64 research outputs found

    Observation of insulator-metal transition in EuNiO3_{3} under high pressure

    Full text link
    The charge transfer antiferromagnetic (TN_{N} =220 K) insulator EuNiO3_{3} undergoes, at ambient pressure, a temperature-induced metal insulator MI transition at TMI_{MI}=463 K. We have investigated the effect of pressure (up to p~20 GPa) on the electronic, magnetic and structural properties of EuNiO3_{3} using electrical resistance measurements, {151}^Eu nuclear resonance scattering of synchrotron radiation and x-ray diffraction, respectively. With increasing pressure we find at pc_{c} =5.8 GPa a transition from the insulating state to a metallic state, while the orthorhombic structure remains unchanged up to 20 GPa. The results are explained in terms of a gradual increase of the electronic bandwidth with increasing pressure, which results in a closing of the charge transfer gap. It is further shown that the pressure-induced metallic state exhibits magnetic order with a lowervalue of TN_{N} (TN_{N} ~120 K at 9.4 GPa) which disappears between 9.4 and 14.4 GPa.Comment: 10 pages, 3 figure

    Interplay between Transport, Magnetism and Structural Properties of Transition Metal Oxides under High Pressure

    Get PDF
    The effect of external pressure on the electronic, magnetic and structural properties of two novel types of transition metal oxides (RNiO_3 and (La,Sr)CoO_3) that allows one to investigate the influence of charge ordering, spin-state transition, magnetic ordering and structure on the electrical transport and in particular the mechanism of the metal insulator (MI) transition. The applied experimental methods were electrical resistance, x-ray diffraction, 151^Eu nuclear resonance scattering, magnetization, neutron diffraction and K_beta x-ray emission spectroscopy. The major part of this thesis was devoted to the high pressure investigation of the RNiO_3 series (R = Sm, Eu, Y and Lu), in which the temperature-induced MI transition (at a temperature T_MI) is connected with an orthorhombic-monoclinic structural phase transition and simultaneous charge ordering of the Ni^3+ ions. At temperatures lower than T_MI, all these compounds undergo antiferromagnetic ordering. In all investigated compounds we find a pressure-induced insulator metal (IM) transition for 5.4 0.2) the conductivity and ferromagnetic coupling are suggested to be related to the double exchange of LS Co^4+ and intermediate-spin (IS, S = 1) Co^3+ states. We have investigated the effect of pressure on the electronic, magnetic and structural properties on a single crystal sample of conducting, ferromagnetic La_{0.82}Sr_{0.18}CoO_3. Contrary to the results reported on related systems, we find a transition from the conducting to an insulating state and a reduction of the magnetic ordering temperature T_C with increasing pressure while the lattice structure remains unchanged. The investigation of the effect of pressure on the Co magnetic moment both by magnetization measurements and Co K_beta x-ray emission spectroscopy prove that the pressure-induced metal insulator transition is driven by a gradual change of the spin-state of Co^3+ ions from magnetic IS to nonmagnetic LS state

    Valence and magnetic instabilities in Sm compounds at high pressures

    Full text link
    We report on the study of the response to high pressures of the electronic and magnetic properties of several Sm-based compounds, which span at ambient pressure the whole range of stable charge states between the divalent and the trivalent. Our nuclear forward scattering of synchrotron radiation and specific heat investigations show that in both golden SmS and SmB6 the pressure-induced insulator to metal transitions (at 2 and about 4-7 GPa, respectively) are associated with the onset of long-range magnetic order, stable up to at least 19 and 26 GPa, respectively. This long-range magnetic order, which is characteristic of Sm(3+), appears already for a Sm valence near 2.7. Contrary to these compounds, metallic Sm, which is trivalent at ambient pressure, undergoes a series of pressure-induced structural phase transitions which are associated with a progressive decrease of the ordered 4f moment.Comment: 15 pages (including 7 figures) submitted to J. Phys.: Condens. Matte

    Epitaxial Stabilization of Ultrathin Films of Rare-Earth Nickelates

    Full text link
    We report on the synthesis of ultrathin films of highly distorted EuNiO3 (ENO) grown by interrupted pulse laser epitaxy on YAlO3 (YAO) substrates. Through mapping the phase space of nickelate thin film epitaxy, the optimal growth temperatures were found to scale linearly with the Goldschmidt tolerance factor. Considering the gibbs energy of the expanding film, this empirical trend is discussed in terms of epitaxial stabilization and the escalation of the lattice energy due to lattice distortions and decreasing symmetry. These findings are fundamental to other complex oxide perovskites, and provide a route to the synthesis of other perovskite structures in ultrathin-film form.Comment: 7 pages, 3 figure

    Short and canonical GRBs

    Get PDF
    Within the "fireshell" model for the Gamma-Ray Bursts (GRBs) we define a "canonical GRB" light curve with two sharply different components: the Proper-GRB (P-GRB), emitted when the optically thick fireshell of electron-positron plasma originating the phenomenon reaches transparency, and the afterglow, emitted due to the collision between the remaining optically thin fireshell and the CircumBurst Medium (CBM). We outline our "canonical GRB" scenario, with a special emphasis on the discrimination between "genuine" and "fake" short GRBs.Comment: 4 pages, 3 figures, in the Proceedings of the "Gamma Ray Bursts 2007" meeting, November 5-9, 2007, Santa Fe, New Mexico, US

