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The effect of pressure on the electronic and magnetic properties of the antiferromagneticsTN,43 Kd narrow
gap semiconductor UNiSn has been investigated by119Sn Mössbauer spectroscopy and nuclear forward scat-
tering of synchrotron radiation, electrical resistance, and x-ray diffraction. We show that the decrease of the
semiconducting gap which leads to a metallic state atp,9 GPa is associated with an enhancement ofTN. At
higher pressures, bothTN and the transferred magnetic hyperfine field decrease, with a collapse of magnetism
at ,18.5 GPa. The results are explained by a volume-dependent competition between indirect Ruderman-
Kittel-Kasuya-Yosida interaction and the 5f-ligand hybridization.
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The large variety of electronic and magnetic properties of
strongly correlated 5f electron systems has motivated con-
tinuous experimental and theoretical efforts during the last
decades. One of the central issues of actinides research is the
question of the nature of the 5f electrons which behave, de-
pending on the investigated compound, more localized or
itinerantlike. There is now growing evidence that localized
as well as delocalized 5f electrons can coexist in various
actinide compounds.1,2 This view, suggested by a large set of
experiments, received recently strong theoretical support.3

Besides this general topic, recent attention was focused on
systems close to a magnetic instability because of the obser-
vation of unconventional superconductivity at the quantum
critical point where magnetic order vanishes.4 Various as-
pects of the electronic structure and magnetism of actinide
compounds are intimately linked to the hybridization of the
5f orbitals either by direct 5f-5f interaction sinteractinide
distance below the Hill limitd or by overlap with the
conduction-band electrons such as the actinide 6d and ligand
sp or d electrons. An elegant way to tune the properties of a
material is to reduce its interatomic distances and thus to
increase the hybridization by applying an external pressure.
Pressure experiments have recently produced a number of
outstanding results as for instance the pressure induced en-
hancement of the tiny uranium moment in URu2Si2 sRef. 5d
or the appearance of superconductivity within the ferromag-
netic phases of UGe2 sRef. 4d and UIr sRef. 6d.

UNiSn belongs to the class of so called Kondo insulators
or narrow gap semiconductors and was extensively studied
during the last two decades owing to its exceptional elec-
tronic and magnetic properties.7 It crystallizes in a cubic
structuresMgAgAs-typed and undergoes a first-order transi-
tion from a paramagneticsPd semiconductorsSd to an anti-
ferromagneticsAFd metal sMd at TN,43 K sRef. 8d. Its
magnetic structure determined by neutron diffraction was
found to be of type I with ferromagnetics001d planes stacked
along thef001g axis in the sequence1212 sRef. 9d. The

ordered U moment oriented along thef01g axis amounts to
,1.55mB. Furthermore, it was shown that the S-M transition
is accompanied by a concomitant tetragonal distortion and
ferroquadrupolarsQd order atTQ<TSM<TN sRef. 10d. This
observation led to suggest that the ferroquadrupolar order is
responsible for the change of electronic structure giving rise
to metallic conduction belowTQ. The effect of pressure on
the multiple phase transition is illustrated by the pressure-
temperature dependence of the electrical resistivityrsp,Td
up to 8 GPasRefs. 11–13d. Below 3 GPa, the analysis of the
rsp,Td curves indicates that the semiconducting energy gap
sEg,64 meV atp=0d decreases whileTN s;TSM and TQd
increases with applied pressure. The observation of two
anomalies at 5 GPa led Akazawaet al.13 to conclude that at
that pressure the multiple transition is split, withTN being
shifted to lower temperature. At 8 GPa, the resistivity curve
presents a metalliclike behavior above 100 K, i.e., the S-M
transition has disappeared and the broad peak which shows
up at ,55 K was attributed to the boundary between the
paramagnetic and the antiferromagnetic quadrupolar
metals.13

In this Communication we present high pressure results
on UNiSn obtained in an extended pressure range using com-
bined macroscopicfx-ray diffractionsXRDd, electrical resis-
tanceRsT,pdg and microscopicf119Sn nuclear forward scat-
tering sNFSd of synchrotron radiation and Mössbauer
spectroscopysMSdg techniques in a diamond anvil cell
sDACd. This allowed us to determine the volume dependence
of the electronic and magnetic properties of UNiSn from the
pressure induced variation of the Néel temperature and the
transferred magnetic hyperfine field at the119Sn nuclei and
from the evolution of theRsT,pd resistance curves.

