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Summary 
 

The mammalian pluripotent cell is a transitory cell type that lasts for only a day during in 

vivo development, but can be cultured in vitro to form embryonic stem (ES) cells which 

exhibit long-term self-renewal. This unique potential may have evolved in early 

mammals and is likely to have co-evolved with the process of placental formation. My 

thesis work focused on identifying the origins of this cell type at the molecular level.  

 

Mutations that alter developmental genetic regulatory networks are thought to be an 

important mechanism in evolution, thus I have focused my studies primarily on a single 

transcription factor essential to the pluripotent cell regulatory network, namely Oct4. 

From screening genomic BAC libraries and database searches, I have uncovered new 

sequence information pertaining to Oct4, which is encoded by the Pou5f1 gene.  

 

Notably, I identified a Pou5f1 homolog in platypus that is syntenic to eutherian Pou5f1. 

Additional sequence information from non-mammal vertebrates indicates that the origin 

of the genomic location of mammalian Pou5f1 predates the base of mammalian evolution, 

and thus the presence of the gene itself is not a eutherian-specific change. However, from 

a more detailed sequence analysis I found 12 amino acid positions within the Oct4 DNA 

binding domain (DBD) to be completely conserved within all eutherians but differing in 

platypus, opossum, and kangaroo. Experiments focused on identifying eutherian-specific 

gene regulation mediated through the Oct4 DBD have been done. Oct4 DBDs of mouse, 

human, elephant and platypus have been fused with a strong repressor (EnR) and a strong 

activator (VP16) of transcription and these transfected into ES cells to study alterations in 
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gene expression. In addition, full-length Oct4 chimeras containing the DBDs of mouse, 

elephant and platypus have been constructed and tested for their ability to induce 

pluripotency using the induced pluripotent stem cell (iPS) experimental system. 

 

In sum, I show that there are only subtle cell-level phenotypic differences between 

eutherian and platypus Oct4 DBDs, strongly suggesting that the pluripotent capability of 

Oct4 already exists prior to the appearance of eutherian mammals. Current results point 

towards the possibility that the eutherian-specific functions of the Oct4 protein did not 

arise from the emergence of a newly evolved ability to induce or maintain pluripotency, 

but may have occurred due to changes in its pre-existing pluripotent capability. 
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Chapter 1: Introduction 

1.1  Historical Background 

 

 
When Charles Darwin first published On the Origins of Species in 1859, he proposed that 

species were not fixed, but gradually evolve over geological timescales via the process of 

natural selection, thus establishing the foundation for evolutionary biology. However, 

right at the beginning there were two significant weaknesses in his theory of evolution 

(Wilkins 2002).  

 

One of them was the lack of a detailed mechanism for inheritance, which would later be 

addressed in the early 1900s when Gregor Mendel’s work on pea plants was rediscovered. 

Also missing was the precise relationship between embryonic development and the 

development of morphological differences which result in the diversification of species, 

an area of investigation that remains hotly debated today.  

 

From the beginning, Darwin was already aware of the importance of embryological data 

to the development of evolutionary theory, although he had very limited evidence 

available to him at that time (Darwin 1859). 

 

In Chapter 13 of the first edition, he concluded that: “Thus, as it seems to me, the leading 

facts in embryology, which are second in importance to none in natural history, are 

explained on the principle of slight modifications not appearing, in the many descendants 

from some one ancient progenitor, at a very early period in the life of each, though 
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perhaps caused at the earliest, and being inherited at a corresponding not early period. 

Embryology rises greatly in interest, when we thus look at the embryo as a picture, more 

or less obscured, of the common parent-form of each great class of animals.” 

 

As English poet William Wordsworth once wrote, “The Child is father of the Man”. To 

understand the detailed mechanism of biological evolution, understanding embryonic 

development is indispensable, because the phenotypic divergence of adult organisms 

must be mediated via the developmental process.  

 

I should also emphasize that natural selection does not wait until an adult animal is fully 

formed before it begins to act. The opportunity for internal and environmental factors to 

shape an organism starts right from the beginning of the developmental process, and thus 

transitory embryonic characteristics are at least of equal importance to the terminally 

differentiated characteristics of adult forms. 

 

Despite Darwin’s early appreciation of the key role of embryology to evolution, the 

rediscovery of Mendelian genetics caused the two fields to drift further and further apart 

(Wilkins 2002). At that time, evolutionary biologists believed that evolution proceeded 

via a series of small, virtually imperceptible steps, also known as phyletic gradualism, 

whereas Mendelian geneticists believe that evolution proceeded through discrete “jumps”, 

also known as saltationism or mutationism. 
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One vocal Mendelian was William Bateson, who lamented that: “By suggesting that the 

steps through which an adaptive mechanism arises are indefinite and insensible, all 

further trouble is spared. While it could be said that species arise by an insensible and 

imperceptible process of variation, there was clearly no use in tiring ourselves by trying 

to perceive that process. This labor-saving counsel found great favor.” (Orr 2005).  

Since embryologists can only study developmental changes that are large enough to be 

robustly observable, they shared very little common ground with evolutionary biologists.  

 

This schism only worsened with the advent of the modern evolutionary synthesis in the 

1930s by Fisher, Dobzhansky, Haldane and others. The new synthesis maintained that 

natural selection is the chief driving force behind evolution and emphasized the 

importance of phyletic gradualism. Ronald Fisher demonstrated using his geometric 

model of adaptation that mutations of infinitesimal size have a 50% probability of being 

beneficial, whereas larger mutations have a lower probability of being beneficial (Orr 

2005). Such an interpretation effectively renders all developmental variations 

investigated by embryologists and developmental biologists irrelevant to the evolutionary 

process. 

