 Mbps). In contrast, the double greedy algorithm typically finds the optimal solutions.
This is, however, not guaranteed as the double greedy algorithm does not converge to optimal soliiér=io6
Mbps. We note that as described in Section V-B, the computational cost of the double greedy algorithm is twice that
of the greedy algorithm since it must run the greedy and modified greedy algorithms, and picks the best one. The
modified greedy algorithm is the basic greedy algorithm, where at each step instead of adding the layer that most
decreases the distortion, we add the layer that achieves the largest ratio of the reduction in distortion to the layer bit
rate, provided that adding the layer does not violate the bandwidth constraint. The modified greedy algorithm might
or might not produce a better solution than that of the greedy algorithm. Both the greedy and modified algorithms
can produce an arbitrarily bad solution, while the double greedy algorithm which returns the best solution (lower
distortion) of the greedy and modified greedy algorithm, guarantees that its solution is a constant approximation
factor to the optimal solution.

Tables IV and V show the detail information associated with different algorithms for the video profiles | and I,
respectively. As seen, the optimal algorithm always achieves in the lowest distortion. In all cases, the bandwidth
overhead is relatively small, indicating the ability of the framework to utilize the bandwidth efficiently. Note that
there are some other overhead bandwidth (i.e., BHYMAC 4., SIFS, DIFS, ACK) that amount to 8 to 10% of
the total bandwidth.

TABLE IV

DETAIL INFORMATION ASSOCIATED WITH DIFFERENT ALGORITHMS FOR VIDEO PROFILE$ (BW=1.2Mg/S)

Distortion Normalized Bandwidth Usage (%) Transmission probability
(MSE) Total Overhead S Overhead C Throughput Others AKIYO COASTGUARD FOREMAN
Optimal Solution 129.12 98.47 211 0.07 87.86 8.43 0.0215 0.0269 0.0215
Greedy 129.12 98.47 211 0.07 87.86 8.43 0.0215 0.0269 0.0215
Modified Greedy 129.12 98.47 211 0.07 87.86 8.43 0.0215 0.0269 0.0215
Double Greedy 129.12 98.47 211 0.07 87.86 8.43 0.0215 0.0269 0.0215
Equal Rate 135.42 93.56 2.00 0.02 83.52 8.02 0.0046 0.0051 0.0046
TABLE V

DETAIL INFORMATION ASSOCIATED WITH DIFFERENT ALGORITHMS FOR VIDEO PROFILESI (BW=2.4MB/S)

Distortion Normalized Bandwidth Usage (%) Transmission probability
(MSE) Total Overhead S Overhead C Throughput Others FOREMAN 1 COASTGUARD FOREMAN 2
Optimal Solution 51.78 95.86 2.01 0.06 83.74 10.05 0.0140 0.0129 0.0165
Greedy 52.02 97.14 2.04 0.08 84.84 10.18 0.0203 0.0155 0.0280
Modified Greedy 51.78 95.86 2,01 0.06 83.74 10.05 0.0140 0.0129 0.0165
Double Greedy 51.78 95.86 201 0.06 83.74 10.05 0.0140 0.0129 0.0165
Equal Rate 52.60 96.47 2.02 0.07 84.26 10.12 0.0165 0.0186 0.0165
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C. Throughput Jitter Evaluation

The proposed optimization framework guarantees that each flow will achieve its required throughput when it is
averaged over a long period of time. However, the throughputs of the flows may fluctuate within a short period of
time due to the probabilistic nature of the channel contention access. These throughput fluctuations may prevent
smooth playback for many audio and video streaming applications. To alleviate this problem, many streaming
applications employ the prebuffering technique in which, the receiver puts the received data into a buffer for a
short period of time before starting to playback. A longer buffer results in a smoother playback session. On the
other hand, using a larger buffer results in larger initial delay and required memory. Interactive applications such
as video conferencing may not tolerate such large delay, and the low power wireless hosts may not have enough
memory for buffering. Thus, it is important to characterize the throughput jitter resulting from using the protocol.

Fig. 5(a) shows the ratio of the actual throughputs to the requested throughputs of different flows in video profiles
I, averaged over every 300 kbytes. The channel capacity is set to 1 Mbps. Fig. 5(b) shows throughput ratios for
different flows in the video profiles Il, averaged over every 600 kbytes, with the capacity channel set to 2 Mbps.
As seen, the throughput ratios fluctuate around 1, indicating all the flows achieve their required throughputs. The
magnitudes of these fluctuations are also small, e.g. 0-20%, suggesting that one can use a small streaming buffer
for smooth playback.

In this simulation, we repeatly transmit three videos from video profiles | for 20 minutes. We want to quantify
how long a streaming buffer should be in order to prevent lost packets due to late arrival. To prevent throughput
fluctuation, we also request a slightly larger bandwidth than the recorded video bit rate. This bandwidth safety
margin provides robustness against possible throughput depletion during a session. Fig. 6(a) to Fig. 6(d) show the
number of late packets as a function of streaming buffer length for various bandwidth safety margins.

As seen, to have no late packet with no bandwidth safety margin, a user receiving Akiyo needs to wait on average,
48 seconds to smoothly playback a 20-minute video. Users receiving Coastguard and Foreman need to wait up to
88 and 40 seconds, respectively. However the required waiting time reduces with the increase in the bandwidth
safety margin. For example, using the bandwidth safety margin of 3%, the waiting times for Akiyo, Coastguard,
and Foreman users are reduced to 24, 32, and 12 seconds, respectively.