Polycrystalline samples of UNiSn were prepared follow-
ing methods described in Ref. 11. For the119Sn NFS experi-
ments the sample was isotopically enriched to 90% in119Sn.
The same sample was also used for theRsT,pd measure-
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ments. High pressure was applied using either modified
Merril-Basset14 sM-Bd DACs ffor the MS andRsT,pd mea-
surementsg or piston-cylinder15 sPCd DACs sfor the NFS
measurementsd and was determined by the ruby fluorescence
method at room temperature. In the M-B cell usually only a
slight increase of the pressure is detected at low temperatures
s4.2 Kd and the pressure values given below are those mea-
sured at room temperature. A larger increase of the pressure
at low temperature, but decreasing with increasing pressure,
was determined on the PC DACs,15% and,4% at 10 and
21 GPa, respectivelyd with a calibration run where the pres-
sure was determined both at room temperaturesruby fluores-
cenced and below 10 KsPb manometerd. The pressure values
for the NFS measurements have been corrected according to
this calibration. In order to reduce the risk of dispersion of
uranium dust in case of breakage of the pressure cell, the
sample was mixed with epoxy which also acted as a
pressure-transmitting medium. The119Sn NFS experiments
were carried out at the undulator beamline ID18sRef. 16d of
the ESRF in Grenoble. A more detailed description of the
ESRF experimental set up can be found in Ref. 17. The
measured NFS patterns were analyzed with the programsCO-

NUSS sRef. 18d and MOTIF.19 The energy dispersive XRD
measurements were performed at the beamline F3 at HASY-
LAB in Hamburg.

The XRD patterns recorded at 300 K up to 25 GPa indi-
cate that UNiSn retains the cubic MgAgAs-type structure in
the whole investigated pressure range. In addition, we find
within the accuracy of the measurements no discontinuity in
the pressure dependence of the unit-cell volume. We obtain a
value for the ambient pressure bulk modulus ofB0
=168s10d GPa and for its pressure derivativeB08<1.4. The
119Sn Mössbauer spectra recorded at ambient pressure in the
4.2-300 K temperature range agree well with those published
in the literature.8,20 At 4.2 K, in the magnetically ordered
state, the spectrum consists of a superposition of a pure mag-
netically split sextetfwith a transferred magnetic hyperfine
field Bthf=7.2s1d Tg and a single linesabout 15% of the spec-
tral aread. The observation of a sextet is expected owing to
the fact that each Sn atom, according to the known magnetic
structure, is surrounded by six U nearest neighbors with four
spins up and two spins down.9 The nonmagnetic contribution
ssingle lined is tentatively ascribed to Sn atoms occupying
the Ni site.8

119Sn Mössbauer spectra have been recorded at 4.2 K for
pressures up to 10 GPa. The pressure range has been ex-
tended up to above 20 GPa by119Sn NFS at temperatures
between 3 and 200 K. Figure 1sad presents some selected
119Sn NFS patterns obtained at 3 K and various pressures up
to 21.4 GPa. At high temperatures and for all pressures the
NFS spectra are characteristic of unsplit nuclear levels, as
expected for Sn atoms in the absence of magnetic order and
in an environment of cubic symmetry. Magnetically split
sextets are observed in all Mössbauer spectra recorded at
pressures up to 10 GPa at 4.2 K, while clear quantum beat
patterns appear at low temperatures in the NFS spectra for
pressures less than 18.5 GPa. Above 18.5 GPa the quantum
beat pattern disappears indicating thatBthf and thereby the
magnetic state have collapsed.