 

What Fisher and other prominent evolutionary biologists did not realize at that time was 

that the smallest mutations may not necessarily play any role in adaptive evolution - they 

needed to be large enough in order to escape accidental loss (Orr 2005). About 50 years 

later, when Motoo Kimura proposed the Neutral Theory of Molecular Evolution, he 

observed that the vast majority of individual mutations at the DNA and amino acid levels 
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had no effect at the organism level due to the redundancy of the genetic code (Kimura 

1983). In addition, molecular-level mutations were predominantly fixed in a population 

via neutral substitution rather than natural selection, and the substitution rate is so 

uniform that it formed the basis of our current molecular clock dating technique. 

 

The prevailing view on the centrality of natural selection to evolution was further 

criticized when palaeontologist Stephen Jay Gould proposed a thought experiment where 

he argued that life on Earth would look very different if we could turn back the clock and 

replay the “tape of Life” (Gould 1989) - due to unpredictable historical contingencies 

along the way. This was immediately countered by Simon Conway Morris, who argued 

that natural selection would constrain organisms to a limited number of adaptive options, 

and he used some striking examples of convergent evolution to support his stand. Of 

course, it is impossible to test either of these views at the planetary scale, but a recent 

study has investigated this by “replaying” the evolutionary process on frozen batches of 

bacteria (Blount et al. 2008), and they show that the appearance of a key phenotypic 

feature could be impossible or at least very delayed, without the random appearance of 

some previous enabling mutations. Results so far suggest that no matter how powerful 

natural selection is in the evolutionary process, the genetic history of the organism also 

plays an important role and cannot be simply dismissed out of hand. 

 

These challenges to the neo-Darwinian orthodoxy promoted a new view of mutations, not 

merely as a non-descript and passive substrate for the environment act upon, but as the 

genetic source of evolutionary novelty. With the emphasis in the evolutionary biology 
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community slowly drifting towards internal factors and perceptible mutations, the sort of 

formative changes studied by developmental biologists became relevant once again, 

opening up the possibility of investigations into the detailed genetic causes of biological 

evolution. 

 

1.2 Role of Genetic Regulation in Evolution 

 

One important question about the role of internal factors to the evolutionary process is the 

type of mutations that are involved. Do all mutations contribute equally, or are some 

mutations more likely to result in significant phenotypic difference at the whole-organism 

level? 

 

In a classic paper thirty four years ago, Marie-Claire King and Allan Wilson observed 

that despite substantial differences in the anatomy and behavior of chimpanzees versus 

human beings, their protein sequences are nearly identical, at least in their limited 

number of sequences they studied. They concluded that there was far more variability in 

untranscribed DNA using a comparative DNA hybridization approach as this work 

predates the development of DNA sequencing technologies. They then postulate that 

regulation of gene expression may play the major role in organismal evolution (King and 

Wilson 1975).  

 

Their model was based on very little evidence at that time, but soon developmental 

studies done initially on the fruit fly Drosophila melanogaster would lend support to their 

ideas. A class of DNA-binding genes involved in the regulation of developmental 
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patterns, later called Hox genes, was independently discovered by Walther Gehring’s 

group (McGinnis et al. 1984) and Thomas Kaufman’s group. Hox genes are transcription 

factors with hundreds of downstream targets, thus any mutational change that occurs to 

them has the potential for large phenotypic effects, particularly to the body form of the 

animal. This was shown to be correct when mutations in the region of D. melanogaster 

chromosome 3 containing the Antennapedia Gene Complex (ANT-C) resulted in 

abnormal head development of the fly embryo (Wakimoto et al. 1984). Later studies 

demonstrated a high degree of functional conservation of the Hox gene family, from the 

nematode worm Caenorhabditis elegans all the way to complex vertebrates such as 

mouse and human beings (Purugganan 1998). 

 

The discovery of a highly conserved gene family that underlies the body plan formation 

of such morphologically diverse animals was unexpected; phyletic gradualism in 

conventional Darwinian theory would predict that their developmental mechanisms 

should also be widely diversified. This apparently paradoxic discovery sparked off the 

new field of evolutionary developmental biology (Wilkins 2002), and now that a specific 

class of mutations has been identified to produce organism-level effects, they are 

amenable to experimental study. 

 

Since then, a number of research groups have been working out the role of gene 

regulation at other loci to the evolution of various model animals. Eric Davidson’s group 

has studied the development of the sea urchin Stronglyocentrotus purpuratus 

comprehensively and has compiled a highly-detailed genetic network map (Davidson et 
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al. 2002). David Kingsley’s group works on the stickleback fish Gasterosteus aculeatus 

and has recently uncovered regulatory changes to the skin pigmentation in the fish; 

strikingly regulatory region changes in the orthologous gene in humans appear to account 

for the rapid evolution of skin colour in people (Miller et al. 2007). Sean Carroll’s group 

continues work on the Drosophila, focusing on the role of cis-regulatory sequences in the 

evolution of morphological changes, such as wing pigmentation patterns (Gompel et al. 

2005).  

 

Carroll strongly believes that morphological evolution occurs primarily via mutations in 

the cis-regulatory sequence of developmental gene loci and has recently proposed a new 

genetic theory regarding this (Carroll 2008). His views on cis-regulatory evolution are 

consistent with evidence from more complex vertebrates as well, such as limb 

development in mice (Sagai et al. 2005) and wing development in bats (Cretekos et al. 

2008). However, due to the difficulty of isolating the effects of purely cis-element 

sequence changes, the overall importance of cis-regulatory changes relative to coding 

sequence changes remain controversial today. Opponents such as Jerry Coyne and Hopi 

Hoekstra point out that there is still insufficient evidence for Carroll’s assertion (Pennisi 

2008). Whichever the case, more experimental data that directly links cis-element 

changes to higher organizational level effects will be helpful to resolve this debate. 

