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Abstract. The Boknis Eck (BE) time series station, initiated

in 1957, is one of the longest-operated time series stations

worldwide. We present the first statistical evaluation of a data

set of nine physical, chemical and biological parameters in

the period of 1957–2013. In the past three to five decades, all

of the measured parameters underwent significant long-term

changes. Most striking is an ongoing decline in bottom water

oxygen concentration, despite a significant decrease of nutri-

ent and chlorophyll a concentrations. Temperature-enhanced

oxygen consumption in the bottom water and a prolonga-

tion of the stratification period are discussed as possible rea-

sons for the ongoing oxygen decline despite declining eu-

trophication. Observations at the BE station were compared

with model output of the Kiel Baltic Sea Ice Ocean Model

(BSIOM). Reproduced trends were in good agreement with

observed trends for temperature and oxygen, but generally

the oxygen concentration at the bottom has been overesti-

mated.

1 Introduction

Long-term observations in oceanography are crucial when it

comes to improving the understanding of the state of ecosys-

tems and monitoring their long-term developments. They

have been a core strategy in the last 50 decades and are

still considered to have high priority today (see e.g. Ducklow

et al., 2009), as they enable the quantification of long-term

trends, the identification of regime shifts and the characteri-

sation of processes that help to predict future development.

Long-term monitoring is especially important for a dy-

namic system such as the Baltic Sea, where high variations,

which are effective on different timescales, are triggered by

natural and anthropogenic causes. The natural hydrographic

setting of the Baltic Sea is defined by the small connection to

the North Sea, where water exchange takes place through the

Danish Straits. The Baltic Sea displays a strong stratification

throughout the year, resulting from differences in the salinity

of different water masses (Rheinheimer and Nehring, 1995).

On a shorter timescale, major saltwater inflows triggered by

westerly winds transport large amounts of fully saline North

Sea water into the Baltic Sea (Hanninen et al., 2000; Lass

and Matthäus, 1996).

Over decadal timescales, anthropogenic influences like eu-

trophication have been impacting the ecosystem of the Baltic

Sea. Marine eutrophication caused by enhanced nutrient in-

put is a widespread phenomenon in coastal areas worldwide,

and in the Baltic Sea in particular (HELCOM, 2009). Gen-

erally, nutrient concentrations rose until the mid-1980s due

to excess riverine input of phosphate and nitrate (Baben-

erd, 1991; Rosenberg, 1990; HELCOM, 2009), with con-

sequences such as severe deoxygenation (Diaz and Rosen-

berg, 2008; HELCOM, 2009). The trend in eutrophication

and severely rising nutrients has been stopped or even re-

versed (HELCOM, 2009; Carstensen et al., 2006) since the

Helsinki Commission (HELCOM) in 1974 was established

to reduce anthropogenic caused marine eutrophication in the

Baltic Sea (HELCOM, 1974).

Although the Baltic Sea is one of the best-studied coastal

areas (Feistel et al., 2008; BACC, 2008), time series dating
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Figure 1. Location of the Boknis Eck Time Series Station at the entrance of Eckernförde Bay in the
southwestern Baltic Sea, indicated by black square. (from: Hansen et al., 1999)
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Figure 1. Location of the Boknis Eck time series station at the en-

trance of Eckernförde Bay in the southwestern Baltic Sea, indicated

by the black square. (from Hansen et al., 1999)

back to the 1950s are sparse. The time series at BE was

initiated in 1957 and thus provides continuous information

on changes in the southwestern Baltic Sea over more than

five decades (Bange et al., 2011). In this study, we present

and statistically evaluate a monthly data set of nine physi-

cal, chemical and biological parameters observed over a time

span of 56 years at Boknis Eck. One focus is the detailed

analysis of decadal variability and climatic changes occur-

ring over the entire time span. Decadal climate variability

was analysed by evaluating the variation in physical param-

eters such as temperature, salinity and the density gradient

in the water column as an indicator for stability of stratifica-

tion. The second focus addressed was eutrophication, includ-

ing the analysis of nutrient and chlorophyll a concentration

in the middle of the water column and oxygen content in the

bottom water. In a further step, long-term trends were com-

pared to the model output of the Baltic Sea Ice Ocean Model

(BSIOM). This approach aims to combine the advantages

of both direct measurements and spatially and temporarily

highly resolved model output.

2 Data and methods

2.1 Boknis Eck time series station

The Boknis Eck (BE) time series station is located at the

entrance of the Eckernförde Bay (54◦31′ N, 10◦02′ E; 28 m

water depth; Fig. 1) in the southwestern Baltic Sea. The

monitoring of a variety of physical, chemical and biologi-

cal parameters was initiated by Johannes Krey (Institut für

Meereskunde, Kiel) in 1957 (Krey et al., 1980), and has been

operated since then on a monthly basis with only two ma-
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Figure 2. Synopsis of physical, chemical and biological time series at Boknis Eck. Solid lines indi-
cate regular monthly measurements with only up to two following months missing (rare), dotted lines
indicate only very irregular measurements with large gaps. Colors represent financial support by dif-
ferent funders. DWK = Deutsche Wissenschaftliche Kommission, HELCOM = Helsinki Commission,
BMBF = Bundesministerium für Bildung und Forschung, IfM = Institut für Meereswissenschaften.
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Figure 2. Synopsis of physical, chemical and biological time series

at Boknis Eck. Solid lines indicate regular monthly measurements

with only up to two following months missing (rare), dotted lines

indicate only very irregular measurements with large gaps. Colours

represent financial support by different funders. DWK: Deutsche

Wissenschaftliche Kommission; HELCOM: Helsinki Commission;

BMBF: Bundesministerium für Bildung und Forschung; IfM: Insti-

tut für Meereswissenschaften.

jor breaks in 1975–1979 and 1983–1985, where no data are

available (Fig. 2).

Starting with measurements of temperature, salinity and

oxygen on 30 April 1957, the number of parameters has

increased almost continuously. Chlorophyll a (since 1960)

and nutrients like nitrate, ammonium (1979), nitrite (1986)

and phosphate (1957–1966, since 1979) are now part of the

monthly routine (Fig. 2). Measurement techniques changed

only once for temperature, salinity, phosphate and chloro-

phyll a (Table 1), all of which were calibrated so that no

shifts in the trends due to a change in measurement tech-

niques are expected. A more detailed summary on the pa-

rameters and applied methods can be found in Table 1 and

on the Boknis Eck website www.bokniseck.de.

The routine of measurements and analysis has changed

little during the observation period. Monthly samples have

been taken from research vessels during half-day trips, the

sampling usually starting around 09:00 to 10:00 in the morn-

ing. Seawater has been sampled at six standard depths (0.5

or 1; 5, 10, 15, 20; 25 or 26 m) using Niskin bottles or the

like during several casts, prepared onboard and cooled until

further analysis. Analysis was usually carried out in the days

following the cruise.

The time series of BE provides a highly valuable data set

for three main reasons. Firstly, the time span of observa-

tion covers 56 years and hence provides continuous infor-

mation on changes in the time span of decades. Secondly,

there have only been minor changes in the methods used for

determining the parameters, and careful calibration avoided

shifts or inaccuracies in the data. This consistency strongly

enhances the quality of the data, as shifts in the data sig-

nals through different methods of analysis can be excluded.

Thirdly, the location of Boknis Eck was initially chosen

Biogeosciences, 11, 6323–6339, 2014 www.biogeosciences.net/11/6323/2014/
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Table 1. Synopsis of methods used for determining oceanographic parameters at the Boknis Eck time series station since 1957. n.r.: not

reported; CTD: conductivity, temperature, depth; SCFA: segmented continuous flow analyser; Meth.: methanol.

