389 research outputs found

    Long-term trends at the Time Series Station Boknis Eck (Baltic Sea), 1957–2013: does climate change counteract the decline in eutrophication?

    Get PDF
    The Boknis Eck (BE) time series station, initiated in 1957, is one of the longest-operated time series stations worldwide. We present the first statistical evaluation of a data set of nine physical, chemical and biological parameters in the period of 1957–2013. In the past three to five decades, all of the measured parameters underwent significant long-term changes. Most striking is an ongoing decline in bottom water oxygen concentration, despite a significant decrease of nutrient and chlorophyll a concentrations. Temperature-enhanced oxygen consumption in the bottom water and a prolongation of the stratification period are discussed as possible reasons for the ongoing oxygen decline despite declining eutrophication. Observations at the BE station were compared with model output of the Kiel Baltic Sea Ice Ocean Model (BSIOM). Reproduced trends were in good agreement with observed trends for temperature and oxygen, but generally the oxygen concentration at the bottom has been overestimated

    Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions

    Get PDF
    Marine-produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity (k) parameterizations, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind spee

    Determining the oxidation state of elements by X ray crystallography

    Get PDF
    Protein-mediated redox reactions play a critical role in many biological processes and often occur at centres that contain metal ions as cofactors. In order to understand the exact mechanisms behind these reactions it is important to not only characterize the three-dimensional structures of these proteins and their cofactors, but also to identify the oxidation states of the cofactors involved and to correlate this knowledge with structural information. The only suitable approach for this based on crystallographic measurements is spatially resolved anomalous dispersion (SpReAD) refinement, a method that has been used previously to determine the redox states of metals in iron–sulfur cluster-containing proteins. In this article, the feasibility of this approach for small, non-iron–sulfur redox centres is demonstrated by employing SpReAD analysis to characterize Sulfolobus tokodaii sulerythrin, a ruberythrin-like protein that contains a binuclear metal centre. Differences in oxidation states between the individual iron ions of the binuclear metal centre are revealed in sulerythrin crystals treated with H(2)O(2). Furthermore, data collection at high X-ray doses leads to photoreduction of this metal centre, showing that careful control of the total absorbed dose is a prerequisite for successfully determining the oxidation state through SpReAD analysis

    Avalanche precursors of failure in hierarchical fuse networks

    Full text link
    We study precursors of failure in hierarchical random fuse network models which can be considered as idealizations of hierarchical (bio)materials where fibrous assemblies are held together by multi-level (hierarchical) cross-links. When such structures are loaded towards failure, the patterns of precursory avalanche activity exhibit generic scale invariance: Irrespective of load, precursor activity is characterized by power-law avalanche size distributions without apparent cut-off, with power-law exponents that decrease continuously with increasing load. This failure behavior and the ensuing super-rough crack morphology differ significantly from the findings in non-hierarchical structures

    Sun stanshe

    Get PDF
    Розглянута структура фотоелектричної станції середньої потужності з можливістю передачі енергії в промислову мережу. Запропоновані рішення для спрощення схемотехніки перетворювальної частини сонячної станції, спрямовані на зниження її собівартості. Проведено експериментальні дослідження особливостей функціонування сонячної станції. Розглянуто можливі аварійні режими роботи сонячної станції та надано рекомендації щодо їх усунення. Проведено аналіз експериментальних досліджень і на їх основі запропоновано шляхи підвищення ККД станції.The structure of a small-scale photovoltaic station, which can be used on single structures, is considered. At the same time, it is desirable to have a backup the battery on accumulators for reliable power supply and to be connected to the industrial network. Thus, the structure of the photovoltaic station, which has the ability to accumulate energy in the battery on accumulators and transfer the remnants to the industrial network, using it as a reservoir of infinite capacity, is proposed. The influence on the production of electricity from the photovoltaic station is shown due to the unevenness of the illumination of the surface of the solar panels

    Point-occurrence self-similarity in crackling-noise systems and in other complex systems

    Full text link
    It has been recently found that a number of systems displaying crackling noise also show a remarkable behavior regarding the temporal occurrence of successive events versus their size: a scaling law for the probability distributions of waiting times as a function of a minimum size is fulfilled, signaling the existence on those systems of self-similarity in time-size. This property is also present in some non-crackling systems. Here, the uncommon character of the scaling law is illustrated with simple marked renewal processes, built by definition with no correlations. Whereas processes with a finite mean waiting time do not fulfill a scaling law in general and tend towards a Poisson process in the limit of very high sizes, processes without a finite mean tend to another class of distributions, characterized by double power-law waiting-time densities. This is somehow reminiscent of the generalized central limit theorem. A model with short-range correlations is not able to escape from the attraction of those limit distributions. A discussion on open problems in the modeling of these properties is provided.Comment: Submitted to J. Stat. Mech. for the proceedings of UPON 2008 (Lyon), topic: crackling nois
    corecore