 

I should emphasize that all these previous works focuses predominantly on the terminally 

differentiated morphological features of adult organisms. A complete account of 

evolutionary novelty must include the elucidation of the developmental processes leading 
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to the appearance of such features. It would be very interesting to investigate if genetic 

regulation also plays an important role in the evolution of transitory structures during 

development, especially novel morphological features that are common only to a specific 

class of animals - for example placental mammals. 

 

1.3 Early Mammalian Development as a Model 
 

Placental mammals are unique in their development in that the early embryo does not 

include any nutritive yolk, thus its growth has to be supported by the mother via a 

placenta. The need for the placental precursors to develop prior to embryo implantation is 

thought to be one explanation of why eutherian body plan determination is delayed 

relative to other vertebrates. This difference can be clearly seen when eutherian early 

development is compared in detail to other vertebrate animals (Fig. 1). 
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Figure 1. A phylogenetic tree of vertebrates relevant to my project. 

Vertebrate species in phylogenetic positions that can provide relevant sequence 

information to study the molecular evolution of the rounded epiblast cell type. 

Divergence times (Springer et al. 2003) shown in millions of years. 

 

To start, in the frog Xenopus laevis, fertilization and embryo development occurs 

externally, so there is no implantation. Dorsoventral axis determining factors already 

exist in the oocyte at the vegetal pole, ready to migrate to a new location opposite to the 

sperm entry site after fertilization (Weaver and Kimelman 2004). This demonstrates that 

there is asymmetry very early in Xenopus development; after the first zygotic cell 

division, the two blastomeres are already different, and they are ready to develop further 

without delay. 

 

In chick, fertilization occurs internally, but like in frog, there is no placental formation. 

Most of its embryonic development occurs externally in a hard-shelled egg. There is no 
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blastocyst, instead, their comparable blastula stage is a bilaminar blastoderm above the 

yolk, which contains the epiblast and the hypoblast. Development then proceeds without 

delay to gastrulation, which begins just 7 hours after fertilization (Hamburger and 

Hamilton 1951). 

 

Monotremes (also called prototherians) such as the platypus nurse their young with their 

mammary glands and thus are considered mammals, but most of their development 

occurs externally, after the leathery-shelled eggs are laid. The early development of these 

animals is not well studied, however based on data obtained from a small number of 

specimens, early developmental stages resemble those of birds (Hughes and Hall 1998). 

 

Metatherian embryonic development is also not well studied, as they are not common 

laboratory animals yet. Some metatherians appear to have a blastocyst stage similar to 

eutherians; however it lacks the inner cell mass (ICM). Instead, a region of the unilaminar 

blastocyst wall later becomes the epiblast that develops into the embryo proper. 

Moreover, since the metatherian blastocyst contains a substantial amount of yolk, 

preimplantation development is supported well into somitogenesis (Yousef and Selwood 

1993), a much later stage compared to eutherians. Embryos are only implanted briefly 

before continuing development in the mother’s pouch. In the North American opossum 

for example, implantation only occurs for the last three days of the 12.5 day gestation 

period, when its yolk sac placenta establishes a tenuous relationship with the uterine wall 

(Kumano et al. 2005). This suggests that metatherian early development has transitory 

features between non-placental and placental mammals. 
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Finally, all eutherian mammals have blastocysts, well developed placentas and sustained 

implantation in the uterus. In contrast to the frog, there is experimental evidence to show 

that the eutherian body plan, in particular the anterior-posterior axis, is not determined 

until the early egg cylinder stage at about E5.5 (Mesnard et al. 2004). 

 

A summary of key features mentioned above in vertebrate early development is shown in 

Table 1. 

 Table 1. Summary of key features in vertebrates early development. 

The blastula-stage early embryo of various animals shown as schematics below 

the table. Green denotes cell population that will develop into embryo proper. 

6.5 days 
(mouse) 

7 days 
(opossum) 

7 hours 
(chick) 

5.3 hours 
(zebrafish) 

Gastrulation 
onset 

Mother, via 
placenta 

Yolk Yolk Yolk Source of 
nutrients 

Well 
developed 

Small No No Placenta 

Early, 
sustained 

Late, 
transient 

No No Implantation 

Internal Internal Internal External Fertilization 

Eutherian Metatherian Chick / 
Prototherian 

Fish / 
Amphibian 

 



 12 

Since eutherian mammals have similar early development, I have selected the mouse as a 

prototypic eutherian to be used as my experimental model species. Mouse 

preimplantation development has been studied in detail. After fertilization, the 1-celled 

zygote is formed, dividing into the two-cell stage at E1.5 (Embryonic day) when the 

activation of the zygotic genome begins. The embryo then continues division until E3.5, 

when it becomes a blastocyst, the most relevant stage to my project. After that the 

blastocyst hatches from its zone pellucida, and on E4.5 it implants into the uterus. Next, 

at E5.5 it becomes the egg cylinder stage. Gastrulation occurs at E6.5 resulting in the 

formation of the three definitive germs layers – endoderm, mesoderm and ectoderm.  As 

the primitive streak forms, the node appears on the epiblast, and the anterior-posterior 

axis of the embryo becomes apparent. The embryo then continues further growth and 

development supported by nutrition from the mother. 

 

 

Adapted from Tam and Rossant, Development 2003 

Figure 2. A schematic of the eutherian blastocyst. 