We also quantify the throughput jitter of a flow as the normalized standard deviation of its fractional throughput
within a number of time slots. Specifically,

_ Stdev(X;(T))

Stdevn(XZ- (T)) R )

(28)

where X;(T') is a fraction of the data slots of the floinmeasured withirl” time slots, andR; denotes its average
long term fractional throughput. Clearly, a largér should result in a smaller normalized throughput standard
deviation since we average the throughput over a longer period of time. It is straightforward to show that

VA=V R xS x (1)
RNT ’

Stdev, (X;(T)) = TXOP; x (29)
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Fig. 5. Throughput jitter for each flow for (a) Video profiles in Table |; (b) Video profiles in Table II.

where N denotes the number of flows aity’ denotes the number of successful time slots for fiow.

To quantify the normalized throughput standard deviation, we simulate three flowsR{itR,, and R; being
setto 0.1, 0.27, and 0.4, respectively. Fig. 7 shows the normalized throughput standard deviations for three different
flows as a function of buffer sizell). As expected, a§" increases, the normalized throughput standard deviation

decreases. However, increasifigmplies an increase in playback delay.

3This result can be obtained by noticing that the number of successful transmission slots within aZpésibithomially distributed with
parametersS; and T'(1 — va RY).
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D. Overall Performance

We now compare the performance of our proposed framework against the existing IEEE 802.11 without admission
control and IEEE 802.11e with admission control proposed by Banchs et al. [4]. To simulate realistic settings, packet
losses are introduced into the simulations. For simplicity, we assume that packet loss rates are identical for all the
receivers. We also assume that a packet will be transmitted repeatedly until it is received successfully. As a result, the
useful throughput reduces with an increase in packet loss rate. The admission control module is assumed to be able
to measure the packet loss rate, and thus can determine the overall effective throughput. Using the overall effective
throughput and the video profiles as inputs, it can use different optimization strategies to allocate bandwidths for
receivers so as to minimize the average distortion.

Fig. 8(a) shows the average distortion for various strategies when streaming the videos in profile I. As expected,
the optimal strategy, i.e., exhaustive search, always provides the smallest average distortion. The double greedy
algorithm also performs equally well. The greedy algorithm performs slightly worse, followed by the equal rate
algorithm, the IEEE 802.11 protocol without admission control, and IEEE 802.11e with admission control. The
main reason for the worse performances when using the IEEE 802.11 and the IEEE 802.11e is the lack of layer
allocation optimization. For the IEEE 802.11, due to the random contention-based access where each flow has an
equal chance of accessing the shared channel, all three flows obtain approximately the same throughputs. However,
this is not the optimal allocation for minimizing the overall distortion. Intuitively, the IEEE 802.11 should perform
as well as the equal rate allocation. On the other hand, the equal rate allocation scheme uses the proposed admission
control which results in smaller collision bandwidth as compared to that of IEEE 802.11. As a result, the average
distortion of the equal rate scheme is typically lower than that of the IEEE 802.11.

However, admission control mechanism alone does not improve the quality of the video. To see this, let us
consider the performance of the IEEE 802.11e with admission control. Using this scheme, one is able to guarantee
the minimum throughput rate for each flow. However, if after providing these minimum throughputs for the flows,
there is still much bandwidth available, then as designed, the IEEE 802.11e protocol would allow each flow to
increase its throughput proportionally until the wireless capacity is reached. The final throughput of each flow as
obtained by the admission control algorithm then dictates the quality of a video. In other words, the layer allocation
employed in this case is to allocate the rate proportionally according to the initial conditions. For example, if the
minimum rates (or equivalently maximum distortions) for three flows are specified initially 200 kbps, 400 kbps,
and 400 kbps, then with a channel capacity of 2 Mbps, the IEEE 802.11e protocol will roughly allocate 400 kbps,
800 kbps, and 800 kbps for these flows (for sake of illustration, we assume no collision bandwidth). Clearly, this
allocation is not optimal as it does not take into the account the distortion profile for each video. That said, there is no
reason why the IEEE 802.11e with admission control should perform better than the IEEE 802.11 or other schemes
when there is enough bandwidth. In fact, Fig. 8(b) shows that the IEEE 802.11e results in a larger average distortion
consistently when using video profiles Il. Our proposed framework which integrates the admission control with

layer allocation optimization enables us to achieve the lowest distortion. Overall, our proposed framework improves
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the video quality up to 26% over that of a typical IEEE 802.11 based network.
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Fig. 8. Distortions resulted from using various protocols for (a) Using video profiles | with channel capacity set to 1 Mbps; (b) Using video
profiles Il with channel capacity set to 2 Mbps.

VII. CONCLUSIONS

We have proposed a framework to enhance the quality of video streaming applications in wireless home networks
via a joint optimization of video coding technique, admission control algorithm, and MAC protocol. Using an
Aloha-like MAC protocol, our admission control framework which can be viewed as an optimization problem that
maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We
provided some hardness results for the optimization problem under various conditions, and proposed two heuristic
algorithms for obtaining a good solution. In particular, we showed that a simple greedy layer-allocation algorithm

can perform reasonable well, although it is typically not optimal. Consequently, we presented a more expensive
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heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results

demonstrated that our proposed framework can improve the video quality up to 26% as compared to those of the

existing approaches.
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