44 research outputs found

    Understanding the role of eco-evolutionary feedbacks in host-parasite coevolution

    Get PDF
    It is widely recognised that eco-evolutionary feedbacks can have important implications for evolution. However, many models of host-parasite coevolution omit eco-evolutionary feedbacks for the sake of simplicity, typically by assuming the population sizes of both species are constant. It is often difficult to determine whether the results of these models are qualitatively robust if eco-evolutionary feedbacks are included. Here, by allowing interspecific encounter probabilities to depend on population densities without otherwise varying the structure of the models, we provide a simple method that can test whether eco-evolutionary feedbacks per se affect evolutionary outcomes. Applying this approach to explicit genetic and quantitative trait models from the literature, our framework shows that qualitative changes to the outcome can be directly attributable to eco-evolutionary feedbacks. For example, shifting the dynamics between stable monomorphism or polymorphism and cycling, as well as changing the nature of the cycles. Our approach, which can be readily applied to many different models of host-parasite coevolution, offers a straightforward method for testing whether eco-evolutionary feedbacks qualitatively change coevolutionary outcomes

    Ecological and genetic models of host-pathogen coevolution

    Get PDF
    A model is presented to analyse the forces that maintain genetic polymorphism in interactions between host plants and their pathogens. Genetic variability in hosts occurs for specific resistance to different pathogen races and variability in pathogens occurs for specific virulence to different host races. The model tracks both fluctuating population sizes and changing gene frequencies. Analyses over a range of parameters show that ecological and demographic factors, such as birth and death rates, often have a more profound effect on the amount of polymorphism than genetic parameters, such as the pleiotropic costs of resistance and virulence associated with different alleles. A series of simple measures are proposed to predict the amount of genetic polymorphism expected in particular host-pathogen interactions. These measures can be used to develop and test a comparative theory of genetic polymorphism in host-pathogen coevolution

    Unroll Please : Deciphering the Genetic Code in Scrolls and Other Ancient Materials

    No full text
    The unrelenting development of ancient DNA methods now allows researchers to obtain archaeogenetic data from increasingly diverse sources. In a new study in this issue of Cell, researchers apply the latest DNA technologies to unravel the mysteries of the Dead Sea Scrolls, one of the world’s most famous and influential sets of ancient parchments
    corecore