 

The mouse blastocyst (Fig. 2) forms at the 32-cell stage and once fully expanded contains 

three distinct cell types. It contains a cluster of cells called the inner cell mass (ICM) of 

Blastocyst 

8-cell embryo 
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about 20 cells, made up of two cell types, the rounded epiblast (RoE) and primitive 

endoderm (PrE) cells. The rounded epiblast is my terminology and I use it to distinguish 

this cell from the epithelialized epiblast of the egg cylinder stage, which is a slightly later 

and transcriptomically distinct pluripotent cell population. The ICM is contained within 

the trophectoderm (TE), the third cell type of the blastocyst. The TE is a functional 

epithelium that generates the fluid-filled cavity of the blastocyst called the blastocoel. 

Notably the blastocyst does not contain any yolk. The RoE is pluripotent and thus can 

give rise to all cell types in the embryo proper. The trophectoderm on the other hand, 

gives rise to placental tissue. Thus, it is a distinctly mammalian cell type that first appears 

in the blastocyst, leading to the development of the placenta. 

 

In addition to the TE, I argue that the RoE is also a mammalian-specific (possibly 

eutherian-specific) cell type. In non-mammalian embryos, patterning occurs early in 

development, often before the blastula stages. This is different from the mouse, where 

embryonic stem (ES) cells can be derived from the RoE cells of a donor blastocyst, and 

when injected into the cavity of a recipient blastocyst, these cells can contribute to all cell 

types of the embryo proper, demonstating in vivo pluripotency (Evans and Kaufman 

1981). These lines of evidence strongly support the view that RoE cells are of equivalent 

developmental potential, and that eutherian patterning is delayed compared to other 

animals, due to a need to set up placental precursors first. A prime example of this is the 

armadillo, where a single ICM in a single blastocyst normally results in quadruplets 

(Enders 2002). In addition, its blastocyst delays implantation for about 3.5 months in the 

wild. Delayed implantation (embryonic diapause) is common among mammals - almost 
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100 mammal species undergo diapause (Renfree and Shaw 2000), including the mouse 

where its blastocyst can remain in diapause for up to 30 days (Rinkenberger et al. 1997), 

demonstrating its ability to maintain its developmental potential over a long period of 

time. Since there is no direct equivalent of the RoE in metatherians or non-mammalian 

vertebrates, the RoE is uniquely eutherian, likely co-evolving with the TE and placental 

formation. 

 

The focus of my thesis is on identifying the molecular changes that have led to the 

evolution of the RoE. The most interesting molecular changes are those that are common 

within all eutherians but different to all other vertebrates. Not only is this an interesting 

evolutionary question, but it is also relevant to ES cell biology. All these are strong 

reasons why I concentrated on the RoE cell type for my thesis. 

 

So, what are the genetic changes that result in the evolution of the RoE? As mentioned 

earlier, King and Wilson proposed that gene regulation may have a key role in 

organismal evolution. It is now well accepted that alterations in the genetic regulatory 

architecture are central features of the evolutionary process (Davidson 2001). Thus, 

examining the transcriptional regulation of a developmental feature is very informative 

because some important transcription factors are at the upstream position of their 

respective gene networks. This allows them to regulate the expression profile of a number 

of target genes, amplifying small sequence changes into large and observable effects. As 

I argued that the RoE is likely to be a novel, eutherian-specific cell type in the early 

embryo, it thus represents an interesting model system to investigate the importance of 
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gene regulation in the evolutionary process. This is why my interest is in studying the 

molecular changes leading to the RoE genetic regulatory network.  

 

1.4 Oct4-Sox2-Nanog Regulatory Network 

 

 
In the RoE, though there are likely many other transcription factors involved in the RoE 

phenotype I am restricting my investigations to three well-characterized ones: Oct4 

(encoded by the Pou5f1 gene), Sox2 and Nanog. Each of these three genes, examined 

independently, play an important role in the normal development of a mouse. Oct4 null 

embryos have the earliest phenotype - they do not develop a RoE, and are peri-

implantation lethal (Nichols et al. 1998). Sox2 knockouts fail to maintain an epiblast and 

arrest development before the egg cylinder stage (Avilion et al. 2003). Nanog deficient 

embryos do develop an epiblast but this was observed to differentiate immediately into 

primitive endoderm, resulting in death at around implantation (Mitsui et al. 2003, 

Chambers et al. 2003), however a recent study has shown that Nanog-negative 

blastocysts have substantially fewer ICM cells and fail to develop a hypoblast, indicating 

that it is developmental failure, rather than differentiation, that impedes Nanog-negative 

cells from progressing to full pluripotency (Silva et al. 2009) 

 

When examined together, these three genes interact as crucial components of the 

transcriptional circuitry in the RoE (Fig.3). Oct4 and Sox2 proteins bind together to form 

a complex that recognizes and binds to the composite oct-sox element in the enhancer 

regions of a number of downstream targets. Some of these targets discovered so far 

include Nanog, work which I was involved in (Rodda et al. 2005) and others (Kuroda et 
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al. 2005), in addition to Pou5f1 (Chew et al. 2005) and Sox2 (Tomioka et al. 2002) 

themselves in an auto-regulatory loop. Nanog has also been shown to be in its own auto-

regulatory loop (Loh et al. 2006). 

 

Figure 3. Diagram of the Oct4-Sox2-Nanog regulatory circuit. 

 

Sox2 expression and function is not restricted to the RoE, indeed Sox2 is known to be 

essential to neuronal development. In this tissue it is known to partner with other POU 

class transcription factors such as Oct1 or Brn-1/2 (Miyagi et al. 2006). In fact, the 

structures of Oct1-Sox2-DNA ternary complexes have been solved (Remenyi et al. 2003, 

Williams Jr. et al. 2004). Both Oct1 and Sox2 use part of their DNA binding domain to 

interact with each other. The data emphasized the importance of this Oct-Sox protein-

protein interface, when bound to the oct-sox element, to the activity of the whole 

complex. Using molecular modeling, knowledge gained from mutation studies on Oct1 

can be extended to Oct4.  
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1.5 EC and ES Cell Culture System 
 

To investigate cell-level effects, embryonal carcinoma and ES cell systems are used. 