Parameter Unit Method Reference Time span

Temperature ◦C Reversing thermometer Krey et al. (1980) 1957–1975
◦C Electrical thermometer, CTD HELCOM 1979–

Grasshoff et al. (1999)

Oxygen µmolL−1 Winkler titration Krey et al. (1980) 1957–

Grasshoff et al. (1999)

Salinity ‰ Refractometer Krey et al. (1980) 1957–n.r.

psu Salinometer, CTD Krey et al. (1980) n.r.–

Phosphate µgL−1 Photometer ELKO Zeiss II Grasshoff et al. (1999) 1957–7/1970

µmolL−1 SCFA Grasshoff et al. (1999) 8/1970–

Nitrate µmolL−1 SCFA Grasshoff et al. (1999) 1979–

Nitrite µmolL−1 SCFA Grasshoff et al. (1999) 1979–

Ammonium µmolL−1 SCFA Grasshoff et al. (1999) 1986–

Chlorophyll a µgL−1 Meth. extraction, photometer Krey (1939) 1975–2009

µgL−1 Fluorometer Welschmeyer (1994) 2009–

Secchi depth m Secchi disc Tyler (1968) 1986–

because it reflects the hydrographic setting of the Kiel Bight

(Krey et al., 1980). As there are no major rivers discharging

into the Eckernförde Bay, riverine inputs of, for example, nu-

trients can be neglected; however, influences by direct runoff

from land cannot be excluded.

2.2 Statistical analysis

The complete time series of nine parameters covering the pe-

riod from 1957 to 2013 is described and statistically evalu-

ated for the first time. Statistical tests covering the long-term

development of median (Mann–Kendall test (MKT), Sen’s

slope) and extreme values (quantile regression of the 10th

and 90th percentile) were applied (for details, see below).

Prior to the analysis, data were averaged as sampling was

conducted at slightly different standard depths (differences

1 m) or additional depths in the described period. Thus, data

were averaged to the following ranges: 0–2.5, 3–7.5, 8–12.5,

13–17.5 m, 18–22.5 and> 23 m. The ranges are referred to

as 1, 5, 10, 15, 20 and 25 m. For the MKT and for descriptive

statistics, the averaged raw data including irregular spacing

and missing values were used.

The measurements were averaged in cases of several dates

per month (< 5 %) and assumed to be representative of the

whole month. Therefore, the corresponding date was chosen

to be the middle of the month (the 15th). Gaps were filled by

linear interpolation in the case of one or two missing months

in a row; larger gaps were filled by replacement with the me-

dian of the corresponding month. In the case of missing val-

ues, the temperature at the surface (1 m) was replaced by the

model output of the Baltic Sea Ice Ocean Model (Lehmann

et al., 2014).

Besides the measured parameters, oxygen saturation and

density gradient were derived from measurements. Density

was calculated using the UNESCO algorithm for density in

seawater (UNESCO, 1981). Oxygen saturation was calcu-

lated according to Eq. 1, with the measured concentration

Cm and the equilibrium concentration Ca according to Gar-

cia and Gordon (1992) using temperature and salinity from

the BE time series:

Satoxy[%]=
Cm

Ca

· 100. (1)

The nutrient concentrations at 10 m depth were treated differ-

ently than the physical parameters due to their different sea-

sonality. As nutrients become limiting during summer (Was-

mund et al., 2011), their concentration is very low between

March and September and does not show large variations.

A general method to decipher trends in nutrients is to con-

sider the means of December-January-February (DJF) for

each winter period, which were simply linearly regressed.

Phosphate and ammonium were additionally analysed in the

bottom layer, using the monthly MKT for each month indi-

vidually.

2.2.1 Mann–Kendall test

The Mann–Kendall test (MKT) is a nonparametric, statisti-

cal test to decipher significant monotonic long-term trends in

time series. The MKT tests the null hypothesis that all vari-

ables are randomly distributed against the alternative hypoth-

esis that a monotonic trend exists in the time series on a given

significance level α (here α = 0.05). The test statistics of the

MKT can be found in Hirsch and Slack (1984).

The MKT can be modified to decipher trends in seasonal

data, e.g. monthly data like the BE time series, when a ho-

mogeneous trend is present (Hirsch and Slack, 1984). A sea-

sonal MKT including all seasons was performed when trends

www.biogeosciences.net/11/6323/2014/ Biogeosciences, 11, 6323–6339, 2014
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Figure 3. Mean seasonal cycle of temperature (1957–2013), salinity (1957–2013), oxygen (1957–
2013), chlorophyll a (1960–2013), nitrate (1979–2013), nitrite (1986–2013), ammonium (1979–
2013) and phosphate (1957–2013). The black dots indicate location (at 5 standard depths) and
time (12 months) of measurements taken into account for interpolation.
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Figure 3. Mean seasonal cycle of temperature (1957–2013), salinity (1957–2013), oxygen (1957–2013), chlorophyll a (1960–2013), nitrate

(1979–2013), nitrite (1986–2013), ammonium (1979–2013) and phosphate (1957–2013). The black dots indicate location (at six standard

depths) and time (12 months) of measurements taken into account for interpolation.

in the individual months were homogeneous; otherwise the

months were tested individually.

If a trend is present in the time series according to

the MKT, a median slope was computed according to Sen

(1968). The MKT test was applied to the raw data includ-

ing missing and tied values, and the latter were averaged

within the MKT function. For the test, a MatLab function

from Burkey (2012) based on the MKT accounting for serial

correlation by Hirsch and Slack (1984) and Sen (1968) was

used.

2.2.2 Quantile regression

The decrease or increase in extreme values within the time

series was evaluated by quantile regression, which is a least-

squares optimisation technique to find the conditional quan-

tile in a time series (Koenker and Hallock, 2001).

To assess the significance of the trend, the method pro-

posed by Franzke (2013) was applied, using a constrained

Monte Carlo approach to generate surrogate data. Quantile

regression was then applied to each of the surrogate data sets.

A statistically significant trend was present if the trend in the

original time series lay outside of the 95 % boundaries of the

trends for the surrogate data, which equals a level of signif-

icance of α= 0.1 (two-sided). The surrogate data were gen-

erated by following an approach of Schreiber and Schmitz

(1996). They proposed an iterative algorithm that generates

time series with the same power spectrum and the same range

of values. Details can be found in their paper, and are only

briefly summarised here: surrogate data were generated by

(i) Fourier transforming and randomly shuffling of the orig-

inal time series, (ii) replacing the amplitudes of the old time

series with the new one and Fourier transforming it inversely

afterwards, (iii) rank ordering of the new time series accord-

ing to the value spectrum of the old time series, and (iv) re-

peating steps (ii) and (iii) until convergence.

Following this approach, 500 surrogate time series were

generated. As the generation of the surrogate data required

complete time series, both the quantile regression and the

generation of the data sets were performed with the inter-

polated and gap-filled time series.

