5 research outputs found

    Molecular evolution of the mammalian epiblast

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Dynamic changes in Sox2 spatio-temporal expression promote the second cell fate decision through <i>Fgf4/Fgfr2</i> signaling in preimplantation mouse embryos

    Get PDF
    Oct4 and Sox2 regulate the expression of target genes such as Nanog, Fgf4, and Utf1, by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerize on adjacent cis regulatory motifs, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In the present study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy. We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of the Fgf4 Sox/Oct motif. Taking into account Sox2 expression levels fluctuate more than Oct4, our finding provides an explanation on how Sox2 controls the segregation of the epiblast and primitive endoderm populations within the inner cell mass of the developing rodent blastocyst. Biochem J 2018 Mar 20;475(6):1075-1089

    Expression and characterization of soluble amino-terminal domain of NR2B subunit of N-methyl-d-aspartate receptor

    No full text
    N-methyl-d-aspartate (NMDA) receptors are involved in mediating excitatory synaptic transmissions in the brain and have been implicated in numerous neurologic disorders. The proximal amino-terminal domains (ATDs) of NMDA receptors constitute many modulatory binding sites that may serve as potential drug targets. There are few biochemical and structural data on the ATDs of NMDA receptors, as it is difficult to produce the functional proteins. Here an optimized method was established to reconstitute the insoluble recombinant ATD of NMDA receptor NR2B subunit (ATD2B) through productive refolding of 6xHis-ATD2B protein from inclusion bodies. Circular dichroism and dynamic light scattering characterizations revealed that the solubilized and refolded 6xHis-ATD2B adopted well-defined secondary structures and monodispersity.More significantly, the soluble 6xHis-ATD2B specifically bound ifenprodil to saturation. Ifenprodil bound to 6xHis-ATD2B with a dissociation constant (KD) of 127.5±45 nM, which was within the range of the IC50 determined electrophysiologically. This is the first report on a functional recombinant ATD2B with a characterized KD
    corecore