Historically, embryonal carcinoma (EC) cells were the first pluripotent cell type to be 

isolated and used for long-term culture (Martin and Evans 1974). Derived from 

embryonic germ cell tumours called teratocarcinomas, when EC cells are injected into a 

mouse blastocyst, they can be regulated by the recipient environment and contribute to 

the somatic tissues of the chimeric mouse (Brinster 1974). EC cells are easy to grow, 

proliferate quickly and indefinitely (Martin and Evans 1974) without the need for feeder 

cells. However, they have their limitations since they have an abnormal chromosome 

complement and rarely contribute to the germ line (Bradley et al. 1998), weakening the 

potential of EC cells for studying embryo development and gene function. 

 

ES cells, on the other hand, are usually obtained from the inner cell mass of a 3.5 day 

mouse blastocyst (Evans and Kaufman 1981) and cultured on a layer of inactivated 

mouse embryonic fibroblast cells. They can also be isolated from a disaggregated 16-20 

cell morula, or microdissected from the epiblast of a 4.5 day embryo. Like EC cells, ES 

cells also can differentiate into all three embryonic germ layers when injected into mice 

(Bradley et al. 1984). However, ES cells have an added advantage of higher germline 

transmission efficiency and normal chromosome complement, thus making them a useful 

tool for genetic studies. Moreover it is the closest in-vitro equivalent of the RoE, sharing 

many morphological features and molecular markers with the endogenous cell type. 
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1.6 iPS Cell Culture System 
 

The advent of the induced pluripotent stem cell (iPS) system provides an excellent tool 

for the direct investigation of the molecular factors that are crucial for pluripotency 

(Takahashi and Yamanaka 2006).  

 

Mouse embryonic or adult fibroblast cells are infected with retroviral vectors which 

contain four key pluripotent factors, Oct4, Sox2, c-Myc and Klf4. The overexpression of 

these proteins reprograms the fibroblasts into iPS cells which have similar morphology 

and proliferation ability as ES cells. With the iPS culture system, versions of the 

pluripotent factors, such as Oct4, can be modified at the sequence level to resemble their 

homolog in other species to find out if they can also induce pluripotency just like mouse 

Oct4.  

 

In this replacement approach, the Oct4 ortholog that fails to induce pluripotency would 

come from the species whose ancestors diverged from eutherian mammals prior to the 

evolution of pluripotent functions in the Oct4 protein. 
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1.7 Project Strategy 

 

The first step is to identify significant changes in protein coding and cis-regulatory 

sequences that have occurred in at least some regions of Pou5f1, Sox2, and Nanog in the 

proto-eutherian mammal. I hypothesize that some of these molecular changes contributed 

to the uniqueness of the eutherian mammal preimplantation embryo. The goal of my 

thesis is to characterize some of the more salient molecular changes that have occurred in 

Pou5f1, Sox2 and Nanog and some of their cis-regulatory targets that were essential in 

the evolution of the eutherian mammal RoE population of cells. 

 

I begin my investigation of the transcriptional network in the RoE by performing 

sequence analysis of both the protein coding sequence and the cis elements of Sox2, 

Pou5f1 and Nanog. The goal is to identify eutherian-specific elements that may be 

functionally important in the context of the pluripotent cell. Sequences are drawn from a 

number of vertebrate species in relevant phylogenetic positions, to allow common 

eutherian sequences to become apparent, while minimizing noise from possible species-

specific sequences. Many eutherian-specific changes are likely be found, so only some of 

these with the most striking differences will be functionalized. To investigate the 

importance of these elements, a number of mutation and chimeric constructs are to be 

made, using a predominantly loss-of-function strategy. The effects of these modifications 

are then evaluated using the EC, ES and iPS cell culture system described earlier.  
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Chapter 2: Obtaining Sequence Data 

 
2.1 Overview 
 

 

To determine the selection of animal species where sequences should be obtained, it is 

helpful to know the early evolutionary history of mammals. The earliest known 

mammaliaform in the fossil record is the Hadrocodium wui which dates back to the Early 

Jurassic period approximately 195 million years ago (Luo et al. 2001). Fossil specimens 

with anatomical features that identify them as ancestral forms of prototherian, 

metatherian or eutherian mammals start appearing around 124.6 million years ago (Fig.4). 

 

Akidolestes cifellii

(early prototherian)

124.6 mya

Sinodelphys szalayi

(early metatherian)

124.6 mya

Eomaia scansoria

(early eutherian)

124.6 mya

Hadrocodium wui

(earliest mammaliaform)

195 mya

~210 mya

 
Figure 4. Fossil Record of Early Mammals. 

 

 

This data, together with molecular clock estimates, suggest that the base of mammalian 

radiation occurred around 210 million years ago. Of course, there is currently no way of 
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obtaining sequences from these fossil specimens - this information would have to be 

obtained from modern vertebrate species. Since my model organism is the mouse (Mus 

musculus), as a general guide any mammal species that diverged from their last common 

ancestor with the mouse less than 124.6 million years ago would be categorized as in-

group organisms, whereas other vertebrate species that diverged more than 210 million 

years ago would be categorized as out-group organisms. 

CompleteDraft assembly 7XFishZebrafish

CompleteDraft assembly 8XAmphibianXenopus t.