2.3 Hydrodynamic model of the Baltic Sea

The numerical model used in this study is a three-

dimensional coupled sea-ice ocean model of the Baltic Sea

(BSIOM; Lehmann and Hinrichsen, 2000; Lehmann et al.,

2002). The horizontal resolution of the coupled sea-ice ocean

model is at present 2.5 km, and 60 levels are specified in

the vertical, which enables the upper 100 m to be resolved

into levels of 3 m thickness. The model domain comprises

the Baltic Sea, including the Kattegat and the Skagerrak. At

the western boundary, a simplified North Sea basin is con-

nected to the Skagerrak to supply characteristic North Sea

Biogeosciences, 11, 6323–6339, 2014 www.biogeosciences.net/11/6323/2014/
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Figure 4. Time series of temperature (1 m), salinity (25 m), oxygen (25 m) and chlorophyll a con-
centration (10 m). Shown are various statistical results discussed in Sect. 3, e.g. quantile regression
(QR) or linear trends over different time spans. TS = Time Series, Median Repl. = Median Replace-
ment, Conf. Int. = Confidence Interval of quantile regression, Chl. a= Chlorophyll a.
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Figure 4. Time series of temperature (1 m), salinity (25 m), oxygen (25 m) and chlorophyll a concentration (10 m). Shown are various

statistical results discussed in Sect. 3, e.g. quantile regression (QR) or linear trends over different time spans. TS: time series; Median Repl.:

median replacement; Conf. Int.: confidence interval of quantile regression; Chl. a: chlorophyll a.

water masses in terms of temperature and salinity profiles

resulting from the different forcing conditions (Lehmann,

1995). Prescribed low-frequency sea level variations in the

North Sea/Skagerrak were calculated from the BSI (Baltic

Sea index; Lehmann et al., 2002; Novotny et al., 2006).

The coupled sea-ice ocean model is forced by realistic at-

mospheric conditions taken from the Swedish Meteorologi-

cal and Hydrological Institute (SMHI Norrköping, Sweden)

meteorological database (L. Meuller, personal communica-

tion), which covers the whole Baltic drainage basin on a reg-

ular grid of 1◦× 1◦ with a temporal increment of 3 h. The

database consists of synoptic measurements that were in-

terpolated on the regular grid with a two-dimensional opti-

mum interpolation scheme. This database, which for mod-

elling purposes was further interpolated onto the model grid,

includes surface pressure, precipitation, cloudiness, air tem-

perature and water vapour mixing ratio at 2 m height, and

geostrophic wind. Wind speed and direction at 10 m height

were calculated from geostrophic winds with respect to dif-

ferent degrees of roughness on the open sea and off the coast

(Bumke et al., 1998). BSIOM forcing functions, such as wind

stress, radiation and heat fluxes were calculated according

to Rudolph and Lehmann (2006). Additionally, river runoff

was prescribed from a monthly mean runoff data set (Kron-

sell and Andersson, 2012). The numerical model BSIOM has

been run for the period 1970–2010.

The oxygen consumption sub-model (OXYCON; Hansen

and Bendtsen, 2009; Jonasson et al., 2012) describes one

pelagic oxygen sink and two benthic sinks due to micro-

bial and macrofaunal respiration. Pelagic and benthic oxy-

gen consumption is modelled as a function of temperature

and oxygen concentration. Originally, Hansen and Bendt-

sen (2009) developed OXYCON for the North Sea–Baltic

Sea transition area including the Kattegat and the Belt Sea.

They estimated an annual average of primary production to

be 160 g C m−2 for this area (Bendtsen and Hansen, 2013).

However, a constant rate of primary production is not suit-

able when simulating the entire Baltic Sea. Wasmund et al.

(2001) compiled primary production data resolved for the

different sub-basins of the Baltic Sea, covering two time pe-

riods around 1970–1980 and 1990–2000, respectively. Over

the period of about 20 years, primary production nearly dou-

bled in almost all regions of the Baltic Sea. According to

these changes in primary production, oxygen consumption

rates were linearly increased from 1970 until 1997, and kept

constant afterwards. At the sea surface, the oxygen flux is

based on the oxygen saturation concentration determined

from the modelled sea surface temperature and salinity val-

ues. The BSIOM-OXYCON model is extensively validated

in Lehmann et al. (2014).

For comparison, mean values of the water column in both

measured and modelled parameters were compared. Aver-

aging was necessary as the model had a higher spatial res-

olution than the sampling. Model output for the Boknis

Eck station on the day of sampling was compared to the

www.biogeosciences.net/11/6323/2014/ Biogeosciences, 11, 6323–6339, 2014
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Table 2. Test statistics of monthly Mann–Kendall tests part I. Only

significant results are shown. Tau b: Kendall coefficient for time se-

ries including ties; Sen’s slope: median slope present in time series

(yr−1); C.I.: confidence interval of Sen’s slope.

Tau b p value Sen’s slope C.I. 5 % C.I. 95 %

Temperature 1 m (◦C)

Jan 0.21 0.048 0.03 0 0.05

Apr 0.35 < 0.001 0.07 0.03 0.10

May 0.30 0.003 0.06 0.02 0.09

Temperature 25 m (◦C)

Jan 0.23 0.026 0.03 0.00 0.06

Feb 0.20 0.044 0.03 0.00 0.06

Mar 0.22 0.016 0.03 0.01 0.06

Apr 0.31 0.001 0.04 0.02 0.06

Jun 0.23 0.026 0.03 0.00 0.05

Sep 0.25 0.005 0.04 0.01 0.06

Salinity (–)

Mar 0.19 0.037 0.04 0.00 0.07

Apr 0.23 0.011 0.06 0.01 0.10

Oxygen concentration 25 m (µM)

Jan −0.27 0.011 −1.45 −2.42 −0.33

Mar −0.29 0.002 −1.18 −1.96 −0.46

Apr −0.31 0.001 −1.63 −2.46 −0.69

May −0.27 0.006 −1.20 −2.35 −0.37

Jul −0.34 < 0.001 −1.51 −2.22 −0.79

Aug −0.20 0.030 −0.71 −1.32 −0.08

Sep −0.35 < 0.001 −0.76 −1.31 −0.36

Oxygen saturation (%)

Jan −0.23 0.032 −0.26 −0.52 −0.02

Apr −0.26 0.005 −0.33 −0.56 −0.15

May −0.24 0.016 −0.32 −0.59 −0.06

Jul −0.32 0.001 −0.47 −0.71 −0.23

Sep −0.32 0.001 −0.22 −0.39 −0.10

Density gradient (kgm−4)

Apr 0.32 0.001 0.002 0.001 0.003

Jul −0.19 0.043 −0.001 −0.002 >−0.001

Oct −0.21 0.038 −0.001 −0.003 >−0.001

Chlorophyll a I 10 m (µgL−1)

Feb −0.50 0.016 −0.30 −0.70 −0.06

Chlorophyll a II 10 m (µgL−1)

Feb 0.30 0.021 0.06 0 0.22

Apr −0.38 0.002 −0.11 −0.19 −0.03

May −0.33 0.018 −0.04 −0.09 −0.01

Jul −0.29 0.017 −0.04 −0.12 −0.01

Oct −0.30 0.031 −0.12 −0.23 −0.01

measurements by means of linear regression and the devi-

ation from the bisectrix in the regression plot.

Furthermore, linear regression was performed with daily

as well as monthly (day of BE observations) model output to

assess the trends in modelled temperature, salinity and oxy-

gen content. These were compared to the linear regression of

the monthly observation of these three parameters at Boknis

Eck.

To test the hypothesis of altered stratification, the devel-

opment of the thermocline was further investigated with the

model output of the BSIOM. Different criteria in tempera-

ture difference across the thermocline were applied and the

trend in the length of the stratification period was assessed

via linear regression.

3 Results

3.1 Long-term trends in the BE time series

3.1.1 Temperature

Surface temperature was dominated by a clear seasonal cycle

(Fig. 4). However, the cycles at different depths were asyn-

chronous; thus a thermal gradient and consequently a stratifi-

cation in the water column occurred. During the period 1957

to 2013, the months January to March exhibited an almost

homogenously tempered water column. A thermocline usu-

ally developed in March/April and lasted until October at

a depth of 10 to 15 m (Fig. 3).

Temperature significantly increased in January, April and

May, with rising trends between 0.03 and 0.06 ◦Cyr−1 (Ta-

ble 2). The increase was 0.018 ◦Cyr−1, but was not signifi-

cant. Testing for trends in the extreme values, e.g. the 10 and

90 % quantile, yielded positive tendencies for both quantiles,

but they were not significant (p>0.05, Table 4). Tendencies

in extreme values and mean were similar.