The pressure-volume dependence of the transferred mag-
netic hyperfine fieldBthf is illustrated in Fig. 2. The origin of
Bthf at the Sn nucleus is twofold: an indirect polarization of
the conduction electrons by localized 5f moments, mediated
by the Ruderman-Kittel-Kasuya-YosidasRKKY d interaction,
is combined with the direct polarization of the outer 5sp
electrons of the Sn atoms due to their overlap with the
U-5f electrons.21 To a first approximationBthf is proportional
to: sid a hyperfine coupling constantA which depends on the
electronic structure of the material,sii d the magnitude of the
U magnetic moment,siii d the weighted vector sum of the U
magnetic moments in the immediate vicinity of the Sn atom
swhich equals 2 for a type I antiferromagnetic structure as
found in UNiSn atp=0d. Figure 2 shows thatBthf increases
almost linearly from 7.2s1d T at p=0 to 9.4s1d T at p
=7.5 GPa. A less steep increase ofBthf is then observed up to
16.5 GPa whereBthf=9.9s2d T. Above that pressure it drops
dramatically and at 18.9 GPasDV/V,10%d Bthf is found to
vanish to zero.

FIG. 1. 119Sn NFS spectra of UNiSnsad at T=3 K for some
selected pressures andsbd at T=3 K andp=18.9 GPa for different
applied magnetic fields. The dots represent experimental data
points, while the lines are fits.

FIG. 2. Dependence on pressure and reduced volume of the
transferred hyperfine fieldBthf smeasured at low temperatureT
ø4.2 Kd for UNiSn. The dashed line is a guide to the eye.
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Figure 3 illustrates the pressure-volume dependence of
the Néel temperature as determined from the temperature
variation of the NFS spectra and the analysis of the resis-
tance RsT,pd data ssee belowd. TNspd first increases with
pressure, in agreement with previous results,11–13 reaches a
maximum value of about 95 K atp<13 GPa, and then starts
to decrease. At 18.9 GPa no transition was observed down to
the lowest measuring temperaturesf3 and 1.8 K for NFS and
RsT,pd measurements, respectivelyg. This clearly indicates
the collapse of the magnetism at 18.9 GPa. To gain informa-
tion on the nature of this nonmagnetic state, we have mea-
sured119Sn NFS spectra in applied magnetic fieldssBappd at
3 K fsee Fig. 1sbdg. Their analysis gives values of the in-
duced fieldssBindd of 0.4s2d T and 0.6s2d T for Bapp=2 and
4 T, respectively. The observation of such sizable values of
Bind, which correspond to a Knight shiftsBind/Bappd of
<15%, clearly indicates the existence of rapidly fluctuating
U moments in the pressure induced nonmagnetic state.22

In the following we discuss the mechanism underlying the
delocalization of the U-5f moments in UNiSn at high pres-
sure. Because of the greater spatial extent of the 5f wave
functions as compared to the 4f ones, a pressure induced
demagnetization process is often driven by the transition
from a local to an itinerantsbandliked state rather than by the
Kondo effectswhich is, for example, the typical cause of the
disappearance of the 4f magnetic moment in Ce com-
poundsd. According to Sheng and Cooper,23 the decrease of
the interatomic distances caused by pressure induces the 5f
wave functions to diffuse more outside the core region, en-
hancing the 5f-ligand hybridization and causing a gradual
washout of the ordered U moment and the consequent sup-
pression of ordered magnetism. On the other hand, the in-
creased overlap between the 5f and ligand orbitals enhances
the exchange integrals and this can cause a strengthening of
the magnetic order and thus an increase of the ordering tem-
perature. Although initially this latter mechanism may pre-
vail, the moment reduction is always predominant at higher
pressures. This model has been succesfully applied to de-
scribe the pressure dependence of the ordering temperature
of U monochalcogenides23–25 and UPtAl and UNiAl.26 The