CompleteDraft assembly 6XBirdChick

CUGIIncompleteDraft assembly 6XPrototherianPlatypus

AGINot in pipeline to be sequencedPrototherianEchidna

AGIIncompleteLow coverage <2XMetatherianKangaroo

CHORIIncompleteDraft assembly 7XMetatherianOpossum

CHORIIncompleteLow coverage <2XEutherianArmadillo

CHORIIncompleteLow coverage <2XEutherianElephant

CompleteDraft assembly 6XEutherianCow

CompleteDraft assembly 8XEutherianDog

CompleteAssembledEutherianHuman

CompleteAssembledEutherianRat

CompleteAssembledEutherianMouse

BAC libraryProject StatusTargetCategorySpecies

 
Table 2. Availability of Sequence Information. 

(Sources - http://www.genome.gov/10002154 and http://www.ensembl.org)  

Target figures denote extent of genome coverage. CHORI = Children’s Hospital 

Oakland Research Institute, AGI = Arizona Genomics Institute, CUGI = Clemson 

University Genomics Institute 

 

Table 2 represents the status of various genome projects at the start of my project in 2004. 

In this table, genome projects in black were complete and at least had draft assemblies, so 

that sequences can be obtained by searching online databases. Where the sequences were 

not complete I performed a cross-species BLAST against their trace files and assemble 

them using VectorNTI (Invitrogen).  
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For the species indicated in red, there was limited online information, so I screened BAC 

genomic libraries of these species by hybridization and performed de novo sequencing of 

BAC clones that I pulled out. These species are in key phylogenetic positions with 

respect to the base of mammalian radiation, and I have selected two species each of 

distant eutherian, metatherian and prototherian mammals, so that there will be enough 

sequence information to reduce noise from species-specific sequence changes. The 

kangaroo (Macropus eugenii), for example, is 80 million years diverged from the 

opossum (Monodelphis domestica), so common sequences between these two species are 

more likely to be metatherian-specific. Similarly, the elephant and armadillo are the most 

distantly-related eutherians to the mouse. Using this strategy, more sequence information 

provides greater confidence to identify eutherian-specific sequences. 

 

2.2 Materials and Methods 
 

 

As mentioned earlier, if there was a genome sequencing project in progress for an animal 

species then sequence data is directly obtained via database searches, primarily from 

these four online sources: 

1. Ensembl (www.ensembl.org) - European Bioinformatics Institute and the 

Wellcome Trust Sanger Institute. 

2. VISTA (http://pipeline.lbl.gov/cgi-bin/gateway2) - Genomics Division of 

Lawrence Berkeley National Laboratory. 

3. NCBI (http://www.ncbi.nlm.nih.gov/) - National Center for Biotechnology 

Information. 

http://www.ensembl.org/
http://pipeline.lbl.gov/cgi-bin/gateway2
http://www.ncbi.nlm.nih.gov/
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4. UCSC (http://genome.ucsc.edu/) – University of California, Santa Cruz, Genome 

Bioinformatics. 

If the assembly of the sequences in the genome project was not complete, then I 

performed a cross-species BLAST using trace files obtained from the Trace Archive 

(http://www.ncbi.nlm.nih.gov/Traces/trace.fcgi?) and assembled currently available trace 

files using the contig assembly tool in the VectorNTI programme. 

 

Where trace file information was sparse, I have purchased BAC libraries from these three 

sources: 

1. CHORI (http://bacpac.chori.org/) – BACPAC Resource Center, Children’s 

Hospital Oakland Research Institute. 

2. AGI (http://www2.genome.arizona.edu/welcome) - Arizona Genomics Institute. 

3. CUGI (https://www.genome.clemson.edu/) - Clemson University Genomics 

Institute. 

Platypus

Opossum

Kangaroo

Armadillo

Elephant

Echidna

Chick

Eutherian

Metatherian

Prototherian

 
Figure 5. Screening BAC libraries for key mammalian species 

 

http://genome.ucsc.edu/
http://www.ncbi.nlm.nih.gov/Traces/trace.fcgi
http://bacpac.chori.org/
http://www2.genome.arizona.edu/welcome
https://www.genome.clemson.edu/
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This phylogenetic tree illustrates the relative positions of mammalian species where BAC 

screening was necessary (Fig.5). Southern hybridization was used to obtain additional 

sequence information for elephant, armadillo, kangaroo, opossum and platypus. Currently 

there is insufficient trace file information for the echidna to do BAC library screening. 

 

BAC libraries of elephant, armadillo, opossum, kangaroo and platypus were obtained. 

Each library has 6 to 13 high density nylon filters, containing 18,432 clones spotted in 

duplicate per filter, which were screened by southern blot using oligo probes that were 

end-labeled with radioactive 
32

P ATP. I designed these oligo probes (~30bp) with limited 

Pou5f1 or Nanog sequence information from trace files, from a unique region of the gene 

such as the first 30bp of the coding sequence (Table 3). 

 

Species Gene Location Sequence 

Elephant Pou5f1 Exon 1 ATGGCGGGACACCTGGCTGCCGACTTTGCC 

Armadillo Pou5f1 Exon 1 ATGGCAGGACACCTGGCTCCGGACTTTGCC 

Opossum Pou5f1 Exon 5 TCACCCCGGGAGGATTTTGAGGCAGCTGGC 

Kangaroo Pou5f1 Exon 5 TCACCTCGAGAAGATTTTGAGGCAGCTGGT 

Platypus Tcf19 Exon 1 ATGCTGCCCTGCTTCCAGCTGCTGCGCATG 

Elephant Nanog Exon 1 ATGAGTGTGGATCTAGCTTCTCCCCAAAGC 

Armadillo Nanog Exon 1 ATGAGTGTGGATCTAGCTTCTCCCCAAAGT 

Opossum Nanog Exon 2 CAGAACAAGCCCAAGACCCATCAGGGAAAA 

Kangaroo Nanog Exon 2 AACAAGCCCAAGATCCATCAGGGAAAAGAA 

Platypus Slc2a3 Exon 6 CAGGACATCCAGGAGATGAAGGAGGAGAGT 

 

Table 3. Sequence of the oligo probes used for BAC screening. 
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Platypus library screening is more challenging since there were no trace files in mapping 

to a putative Pou5f1 or Nanog at that time. Instead, a probe designed to Tcf19, a 

neighboring gene just 2kb away from all currently known mammalian Pou5f1, was used.  