The temperature distributions for August, usually the

warmest month in a year, revealed that warmer temperature

anomalies increased in frequency during the second half of

the series from 1985 onwards (Fig. 6). Anomalies of up to

+2.2 ◦C (1997, 2003) occurred, while the mean did not shift

significantly.

The temperature at 25 m showed a similar strong annual

cycle as the surface, but the warming pattern was different.

Highest temperatures usually occurred in October, and low-

est during February. Warming tendencies could be detected

for all months, with significant warming in the period Jan-

uary to April as well as for June and September (Table 2).

3.1.2 Salinity

The bottom water salinity at 25 m depth displayed strong

fluctuations (Fig. 4) but did not have a regular annual cycle.

The mean salinity was 26.6±2.0 and varied in a mean range

of 2.9. The high bottom salinity indicates an origin from

the Kattegat surface water, which enters the Danish Straits

as a dense bottom current. The bottom water moves to the

south, through the Little and Great Belt, entering the Kiel

Bight from the north and east, finally arriving at Eckernförde

Bay. On average, the lowest salinity was present in March

and the highest in August and September, but there was vari-

ation in the timing of the maxima and minima. A halocline is

present throughout the year, with stronger gradients in sum-

mer (March–October, Fig. 3).

No significant trend was detectable with the seasonal

MKT for salinity in the period from 1957 to 2013 (Ta-

ble 4), although short-term variations were present over a rel-

atively large range (about 22 %). However, salinity increased

slightly but significantly by 0.04 yr−1 (March) and 0.06 yr−1

(April) (Table 2). Negative tendencies were present in the

Biogeosciences, 11, 6323–6339, 2014 www.biogeosciences.net/11/6323/2014/



S. T. Lennartz et al.: Long-term trends at Boknis Eck 6329

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

N
itr

at
e 

(µ
M

)
 

 

Jan80 Jan85 Jan90 Jan95 Jan00 Jan05 Jan10
0

5

10

15

N
itr

ite
 (

µM
)

 

 

Jan80 Jan85 Jan90 Jan95 Jan00 Jan05 Jan10

0.2

0.4

0.6

0.8

A
m

m
on

iu
m

 (
µM

)

 

 

Jan80 Jan85 Jan90 Jan95 Jan00 Jan05 Jan10

0

5

10

P
ho

sp
ha

te
 (

µM
)

 

 

Jan60 Jan65 Jan70 Jan75 Jan80 Jan85 Jan90 Jan95 Jan00 Jan05 Jan10
0

0.5

1

1.5

2
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Figure 5. Average winter concentration (December-January-February, DJF, red dots) of nutrients at the Boknis Eck time series station, as

well as linear decreasing trends (solid line represents the linear trend, broken lines the 95 % confidence interval). Note the different x axis

for phosphate.

period between July and October, but these were not signif-

icant. All other tendencies were positive but also not signifi-

cant. Testing for a trend in extreme values revealed a signif-

icant increase in the 10 % quantiles (+0.025 yr−1) (Table 4).

The correlation between oxygen and salinity in the bottom

water was not significant at the α=0.05 level.

3.1.3 Oxygen

Oxygen concentration at 25 m depth was dominated by an

annual cycle, with the highest concentration in March and

the lowest in September (Fig. 4). They were decreasing with

a median slope (Sen’s slope) of −0.9 µmolL−1 yr−1 (Ta-

ble 4). To better resolve the trends for individual months, the

MKT was conducted for each month individually. A signif-

icant decreasing trend could be detected in January and for

the summer months from April to September in a range of

−0.5 µmolL−1 yr−1 (July) and −0.8 µmolL−1 yr−1 (April)

(Table 2). The concentrations of the 10 % quantile sig-

nificantly decreased as well, with a similar intensity of

−0.78 µmolL−1 yr−1 (Table 4). The number of anoxic and

suboxic events (here< 10 µmolL−1 O2) has increased con-

tinuously since the 1970s (Fig. 7).

Similar trends were found in oxygen saturation calcu-

lated from measured oxygen concentrations, temperature

and salinity (Eq. 1). Monthly MKT for oxygen saturation

yielded a significant decrease in January, April, May, July

and September in a range of −0.26 %yr−1 (January) to

−0.47 %yr−1 (July) (Table 2).

3.1.4 Density gradient

The density gradient varied seasonally with minima dur-

ing winter and maxima during summer months. Signifi-

cant trends could be found for three months: the high-

est significant increase was found in April, when the gra-

dient rose by 0.002 kgm−4 yr−1. Significant negative but

weaker trends were detected in July and October (both

−0.001 kgm−4 yr−1) (Table 2).

3.1.5 Phosphate

The phosphate concentration in the middle of the water

column (10 m depth) displayed regular seasonal dynamics

throughout the whole sequence, i.e. 1957 to 2013 (despite the

major gap in measurements from 1966 to 1986). During the

www.biogeosciences.net/11/6323/2014/ Biogeosciences, 11, 6323–6339, 2014
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Figure 6. Normalised temperature distribution for observations at

BE in August for the first half (blue) and the second half (red) of

the time series at the surface water (1 m).
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Figure 7. Increasing number of months with oxygen concentrations

at 25 m depth below 10 µmolL−1 at BE in 5-year periods. Note

that measurements were not continuously available in the periods

1970–1974 and 1980–1984.

winter months December to February, the highest concentra-

tions were present. During the summer months April to July,

the mean and the variations between years were smaller by

0.12± 0.15 µmolL−1.

Phosphate was the only series where the standard devi-

ation fluctuated intensively after the gap filling from 1967

to 1979 and 1983 to 1986. Hence, for the MKT, only the

time series starting on 7 January 1986 is used. Testing for

monthly trends revealed significant negative trends for the

winter months December to March, as well as September

(Table 3). The strongest decrease was detected in Decem-

ber, and the weakest in September. To compare the nutri-

ents among each other, the concentrations during the win-

ter months December, January and February were averaged

and linear regression was performed, which yielded a linear

decrease of −0.095 µmolL−1 yr−1 for phosphate (Table 5,

Fig. 5). Phosphate concentrations in the period after 1986

decreased, but did not yet reach the level of concentrations at

the beginning of the 1960s. (Fig. 5)

The phosphate concentration at 25 m near the sediment

varied seasonally, but the seasonal variation differed strongly

from the one at 10 m depth. The yearly maximum at 25 m

depth was in October, not in January as in the 10 m time

series (Fig. 3). Here, the phosphate concentrations were on

Table 3. Test statistics of monthly Mann–Kendall tests part II. Only

significant results are shown. Tau b: Kendall coefficient for time se-

ries including ties; Sen’s slope: median slope present in time series

(yr−1); C.I.: confidence interval of Sen’s slope.

