273 research outputs found

    Shot noise-mitigated secondary electron imaging with ion count-aided microscopy

    Full text link
    Modern science is dependent on imaging on the nanoscale, often achieved through processes that detect secondary electrons created by a highly focused incident charged particle beam. Scanning electron microscopy is employed in applications such as critical-dimension metrology and inspection for semiconductor devices, materials characterization in geology, and examination of biological samples. With its applicability to non-conducting materials (not requiring sample coating before imaging), helium ion microscopy (HIM) is especially useful in the high-resolution imaging of biological samples such as animal organs, tumor cells, and viruses. However, multiple types of measurement noise limit the ultimate trade-off between image quality and the incident particle dose, which can preclude useful imaging of dose-sensitive samples. Existing methods to improve image quality do not fundamentally mitigate the noise sources. Furthermore, barriers to assigning a physically meaningful scale make these modalities qualitative. Here we introduce ion count-aided microscopy (ICAM), which is a quantitative imaging technique that uses statistically principled estimation of the secondary electron yield. With a readily implemented change in data collection, ICAM nearly eliminates the influence of source shot noise -- the random variation in the number of incident ions in a fixed time duration. In HIM, we demonstrate 3x dose reduction; based on a good match between these empirical results and theoretical performance predictions, the dose reduction factor is larger when the secondary electron yield is higher. ICAM thus facilitates imaging of fragile samples and may make imaging with heavier particles more attractive

    Mobility of thorium ions in liquid xenon

    Full text link
    We present a measurement of the 226^{226}Th ion mobility in LXe at 163.0 K and 0.9 bar. The result obtained, 0.240±\pm0.011 (stat) ±\pm0.011 (syst) cm2^{2}/(kV-s), is compared with a popular model of ion transport.Comment: 6.5 pages,

    Universal Rights and Wrongs

    Get PDF
    This paper argues for the important role of customers as a source of competitive advantage and firm growth, an issue which has been largely neglected in the resource-based view of the firm. It conceptualizes Penrose’s (1959) notion of an ‘inside track’ and illustrates how in-depth knowledge about established customers combines with joint problem-solving activities and the rapid assimilation of new and previously unexploited skills and resources. It is suggested that the inside track represents a distinct and perhaps underestimated way of generating rents and securing long-term growth. This also implies that the sources of sustainable competitive advantage in important respects can be sought in idiosyncratic interfirm relationships rather than within the firm itself

    How management control systems can facilitate a firm's strategic renewal and creation of financial intelligence

    Get PDF
    This chapter presents how management control systems and financial intelligence can facilitate a firm’s strategic renewal. Although the strategic accounting literature has recognized the importance of financial intelligence to a firm’s strategic decision making and formulation of strategy, the question of how a management control system (MCS) can help a firm to revamp and reallocate its resources has been overlooked in the prior strategy literature. In response, this chapter presents a conceptual model, which presents how advanced management accounting systems can foster a firm’s strategic renewal in light of the available theoretical foundations (the strategy implementation view, the dynamic capability perspective, and management accounting). This chapter advances managers’ understanding of firm’s renewal practices through the use of an MCS. Practical examples have been used to illustrate how firms renew their business operations in practice.fi=vertaisarvioitu|en=peerReviewed

    Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements

    Get PDF
    International audienceVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements

    The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee

    Get PDF
    Since the publication of the Revised European-American Classification of Lymphoid Neoplasms in 1994, subsequent updates of the classification of lymphoid neoplasms have been generated through iterative international efforts to achieve broad consensus among hematopathologists, geneticists, molecular scientists, and clinicians. Significant progress has recently been made in the characterization of malignancies of the immune system, with many new insights provided by genomic studies. They have led to this proposal. We have followed the same process that was successfully used for the third and fourth editions of the World Health Organization Classification of Hematologic Neoplasms. The definition, recommended studies, and criteria for the diagnosis of many entities have been extensively refined. Some categories considered provisional have now been upgraded to definite entities. Terminology for some diseases has been revised to adapt nomenclature to the current knowledge of their biology, but these modifications have been restricted to well-justified situations. Major findings from recent genomic studies have impacted the conceptual framework and diagnostic criteria for many disease entities. These changes will have an impact on optimal clinical management. The conclusions of this work are summarized in this report as the proposed International Consensus Classification of mature lymphoid, histiocytic, and dendritic cell tumors

    Asenapine effects in animal models of psychosis and cognitive function

    Get PDF
    Asenapine, a novel psychopharmacologic agent in the development for schizophrenia and bipolar disorder, has high affinity for serotonergic, α-adrenergic, and dopaminergic receptors, suggesting potential for antipsychotic and cognitive-enhancing properties. The effects of asenapine in rat models of antipsychotic efficacy and cognition were examined and compared with those of olanzapine and risperidone. Amphetamine-stimulated locomotor activity (Amp-LMA; 1.0 or 3.0 mg/kg s.c.) and apomorphine-disrupted prepulse inhibition (Apo-PPI; 0.5 mg/kg s.c.) were used as tests for antipsychotic activity. Delayed non-match to place (DNMTP) and five-choice serial reaction (5-CSR) tasks were used to assess short-term spatial memory and attention, respectively. Asenapine doses varied across tasks: Amp-LMA (0.01–0.3 mg/kg s.c.), Apo-PPI (0.001–0.3 mg/kg s.c.), DNMTP (0.01–0.1 mg/kg s.c.), and 5-CSR (0.003–0.3 mg/kg s.c.). Asenapine was highly potent (active at 0.03 mg/kg) in the Amp-LMA and Apo-PPI assays. DNMTP or 5-CSR performance was not improved by asenapine, olanzapine, or risperidone. All agents (P < 0.01) reduced DNMTP accuracy at short delays; post hoc analyses revealed that only 0.1 mg/kg asenapine and 0.3 mg/kg risperidone differed from vehicle. All active agents (asenapine, 0.3 mg/kg; olanzapine, 0.03–0.3 mg/kg; and risperidone, 0.01–0.1 mg/kg) significantly impaired 5-CSR accuracy (P < 0.05). Asenapine has potent antidopaminergic properties that are predictive of antipsychotic efficacy. Asenapine, like risperidone and olanzapine, did not improve cognition in normal rats. Rather, at doses greater than those required for antipsychotic activity, asenapine impaired cognitive performance due to disturbance of motor function, an effect also observed with olanzapine and risperidone
    corecore