Similarly, a probe to Slc2a3, a neighboring gene to Nanog, was used.  

 

Potential positive clones were visualized as bright spots on autoradiographs, or on storage 

phosphor screens which were then read by the Typhoon phosphorimager (GE Healthcare). 

Radiochemical levels were optimized in order to read the spots clearly without 

overexposing the filter (Table 4). 

 For X-ray film For phosphor screen 

Pack size 250 μCi Gamma 
32

P ATP 

(10 μCi per μl) 

250 μCi Gamma 
32

P ATP 

(10 μCi per μl) 

Volume used 2.5 μl per filter 1.0 μl per filter  

Radioactivity of labeled probe 2.0 x 10
6 
cpm/μl Estimated ~ 1 x 10

6 
cpm/μl 

Radioactivity after hybridization 30000 cpm at 1 cm distance 10000 cpm at 1 cm distance 

Optimized exposure time 1 hour for 30000 cpm 

3 hour for 10000 cpm 

15 hours for 2000 cpm 

1 hour for 10000 cpm 

Optimized exposure radioactivity 1.8 x 10
6 
counts in total 600000 counts in total 

 

Table 4. Optimized radiochemical levels for autoradiographs and phosphor screens. 

 

The BAC identity of these spots were decoded using a three-step protocol – this 

information was recorded into an Excel file (see Appendix A) and the BACs were 

purchased as agar stabs. Next, PCR screening was done using genomic primers. The 

entire workflow in screening BAC libraries is summarized in Figure 6, and details of the 

protocol can be seen in Appendix B. 
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Design and order oligo probes

End-label the probes with 32P ATP

Hybridize with BAC genomic library high density filters

Capture radioactive spots with film/storage phosphor screen

Decode the identities of the positive BAC clones (three step process)

Order BAC clones, streak on plate, verify colonies using PCR

Grow BAC culture, isolate BAC DNA

BAC sequencing

 

Figure 6. Summary of BAC screening workflow (see Appendix B for details). 
 

The DNA was then isolated and purified using a BAC DNA preparation kit. This DNA 

can be used for sequencing or act as reagents for functional studies later. Finally relevant 

regions of those BACs were sequenced. All sequencing was done using capillary 

sequencing runs via BAC-end sequencing and primer walking. The difficulty of this 

approach resulted in numerous failed reads but there was sufficient sequence obtained to 

identify gene-specific sequence as well as pseudogenes. 

 

All the raw sequence information from online databases, trace file assemblies and BAC 

sequencing reads were converted to VectorNTI files for compilation and analysis. 
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2.3 Results and Discussion 
 

A total of 2 authentic Nanog clones were verified (elephant and opossum) and the rest 

were pseudogenes (armadillo) with no intronic sequence, or failed reads. 

 

A total of 3 authentic Pou5f1 clones were verified from elephant, opossum and platypus 

in addition to a number of pseudogenes (armadillo, kangaroo). The platypus BAC clone 

was first pulled out with an oligo to the Pou5f1 neighbouring gene Tcf19 thus sequencing 

of the BAC first verified the presence of Tcf19 in this clone. When primers to the Pou5f1 

gene were used to amplify the same clone, the PCR yielded a fragment of the appropriate 

size. Subsequent BAC sequencing was able to read most of exon 4, intron 4 and exon 5 

of platypus Pou5f1. This indicates the platypus Pou5f1 is in close proximity to Tcf19, 

lying within the same BAC construct, therefore in the same genomic context (ie. syntenic) 

as eutherian mammal Pou5f1 genes.  

 

This discovery of platypus Pou5f1 is intriguing as prior to this a syntenically positioned 

Pou5f1 had not been found in the chick (Soodeen-Karamath and Gibbins 2001), 

suggesting that the location of the Pou5f1 gene might have been a uniquely eutherian 

novelty. Finding it in the prototherian platypus thus rules out this possibility, and as the 

platypus does not have a blastocyst stage, Pou5f1 is not specific to this eutherian 

embryonic feature.  

 

However, this discovery opened the possibility that changes within the platypus Oct4 

protein, rather than the existence of the gene itself, could account for the differences 
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between platypus and eutherian embryo development, which will be investigated in detail 

in Chapter 4. 
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Chapter 3: Sequence Data Analysis 

 
3.1 Overview 
 

 

The purpose of sequence analysis is to align and compare all the relevant sequence 

information in order to identify significant eutherian-specific sequence changes that are 

likely to have a large phenotypic effect on early embryo development. 

 

In the simplest scenario, the mere appearance of a gene in a novel genomic context may 

be a major factor. This is not the case for Sox2, since it is a gene that has existed for a 

long time in vertebrate evolutionary history. Its coding sequence is highly conserved 

from fish to mouse (Table 5). To verify if there are direct orthologs to mouse Sox2, the 

synteny of surrounding genes, especially Fxr1, is examined. Here you can see that it has 

been in the same genomic context since the fish (Fig.7). 