Tau b p value Sen’s slope C.I. 5 % C.I. 95 %

Nitrate 10 m (µmolL−1)

Jan −0.33 0.017 −0.17 −0.29 −0.02

Feb −0.38 0.002 −0.26 −0.41 −0.10

Mar −0.35 0.002 −0.18 −0.44 −0.04

Apr −0.49 < 0.001 −0.05 −0.08 −0.03

Jun −0.33 0.017 −0.01 −0.02 0.00

Aug −0.31 0.008 −0.01 −0.01 0.00

Oct −0.37 0.008 −0.01 −0.02 0.00

Nitrite 10 m (µmolL−1)

Jan −0.29 0.050 −0.02 −0.03 0.00

Mar −0.26 0.027 −0.02 −0.03 0.00

Apr −0.28 0.024 0.00 0.00 0.00

Oct −0.36 0.014 0.00 −0.01 0.00

Phosphate 10 m (µmolL−1)

Jan −0.37 0.013 −0.02 −0.03 0.00

Mar −0.34 0.005 −0.02 −0.04 0.00

Apr −0.26 0.038 0.00 −0.01 0.00

Ammonium 10 m (µmolL−1)

Jan −0.31 0.035 −0.09 −0.16 −0.01

Feb −0.49 0.000 −0.12 −0.18 −0.07

Mar −0.37 0.002 −0.02 −0.03 0.00

Apr −0.38 0.002 −0.01 −0.03 0.00

Aug 0.25 0.039 0.00 0.00 0.01

Phosphate 25 m (µmolL−1)

Jan −0.27 0.074 −0.01 −0.03 0.00

Feb −0.44 0.000 −0.02 −0.03 −0.01

Mar −0.42 0.000 −0.03 −0.05 −0.01

Apr −0.25 0.042 −0.01 −0.03 0.00

Jun 0.29 0.034 0.02 0.00 0.04

Sep −0.25 0.030 −0.12 −0.25 −0.01

average 0.95±0.72 µmolL−1 throughout the year except for

the months of September and October. During these months,

the concentration was elevated to 3.7± 3.4 µmolL−1, which

is considerably higher than the maxima at 10 m depth. The

elevated concentration in these months was coincident with

the lowest oxygen concentrations during the course of 1 year.

Negative trends in phosphate concentrations were present in

the winter and spring months January to April (Table 3).

A decrease of −0.1 µmolL−1 per year was present in the

September data, which is 1 order of magnitude higher than

the other significant trends (3).

3.1.6 Nitrate

The seasonal dynamic of the nitrate concentration at 10 m

was similar to the dynamic of phosphate concentration at the

same depth. Nitrate concentrations were highest in the winter

months December to February, with the maximum in Febru-

ary. Measurements were only continuously available from

1986 on; thus the trends refer only to the period 1986–2013.
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MKT was performed for the months individually as hetero-

geneous monthly trends were present. Nitrate concentrations

decreased significantly between December and April for the

period 1986 to 2013. The decrease was strongest in Febru-

ary, with a decrease of−0.3 µmolL−1 yr−1 (Table 3). For the

winter months DJF, linear regression yielded a decrease of

−0.16 µmolL−1 yr−1 (Fig. 5).

3.1.7 Nitrite

The nitrite concentration at 10 m depth showed a similar sea-

sonality as the nutrients described above (Fig. 3). During

the summer months April to September, the concentration

was on average in the range of 0.05–0.01 µmolL−1 with the

highest concentration of that period in June and the lowest

in September and October. However, the concentration was

on average the highest each year during the winter months

January and February.

Nitrite measurements have only been available since 1988,

and the trends only refer to this period (1988–2013). No

homogeneous trends could be detected for all seasons;

hence the months were tested individually for a long-term

trend. A significant downward trend was evident in Jan-

uary, March and April (Table 3). The linear regression

for the winter months DJF showed a decreasing trend of

−0.0085 µmolL−1 yr−1 (Fig. 5).

3.1.8 Ammonium

Ammonium concentration at 10 m depth displayed a simi-

lar seasonal cycle as the other nutrients at the same depth

with higher concentrations during the winter months De-

cember to February and lower concentrations during sum-

mer (Fig. 3). During the summer months, the concentrations

were in a mean range of 0.44± 0.45 µmolL−1 (October) to

0.87± 1.73 µmolL−1 (March). For the MKT, only the time

series after 1986 were considered, as continuous data before

1986 were sparse. No homogenous trend could be detected

for the series including all months, so the months were tested

individually. Decreasing trends were present in the months of

January to April (Table 3). In August, a significant increasing

trend was detected. If a linear trend is assumed for the year

to year variation of the winter months DJF, the decrease is

−0.14 µmolL−1 yr−1 (Fig. 5).

The ammonium concentration at 25 m depth displayed

a different seasonality. In general, the mean concentration

was higher than at 10 m. Furthermore, the seasonal cycle had

its yearly maxima on average in May and October, and not

during the winter months as at 10 m depth. Trends were again

only evaluated for the period after 1986 and were tested in-

dividually as well, as there was no homogenous trend for all

seasons present. However, none of the trends were signifi-

cant.

3.1.9 Chlorophyll a

The mean yearly distribution of the chlorophyll a concentra-

tion in the water column displayed clear seasonal variations

(Fig. 3). Throughout the water column, the concentrations

were highest in March. In contrast to this spring peak, the

maximal values for the second maximum in a year were more

diversely distributed among the months August to December,

and hence the second maximum could not be dated to a single

month. The time series was segmented into two main parts,

ranging from 1960 to 1975 (I) and 1988 to 2012 (II). These

series differed considerably in mean chlorophyll a concentra-

tions and were therefore analysed separately (Fig. 4). During

the first series (I), chlorophyll a concentrations were on aver-

age 5.57±6.39 µgL−1. In series II, the average concentration

was lower by 2.85± 2.20 µgL−1. However, the average sea-

sonality did not change, as the highest mean concentrations

in both series were detected in March and during a second

maximum in fall. The lowest concentrations per year were

most often found in January.

The two parts of the time series were separately tested

for trends with the MKT. Chlorophyll a concentrations in

series I did show a homogenous tendency, but no signifi-

cant trend could be detected (Table 2). For series II, con-

centrations were rising significantly in February with an in-

crease of 0.06 µgL−1. Significant negative trends were de-

tected in April, May, July and October (Table 2). In the trends

of the extreme values, e.g. the 90 % quantile, a significant

trend was detected for series II. The quantile is decreasing

by −0.12 µgL−1 yr−1, which is twice as high as the median

decrease computed with Sen’s slope (Table 4).

3.1.10 Secchi depth

Secchi depth displayed fluctuations throughout the whole pe-

riod from 1986 to 2013 (not shown). The mean Secchi depth

was 6.8± 1.8 m, with a mean amplitude of 2.1 m. The shal-

lowest Secchi depth usually occurs in March (6.1 m), and

the deepest in January (8.2 m). Although a negative median

slope was present, it was not significant (p = 0.9). However,

extremely deep Secchi depths decreased, indicated by the re-

gression of the 90 % quantile, which decreased by 0.08 m per

year (Table 2).

3.2 Model accuracy at the BE location

The agreement between model output and observations at the

location of Boknis Eck was overall good with respect to the

1 : 1 comparison, the trend and the averages of the param-

eters temperature, salinity and oxygen, although minor dis-

crepancies remain. Observed temperature agreed best with

model output, especially at the surface (R2
= 0.98, Fig. 8).

The linear trend in the period 1970–2010 was captured very

well when only the days with measurements at BE were con-

sidered (Table 6), which resulted in a difference of 0.1 ◦C per

www.biogeosciences.net/11/6323/2014/ Biogeosciences, 11, 6323–6339, 2014



6332 S. T. Lennartz et al.: Long-term trends at Boknis Eck

Table 4. Descriptive and test statistics for Mann–Kendall test (MKT) and quantile regression. SD: standard deviation; filled: time series after

gap filling described in Sect. 2.2; Tau b: Kendall coefficient for time series including ties; Sen’s slope: median slope present in time series

(yr−1); p.t.: pooled trends with bootstrapping of 500 generated time series described in Sect. 2.2. * denotes significance on the 0.1 level for

quantile regression.