same model could explain the pressure dependence ofTN in
UGa3 sRef. 27d and in UPb3 sRef. 28d. The results of our
measurements as shown in Figs. 2 and 3 can be interpreted in
terms of the model mentioned above. The initial increase
with pressure of bothTN andBthf suggests that, at least up to
p,13 GPa, the U magnetic moments are localized. This
suggestion is consistent with the observation of crystal field
excitations by neutron scattering experiments on UNiSn at
ambient pressure.29 However, fully localizedf moment com-
pounds were shown to exhibit a quadratic increase ofTN
with pressure.30,31Thus, UNiSn should rather be regarded as
a nearly localized system. The monotonic increase ofBthf is
ascribed to the strengthening of the hyperfine coupling con-
stant rather than to an increase of the U moment which is
expected to remain constant as long as it may be considered
snearlyd localized. On the other hand, we do not observe any
steplike anomaly in the pressure dependence ofTN which
could be attributed to a sudden change of the magnetic struc-
ture. Thus, one can conclude that for pressures below
,13 GPa the RKKY exchange interaction prevails over the
mechanisms which tend to weaken or destroy the magnetic
order, whereas at higher pressures the latter dominate. In fact
for pù13 GPa the ordering temperature starts to decrease
rapidly and a nonmagnetic state is reached at,18.5 GPa,
where the magnetic hyperfine field also vanishes. This sug-
gests that the 5f-ligandsspdd hybridization, as a consequence
of the increasing 5f bandwidth with increasing pressure,
drives UNiSn from the magnetic to a nonmagnetic state.

Finally, we discuss the effect of pressure on the tempera-
ture induced S-M transition and its possible connection to
magnetic order in UNiSn. Figures 4sad and 4sbd display the
temperature dependence of the electrical resistanceRsT,pd
normalized to its room-temperature valueRs294 K,pd for
some selected pressures up to 19.3 GPa. The behavior ob-
served at ambient pressure remains visible up to 8.1 GPa. At
high temperature the resistance increases
exponentially with decreasing temperature, as expected for a
semiconductor, following the law RsT,pd
=R0spdexpfEgspd / s2kBTdg. As pressure increases the resis-

FIG. 3. Dependence on pressure and reduced volume of the
Néel temperatureTN for UNiSn. The dashed line is a guide to the
eye. The RsT,pd measurements are considered only forp
,8.1 GPa.

FIG. 4. Temperature dependence of the normalized electrical
resistance,RsT,pd /Rs294 K,pd, of UNiSn at some selected pres-
sure values. Note the different scales for the normalized resistance
in panelssad and sbd. The arrows indicate the position ofTN.
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tance maximum shifts towards higher temperatures, while
the semiconducting gapEg decreases approximately linearly
at a rate of,−7 meV/GPa and closes at a pressure of
,9 GPa. Up to 5.5 GPa, below the maximum
RsT,pd /Rs294 K,pd drops rapidly indicating a metallic be-
havior which is associated with the AF ordering atTN de-
fined by the maximum of the temperature derivative of the
resistancese.g., TN<80 K at p=5.5 GPa, see Fig. 3d. At
8.1 GPa, the shape below the maximum of the resistance
curve starts to be modified with the appearance of a shoulder
at about 70 K. By increasing further the pressure to 9.6 GPa
the resistance curve exhibits a broad maximum at about 65 K
and a metalliclike behavior above 150 K. A crossover be-
tween two regimes was already observed by Akazawaet
al.,13 but at a somewhat lower pressure. Our NFS data com-
bined with the resistance measurements, however, show un-
ambiguously that the crossover is accompanied by a further
shift of TN to higher temperature contrary to the interpreta-

tion of those authors.13 The amplitude of the broad bump
observed at 9.6 GPa decreases progressively at higher pres-
sures and vanishes at 19.3 GPa reflecting the disappearance
of magnetic orderingssee NFS data in Fig. 3d.

In conclusion, using high-pressure electrical resistance
measurements,119Sn nuclear forward scattering, and Möss-
bauer spectroscopy, we were able to show that pressure has a
dramatic effect on the multiple phase transition behavior of
UNiSn at 43 K at ambient pressure. We find that the decrease
of the semiconducting gap and the pressure induced semi-
conductor to metal transition atp,9 GPa is accompanied by
an enhancement ofTN. Such an increase ofTN with a maxi-
mum at,13 GPa suggests a nearly localized behavior of the
5f electrons. This finding and the observed collapse of the
magnetic state at a critical pressure of,18.5 GPa can be
well explained by an interplay between the indirect RKKY
interaction and the hybridization between the U-5f and the
ligand-spdelectrons.

*Present address: IPCMS/GEMME, 23 rue du Loess, F-67034,
Strasbourg Cedex 2, France.
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