    Pressure driven collapse of the magnetism in the Kondo insulator UNiSn

    Get PDF
    The effect of pressure on the electronic and magnetic properties of the antiferromagnetic (TN~43 K) narrow gap semiconductor UNiSn has been investigated by 119Sn Mössbauer spectroscopy and nuclear forward scattering of synchrotron radiation, electrical resistance, and x-ray diffraction. We show that the decrease of the semiconducting gap which leads to a metallic state at p~9 GPa is associated with an enhancement of TN. At higher pressures, both TN and the transferred magnetic hyperfine field decrease, with a collapse of magnetism at ~18.5 GPa. The results are explained by a volume-dependent competition between indirect Ruderman-Kittel-Kasuya-Yosida interaction and the 5f-ligand hybridization

    Simulation of Intermetallic Solidification using Phase-Field Techniques

    Get PDF
    We present current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (i) dealing with faceted interfaces and (ii) the complex sub-lattice models used to describe the thermodynamics of such phases. Although models are already existent for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterization of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sub-lattice) thermodynamics is presented. Such antitrapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour can translate to a significant change in tip undercooling

    Population dynamic of bony fishes in the southern part of the Caspian Sea

    Get PDF
    This study was conducted to determine growth parameters, catch and fishing effort trends, stock assessment and Acceptable Biological Catch (ABC) of bony fishes in the Iranian coastal waters of Caspian Sea in the years 2010-2011 and 2011-2012. According to the result, the numbers of beach seines were 131 and 128 and their fishing efforts were observed 50184 and 42255 beach seining during 2010-11 and 2011-12, respectively. The catch per unit of effort CPUE) was calculated 182.9 and 205.6 kg/haul during two sampling periods, respectively. The total catches (including illegal fishing) were also obtained 16601.5 mt and 17034.1 mt during 2010-11 and 2011-12, respectively. The highest proportion of catch was belonged to kutum and golden grey mullet (86% and 88%, respectively) in two fishing seasons aforementioned above. Growth parameters of kutum were estimated as K=0.21/yr, L_∞ = 60.0 cm, t-0 = 0/yr. The Growth parameters were K=0.18/yr, L_∞ = 61.1 cm, t-0 = -0.14/yr for golden gray mullet and were K=0.12/yr, L_∞ = 73.6 cm, t-0 = 0.92/yr for common carp. Based on catch-at-age data, in the years 2010-2011 and 2011-2012, the total biomass, from the biomass-based cohort analysis were estimated 41700mt and 34400 mt for kutum and 14600 mt and 14400 mt for golden grey mullet, respectively. The reference points of F0.1 and F35% were 0.41/yr and 0.34/yr for kutum and 0.36/yr and 0.33/yr for golden grey mullet, respectively. Stock enhancement plays an important role in recovery of kutum stocks in the Iranian coastal waters of Caspian Sea. There is a significantly negative correlation between fingerlings released and condition factor (CF) and recruitment and CF. The different trends for fingerlings, recruitments and CF suggest that CF may be partly density-dependent, declining at high population sizes due to intra-specific competition. Therefore, more research should be conducted to determine the desirable level of artificial propagation. Food consumed by fish species, Rutilus frisii kutum, Rutilus rutilus caspicus, Cyprinus carpio, Liza auratus and Liza saliens were included Foraminifera, Porifera, Annelida, Mollusca, Arthropoda, filamentous algae, fish eggs and detritus.The results showed that Rutilusfrisii kutum generally feed on Balanus and Cerastorderma. The main food item for Cyprinuscarpio, Liza auratus and Liza salienswas detritus. Based on available models, the ABCs were estimated as 6600-7400 mt for kutum and 2200-2800 mt for golden grey mullet (with precautionary approach 6600 mt and 2200 mt for kutum and mullet, respectively) in 2011-12. Two species (kutum and golden grey mullet) are vulnerable to environmental factors, and these factors should be considered in the stock assessment and management of the fish. For two species, the ABC with a lower andmore accurate value based onmore information, should be selectedfor the implementation of a precautionary management approach

    MEASUREMENT OF DENDRITE GROWTH ON Al-Ni ALLOYS IN REDUCED GRAVITY

    Get PDF
    It is well known that the growth kinetics in metallic melts controls microstructure evolution. If the melt is cooled below its equilibrium melting temperature prior to solidification, the state of a metastable undercooled melt is created. An undercooled melt possesses an enhanced free energy that enables the liquid to choose solidification pathways into various metastable solids of properties being different to their stable counterparts. A very efficient method to undercool a metallic liquid is the application of containerless processing a liquid drop such that heterogeneous crystal nucleation on container walls is completely avoided. Electro-magnetic levitation is a power-full technique to produce a freely suspended drop without any contact to a solid or liquid medium with the extra benefit that it is accessible for direct observation of solidification far from equilib-rium by proper diagnostic means. Under terrestrial conditions, strong electromagnetic fields are needed to compensate the gravitational force. That, in turn, causes forced convection inside the liquid drop and influences mass and heat transport, and consequently, crystal growth in undercooled melts. If the reduced gravity environment is utilized the forces to compensate residual accelerations are several orders of magnitude smaller than the levitation force on Earth. In the present paper we report on results obtained in the Earth laboratory, during parabolic flight missions and during TEXUS 44 flight in 2008 using the TEMPUS facility for containerless processing of metals in space. The results are discussed within dendrite growth theory and give evidence for strong effects of gravitational driven effects in the solidification dynamics
    • …
    corecore