Temperature Temperature Salinity Oxygen Chlorophyll a I Chlorophyll a II
◦C ◦C psu µM µgL−1 µgL−1

Depth 1 m 25 m 25 m 25 m 10 m 10 m

Start date 30 Apr 1957 30 Apr 1957 30 Apr 1957 30 Apr 1957 31 Mar 1960 19 Apr 1988

End date 6 Feb 2013 6 Feb 2013 6 Feb 2013 6 Feb 2013 2 Dec 1975 26 Jun 2012

Mean 9.74 7.02 21.55 183.52 5.47 2.86

SD 6.00 3.64 2.35 116.95 6.39 2.06

Missing values [%] 17.91 18.69 19.22 19.35 5.05 15.28

Mean filled 9.57 7.00 21.53 186.59 5.46 2.68

SD filled 5.90 3.37 2.17 112.77 6.31 2.10

Mann-Kendall Test

homogeneity no yes yes no yes no

Tau b seasonal 0.15 0.19 0.01 −0.22 0.11 −0.16

p value < 0.001 0.273 0.943 0.238 0.408 0.470

Sen’s slope 0.02 0.02 0.002 −0.91 0.07 −0.04

Quantile regression

90 % quantile data 0.002 n.d. −0.001 −0.052 −0.011* −0.007*

p.t. 95 % 0.003 n.d. 0.002 0.064 0.008 0.004

p.t. 5 % −0.003 n.d. −0.002 −0.063 −0.008 −0.004

10 % quantile data 0.001 n.d. 0.002* −0.066* −0.001 −0.002

p.t. 95 % 0.003 n.d. 0.002 0.051 0.043 0.016

p.t. 5 % −0.003 n.d. −0.002 −0.052 −0.040 −0.018
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Figure 8. Linear regression of model output (BSIOM at location of BE) vs. observations (BE time series) for salinity, temperature and

oxygen concentration. The top row shows the surface, and the bottom one the bottom layer comparison. Note that in the model the bottom

layer is 21–24 m while it is 25 m in the observations. Obs.: observation; Mod.: model output.

decade. However, it differed from the trend when all the days

were considered by 0.3 ◦C per decade. Also, the mean ob-

served and modelled temperature agreed very well in both

the surface and bottom layer. In the bottom layer, the trends

were identical regardless of which temporal resolution was

considered for trend calculation. This is not surprising be-

cause the temperature evolution is tied to the atmospheric

forcing, i.e. boundary conditions. Modelled salinity agreed
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less accurately than temperature with the observations. The

salinity evolution is coupled to the overall water budget, in-

cluding the net freshwater flux and the western boundary

condition for salinity, which are much more uncertain. The

trends in model and observations showed different directions

but were both nonsignificant and very small compared to

the general salinity of approximately 22 (Table 6). Further-

more, the model overestimated oxygen concentrations in the

bottom layer substantially; the surface layer concentrations,

however, were met except for periods where extremely low

oxygen conditions prevailed (Fig. 8). However, the trends of

−1.14 µmolL−1 yr−1 in the observations as well as −1.32

(modelled) and−1.47 µmolL−1 yr−1 (modelled at day of BE

observations) were only slightly overestimated in the model

(Table 6).

Model output was used to investigate the thermal stratifi-

cation and the oxygen consumption rate with a daily instead

of monthly resolution. The time during which the water col-

umn at BE was stable stratified was difficult to determine, as

the duration of stratification highly depended on the temper-

ature gradient criterion assumed. Temperature gradients be-

tween 0.6 and 1.4 ◦Cm−1 were tested and yielded different

results (Table 7). However, the duration of stratification was

increasing (1 to 10.25 ddecade−1) and the onset of stratifi-

cation started earlier (2.75 to 8.25 ddecade−1) for all criteria

tested.

The effect of the rising temperature trend on oxy-

gen consumption rates was relatively small. Only 13 %

(0.2 µmolL−1 yr−1) of the total oxygen decrease of

−1.47 µmolL−1 yr−1 could be attributed to an enhancement

of the oxygen consumption by temperature in the model. The

remaining part originated from the prescribed primary pro-

duction, to which the oxygen consumption rate was tied (see

Sect. 2.3).

4 Discussion

4.1 Comparisons of observations at BE with trends

in the Baltic Sea

Statistical analysis of the time series at BE revealed that sig-

nificant trends were present in all of the nine analysed param-

eters. The trends comprise physical, chemical and biologi-

cal parameters and indicate that the whole system undergoes

significant changes, resulting, for example, in altered living

conditions for biota.

Temperature trends at BE were in good agreement with

trends in other regions of the Baltic Sea. The positive ten-

dency of 0.2 ◦C per decade is within the range of previ-

ously reported trends (Feistel et al., 2008, ch. 9.4, p. 252ff).

The same magnitudes of mean and extreme value warming

tendency indicated a general shift towards warmer temper-

atures, which intensified in the period 1970–2010. Most of

the warming in the sea surface at BE can be attributed to the

spring season, as April and May were the months with the

highest temperature increase. At the same time, temperature

in the bottom water did not increase as fast as at the surface,

which resulted in an overall significant increase in the den-

sity gradient in spring. Hence, stratification starts earlier in

a year, which may in turn lead to a reduced ventilation. This

is discussed in context with oxygen depletion below.

No significant trend could be detected for salinity at BE

in the median, which is in agreement with findings of the

BACC author team (BACC, 2008). They report no significant

changes in salinity in the 20th century at numerous monitor-

ing stations (BACC, 2008). Salinity fluctuates in the short-

term, interannual variability due to large-scale advection

(Lehmann et al., 2013). Major saltwater inflows triggered

mainly by westerly wind regimes bring saline water from the

North Sea further into the Baltic Sea (Lass and Matthäus,

1996). The strongest inflow occurred in January 1993, less

strong events in 1965, 1969, 1973, 1976, 1980 and 2003 (in

decreasing magnitude) (BACC, 2008; Feistel et al., 2008, ch.

10, p. 265ff). The salinity time series at BE does not show

pronounced maximal salinities for these dates. It is unlikely

that the major salinity inflows did not reach BE, as the time

series station is located at the Boknis Eck channel with a di-

rect connection to the Belt Sea. More likely, the bottom wa-

ter is not suited to track major saltwater inflows as it already

reflects the characteristics of the incoming North Sea water.

Apparently, an intrusion of saltwater is more pronounced in

the horizontal dimension than in the vertical and is hard to

detect in a 1-D profile at Boknis Eck.

The nutrient and phytoplankton cycle, the latter indicated

by the chlorophyll a concentrations at the surface, showed

a typical annual seasonality. Smetacek (1984) described the

annual cycle of plankton and nutrients in the Kiel Bight

in several stages, which could be observed throughout the

whole time span. They comprise a spring bloom, at BE indi-

cated by high chlorophyll a concentrations in March; a her-

bivorous copepod maximum that could not be detected by the

parameters discussed here; a third stage during summer strat-

ification, which was identified here by low nutrient concen-

tration and comparably high chlorophyll a concentrations;

and an autumn bloom that varied in timing, again indicated

by elevated chlorophyll a concentrations. Smetacek (1984)

observed constant nutrient concentrations in winter and con-

sequently a similar bloom size each year during a 10-year pe-

riod, which contrasted with the decreasing nutrient concen-

trations and decreasing chlorophyll a concentrations found

over the longer period 1960/1986–2013.

The peak in bottom water ammonium appeared consis-

tently with a lag of 1 month after increased chlorophyll a

concentration in the surface layer and was especially strong

when anoxic conditions were present. This behaviour may

indicate remineralisation of organic matter after the blooms.

The lag of 1 month after the dieback of algal blooms was

in agreement with previous studies showing an increase in

methane 1 month after an algal bloom in the bottom water
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Table 5. Descriptive and test statistics for seasonal (MKT) and linear regression of winter (DJF mean) concentrations. Percentage of missing

values in brackets refers to the part of the time series used for statistic analysis. SD: standard deviation; DJF: December-January-February.

Phosphate Phosphate Nitrate Nitrite Ammonium Ammonium

µM µM µM µM µM µM

Depth 10 m 25 m 10 m 10 m 10 m 25 m

Start date 30 Apr 1957 30 Apr 1957 12 Mar 1979 7 Jan 1986 12 Mar 1979 12 Mar 1979

End date 6 Feb 2013 6 Feb 2013 6 Feb 2013 6 Feb 2013 6 Feb 2013 6 Feb 2013

Mean 0.39 1.85 2.10 0.20 0.80 4.84

SD 0.42 3.40 3.43 0.27 1.48 5.15

Missing values [%] 32.8 34.3 48.1 7.7 9.7 11.0

(7.5) (18.6)

Mean filled 0.46 1.55 2.13 0.21 0.95 4.97

SD filled 0.45 1.72 3.20 0.27 1.43 5.10

Linear regression (DJF)

slope yr−1
−0.24 −0.22 −1.54 −0.07 −1.12 −0.73

Pearson’s R −0.72 −0.61 −0.54 −0.37 −0.59 −0.32

Table 6. Comparison of linear trends in observed and modelled parameters temperature (surface and bottom layer), salinity and oxygen

concentration (bottom layer). To ensure comparability, trends only relate to the period 1970–2010, limited by the model output. Note that the

bottom layer is at a depth of 25 m in the observations but 21–24 m in the model. O: observations; M: BSIOM output; M./O.: model output

only on days with BE observations.

Temperature Temperature Salinity Oxygen

surface bottom bottom bottom
◦C ◦C – µmolL−1

Trend O. yr−1 +0.07 +0.03 +0.04 −1.14

Trend M. yr−1 +0.04 +0.03 −0.04 −1.32

Trend M./O. yr−1 +0.06 +0.03 −0.03 −1.47

Mean±SD O. 9.87± 6.0 7.14± 3.4 21.57± 2.3 74.15± 117.0

Mean±SD M. 9.97± 6.3 5.91± 2.5 22.04± 2.7 252.34± 79.8

found by Bange et al. (2010), which they also attributed to

remineralisation. Ammonium accumulation is known to oc-

cur during the decomposition of organic matter, when fur-

ther oxidation to nitrite and nitrate is hindered by low oxygen

concentrations.

Although the seasonal cycle varied only little with re-

spect to the yearly course, the magnitude of the nutrient

and chlorophyll a concentration did change significantly dur-

ing 1980–2013 (nutrients) and 1960–2013 (chlorophyll a).

In general, the concentrations of nutrients during the winter

months were significantly decreasing. This decrease has been

detected in several other stations of the Baltic Sea as well. For

nitrate, trends in the Bornholm and Gotland basins increased

until the early 1990s and decreased thereafter (Feistel et al.,

2008, ch. 12.2, p. 344f). Conley et al. (2002) analysed total

nitrogen concentrations in the Danish waters and found a de-

crease from 1980 to 2003. Carstensen et al. (2006) reported

a decrease of the nutrient discharges from Denmark by 50 %

from 1988 to 2002. In the BE time series, nitrate measure-

ments were only available from 1986 on, but the general de-

crease since then was confirmed. For phosphorous discharge,

Carstensen et al. (2006) detected a decrease of 80 %, which

they attributed mainly to the installation of wastewater treat-

ment plants. Further studies found phosphate to increase un-

til the 1980s, with strong fluctuations without a clear trend

thereafter (Feistel et al., 2008, ch. 12.3, p. 345). Phosphate

did show stronger fluctuations than nitrate in the BE series,

but the decreasing tendency was significant in the winter

months.

Accompanied by this significant decrease in nutrient con-

centrations is a decline in chlorophyll a concentrations. This

is most striking when comparing the means between the

two chlorophyll series 1960–1975 and 1986–2013, where the

concentration fell from 5.5±6.39 to 2.9±2.6 µgL−1. Addi-

tionally, decreasing trends for the second period were found.

As lower nutrients concentrations would lead to less produc-

tion and less intense algal blooms, these findings match well.

HELCOM (2009) registered a decreasing trend in chloro-

phyll a concentrations since the mid-1990s for the Katte-

gat and Belt Sea, with an increasing tendency from 2000 on.

Wasmund and Uhlig (2003) also found a decreasing, yet non-

significant, trend for the chlorophyll a concentrations in the

Kattegat and Belt Sea and attributed it to the decreasing nu-

trient concentrations. In general, chlorophyll a trends in the

regions of the Danish straits are highly variable, and even op-

posite trends can be found for individual regions (HELCOM,

2009). Due to phytoplankton blooms lasting shorter than the

sampling interval, trends in chlorophyll a are sensitive to the
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Table 7. Trends (1970–2010) and length of stratification period in the BSIOM output depending on different temperature criteria used to

detect stable stratification. Temp.: temperature; strat.: stratification; doy: day of year; d: days; dec.: decade.

Temp. Begin End Mean Trend onset Trend end Trend

criterion strat. strat. duration strat. strat. duration
◦C m−1 doy doy d ddec.−1 ddec.−1 ddec.−1

0.6 97.9 316.6 216 −6.0 2.0 8.0

0.8 108.1 309.1 201 −8.3 2.0 10.3

1.0 121.1 301.9 181 −2.8 −0.8 1.8

1.2 129.6 296.1 166 −3.0 −1.0 2.0

1.4 136.1 293.3 157 −3.8 0.3 4.3

sampling date, as the peaks could have been missed. How-

ever, the general decreasing trend throughout the whole pe-

riod of 56 years is still evident.

The annual cycle of Secchi depth with a minimum in

March and a maximum during winter matched the findings

of the chlorophyll a cycle. The slight decrease in Secchi

depth by about 8 cmyr−1 in the 90 % quantile fits in mag-

nitude with a trend published for the Swedish Baltic Sea by

8 cmyr−1 (Sanden and Hakansson, 1996), both indicating an

increased turbidity.

The oxygen concentration declined significantly with a si-

multaneous increase in hypoxic and anoxic events in the bot-

tom water during the period 1957–2013 at BE. The spreading

of hypoxic and even anoxic zones in marine coastal ecosys-

tems is known to occur worldwide and is often related to

eutrophication (Diaz and Rosenberg, 2008). The Baltic Sea

is affected by oxygen decline over large areas (HELCOM,

2009), which have expanded since 2001. The temporal ex-

tension of hypoxia matches well with the oxygen decline at

BE.

4.2 Comparison of observations at BE with BSIOM

output

The BSIOM reproduced observed temperature, salinity and

oxygen at the location of BE with an acceptable range of un-

certainty. For temperature, it became obvious that the timing

of the monthly observation is important for the magnitude of

trend, and trends could differ by around 30 % compared to

the observed trend. The timing is especially important when

parameter variation is high, e.g. for the surface temperature.

Observed temperature at the bottom showed only small varia-

tions, and trends did not depend strongly on the temporal res-

olution. In general, the model reproduced the measurements

accurately and can therefore be applied in order to look in de-

tail at the development of temperature stratification discussed

with oxygen depletion below.

Salinity was reproduced less precisely than temperature

(lower correlation, magnitude of trend), but as changes in the

ventilation system seem to be driven by temperature changes

(see below), salinity was not further considered for finding

reasons for the ongoing oxygen decline by model output

analysis.

Oxygen trends were similar, despite the simplified oxygen

parametrisation in the model. Although concentrations were

overestimated, the trend in oxygen depletion is captured well

by the model. However, it needs to be noted that only a small

fraction of the decreasing oxygen concentration trend can be

attributed to a temperature-enhanced oxygen consumption.

Most of the oxygen depletion in the model is based on an

increase in primary production. Although an increase in pri-

mary production is questionable at BE due to significantly

decreasing nutrient concentrations, it cannot be excluded, as

no direct measurements are available. In general, the oxygen

consumption rate is captured well by the model and reflects

the trend observed at BE well, but the reasons for that cannot

completely be confirmed.

4.3 Possible reasons for ongoing observed oxygen

decline in the bottom water

4.3.1 Observations

First, possible processes causing oxygen depletion in the bot-

tom water are discussed here based on the time series of ob-

servations at Boknis Eck. Processes discussed include nutri-

ent remobilisation, the physical process of decreasing sol-

ubility of gases with increasing temperature, lower oxygen

supply by altered ventilation and temperature-enhanced oxy-

gen consumption rate.

Nutrient remobilisation from the sediment due to lower

oxygen concentrations in the bottom water are often cited to

contribute to ongoing oxygen decline (see e.g. Conley et al.,

2002; Pitkänen et al., 2001). At BE, for example phosphate

concentrations in the bottom water were elevated during pe-

riods of anoxia, but the general trend was significantly de-

creasing between 1980 and 2013. If higher concentrations of

phosphate due to remobilisation and a subsequently higher

production with higher sedimentation of organic matter com-

prised the only process responsible for the oxygen decline,

oxygen concentrations would have increased when phos-

phate remobilisation decreased. This was not the case, and
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Figure 9. Schematic overview of possible causes for ongoing oxygen decline: (a) the traditional
view of declining eutrophication: decreasing nutrient input, less phytoplankton and less organic mat-
ter (blue downward arrow) leading to less oxygen consumption and thus rising oxygen concentration
(red upward arrow). (b) Alteration by warming temperature (dark grey): Rising temperature on the
one hand enhances remineralisation, thus increases oxygen consumption, on the other hand in-
creases stratification stability and hampers oxygen supply from surface waters. As a result, oxygen
concentration decreases (red downward arrow).
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Figure 9. Schematic overview of possible causes for ongoing oxygen decline. (a) The traditional view of declining eutrophication: decreasing

nutrient input, less phytoplankton and less organic matter (blue downward arrow) leading to less oxygen consumption and thus rising

oxygen concentration (red upward arrow). (b) Alteration by warming temperature (dark grey): on the one hand, rising temperature enhances

remineralisation and thus increases oxygen consumption; on the other hand, it increases stratification stability and hampers oxygen supply

from surface waters. As a result, oxygen concentration decreases (red downward arrow).

thus phosphate remobilisation may not be the key process

responsible for oxygen decline.

Increasing temperature also decreases the solubility of

oxygen. However, the oxygen saturations showed a signifi-

cant decrease as well. In contrast to oxygen concentration,

the oxygen saturation already takes into account changes in

temperature. A decrease in the oxygen saturation means that

the decrease in concentration cannot be attributed completely

to the physical effect of solubility.

Rising temperatures further enhance remineralisation of

organic matter that is deposited on the bottom, resulting in

increased oxygen consumption (Hoppe et al., 2013). This hy-

pothesis is further supported by the lacking trend of bottom

water ammonium concentration. Despite lower nutrient in-

put, ammonium concentrations in the bottom water did not

decline, indicating that remineralisation might be enhanced

by other factors and counterbalance the decrease in nutrients.

Rising temperatures might be a possible explanation for this

ongoing remineralisation.

Moreover, there is evidence for an alteration in the ventila-

tion at Boknis Eck. At BE, the density gradient across the py-

cnocline strengthened significantly in the period 1957–2013,

especially in spring, when the rise in temperature was greater

at the surface than at the bottom. A stronger stratification

earlier in the year hampers ventilation and therefore oxygen

supply to the bottom water layer and might be a possible rea-

son for intensified oxygen decline. A schematic overview of

possible reasons for the ongoing oxygen decline despite de-

creasing eutrophication is given in Fig. 9.

Whether advection of oxygen-enriched or depleted water

through the Danish Straits is a possible reason for the ongo-

ing oxygen decline at BE cannot be estimated accurately on

the basis of a one-dimensional time series such as BE. After

the main inflowing events (see Sect. 4.1), no major change

could be seen in the bottom water oxygen concentrations

at BE. In summary, observations indicate that the ongoing

oxygen depletion might be caused by an altered ventilation,

including an earlier onset of stable stratification, as well as

enhanced oxygen consumption, possibly triggered by rising

temperatures in the bottom water at BE.

4.3.2 Model output

The daily model output indicated a prolongation of the strati-

fication period at BE, although the length of the stratification

strongly depends on the temperature difference criteria cho-

sen to detect the thermocline. All of the chosen criteria be-

tween 0.6 and 1.4 ◦Cm−1 led to a prolongation and an earlier

onset of stable stratification.

The second possible reason was oxygen decline due to en-

hanced remineralisation rates. In the BSIOM, oxygen con-

sumption is only based on temperature-dependent consump-

tion rate, which is related to prescribed primary production

(see Sect. 2.3). Although this parametrisation is a strong sim-

plification and is based on the only available but sparse data

set of primary production (Wasmund et al., 2011), the trends

of oxygen concentration were very well captured. The rea-

sons for the increase in oxygen consumption in the model are
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based on an increase in primary production, which is debat-

able at the location of BE. The fact that nutrient concentra-

tions are significantly decreasing points against an increase

in primary production when they are considered at the same

time as the limiting factor (Wasmund et al., 2011). However,

as direct measurements are not available at BE, it cannot

be excluded that increasing primary production is the reason

for the ongoing oxygen decline. In summary, the magnitude

of the oxygen consumption rate seems to be accurate in the

model, but the reasons for the ongoing oxygen decline can-

not be completely resolved based on the BSIOM output, as

the basic assumption of increasing primary production can

be neither confirmed nor rejected.

5 Conclusions

The detection of significant long-term trends in all of the

studied oceanographic parameters in the period of 1957 to

2013 revealed that Boknis Eck is subjected to extensive

changes that comprise biological, biogeochemical and phys-

ical factors, with implications for the ecosystem. The ob-

served trends for increasing temperature and decreasing oxy-

gen concentration in the bottom water are representative of

the southwestern Baltic Sea; decreasing chlorophyll a and

nutrient concentration were in the range of observations else-

where, although these parameters have very variable spatial

patterns in the Baltic Sea. In general, monitoring at the Bok-

nis Eck time series station is valuable for detecting changes

that reflect variations in large parts of the southwestern Baltic

Sea.

Oxygen concentration in the bottom water at BE decreased

significantly despite the decrease in nutrient concentrations.

Based on the observed temporal development of the physi-

cal and biological parameters at BE, we hypothesise that en-

hanced remineralisation due to temperature increase and a

longer lasting stratification may enhance oxygen depletion.

It could be proved that the remobilisation of phosphate from

anoxic sediments might act as a long-term nutrient source.

However, the remobilisation is unlikely to significantly en-

hance oxygen consumption through organic matter mineral-

isation by triggering phytoplankton growth, as the general

trend was decreasing.

The comparison to the temporarily higher resolved model

output revealed that the period of stratification had an pro-

longing effect, although the magnitude of the prolongation

depends on the temperature criteria chosen to identify the

stratification. Oxygen depletion trends were captured well by

the model, but the reasons for increased oxygen consumption

were only ca. 13 % attributable to the temperature increase.

The remaining part may be attributed to an increase in pri-

mary production implemented in the BSIOM. Furthermore,

it could be shown that the monthly temporal resolution of

BE observations may lead to inaccuracies in the trends, es-

pecially when the parameter shows high short-term fluctu-

ations. Continuing the monthly measurements at the Boknis

Eck time series station is of major importance for monitoring

and understanding future changes in the southwestern Baltic

Sea. An extension of the parameters including in situ primary

production would be helpful in verifying the hypothesis of

increasing primary production despite a decrease in nutrients

as a reason for the ongoing oxygen decline.
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