 

 

Table 5. Sox2 protein coding sequence identity (% of amino acids) 
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Fxr1 Sox2 Atp11bHuman

Chr 3

Chick

Chr 9

Zebrafish

Chr 22

Fxr1 Sox2 Atp11bMouse

Chr 3

Fxr1 Sox2

Fxr1 Sox2

Fxr1 Sox2Cow

Chr 1

 

Figure 7. Sox2 gene synteny map. 

Orange dash denotes the boundary between mammals and non-mammals. 

 

 

By comparison, Nanog appears to be a newer gene and its amino acid sequence is 

certainly less conserved over evolutionary time (Table 6). Based on multi-species data, 

the gene seems to have first appeared in its eutherian genomic context in the chick, since 

the equivalent region in the frog does not have the Nanog gene (Fig. 8). This means that 

the appearance of Nanog already predates the base of mammalian radiation, so the gene 

itself is not a eutherian-specific change. 

 

 
 

Table 6. Nanog protein coding sequence identity (% of amino acids) 
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Aicda Nanog Slc2a3 FoxJ2Mouse

Chr 6

Aicda Nanog Slc2a3 FoxJ2Chick

Chr 1

Aicda Slc2a3Frog Xt

Aicda Nanog Slc2a3 FoxJ2Human

Chr 12

Aicda Nanog Slc2a3 FoxJ2Cow

Chr 5

 
Figure 8. Nanog gene synteny map. 

 

 

Pou5f1 also appears to be a newer gene and is not highly conserved over evolutionary 

time (Table 7). Although there are non-mammalian homologs of this gene, they share 

only limited sequence identity and seem to be at a different genomic context. Moreover at 

the beginning of this project a chick homolog had not yet been found (Soodeen-Karamath 

and Gibbins 2001). Thus I postulated that Pou5f1 could have appeared around the base of 

mammalian radiation, which would be a significant discovery considering the vital 

importance of Oct4 to pluripotent cell development (Fig 9.). 

 

 
 

Table 7. Oct4 protein coding sequence identity (% of amino acids) 
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Pou5F1 Tcf19Mouse

Chr 17

Pou5F1 Tcf19Human

Chr 6

?Chick

(no hits- published absence!)

Tcf19Zebrafish

Chr 16

Pou2 Zebrafish

Chr 19

Tcf19Frog Xt

Hspa1l

Hspa1l

Hspa1l

?Platypus

(no hits)

 
 

Figure 9. Initial Pou5f1 gene synteny map (2004) 
 

 

However, after the BAC sequencing effort and with the availability of sequences from 

more animal species, this postulate is no longer tenable.  

 

Firstly, I was able to find platypus Pou5f1 in close vicinity to Tcf19, indicating that the 

gene itself exists prior to the divergence with eutherian mammals. Next, a chick homolog 

of Pou5f1, called PouV, was found in 2007 and has a 46% sequence identity with mouse 

Pou5f1 (Latvial et al. 2007). While the researchers provided evidence that chick PouV 

could support pluripotency in chick ES cells, cPouV is not located in the same genomic 

context as mammals - indeed it is in the vicinity of the Fut7, more similar to fish Pou2. 

PouV homologs that are located in this context are named Pou5f2 for clarity (Fig 10). 
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Thus there still remained the possibility that the platypus Pou5f1 is the first homolog that 

existed in the eutherian genomic context. 

Zebrafish Pou2 Fut7

Chick PouV Fut7

Lizard Tcf19PouV

Opossum Pou5f2 Fut7 Tcf19Pou5f1

Platypus Tcf19Pou5f1

Eutherian Tcf19Pou5f1

PouV
Scaffold 639 (fragment) Scaffold 29

Chr 16

Chr 17

Mouse Chr 17

Contig22957

Chr 1 Chr 2

Axolotl AmOct4

Scaffold 886

Pou91Frog Xt Pou25 Fut7

Chr 19

Tcf19

Tcf19
Scaffold 488

 
 

Figure 10. Latest Pou5f1 gene synteny map (2009) 
 

 

However, new sequence information from UCSC indicated the presence of lizard (Anolis 

carolinensis) homologs of Pou5f1. While the assembly was not yet complete, there was 

sufficient sequence to show that one such PouV homolog exists near Tcf19, placing it in 

the same genomic context as eutherian mammals and thus pushing back the appearance 

of Pou5f1 long before the base of mammalian radiation (Fig. 10). 

 

From this broad overview of the evolutionary history of Pou5f1, Sox2 and Nanog, we can 

see that the appearance of these three genes were not coincident with the emergence of 

eutherian mammals. It is therefore necessary to perform more detailed multi-species 

analyses - of the DNA regulatory regions at the nucleotide level, and protein coding 
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sequences at the amino acid level -  in order to uncover interesting eutherian-specific 

changes. 

 

3.2 Materials and Methods 
 

 

 

VectorNTI (Invitrogen) was used for most of the in silico sequence analysis, such as 

assembly and alignments. 

 

Online tools such as ExPASy Proteomic Tools (http://www.expasy.ch/tools/) were also 

used for protein analysis. 

 

RasMOL (ver 2.6) was used for visualizing protein structures. 

 

3.3 Results of cis-element Analysis 

 
 

 

As mentioned in the introduction, Oct4 and Sox2 bind synergistically to form a complex 

that binds to the composite oct-sox element in the enhancer regions of target genes. The 

element is a core component of the pluripotent transcriptional network; it consists of 15 

base pairs of which seven of them are bound by Sox2 and the adjacent eight, the octamer 

sequence, are bound by Oct4. This element has been identified in a number of target 

genes, for example in the cis-regulatory regions of Fgf4 (Yuan et al. 1995) and Sox2 

(Tomioka et al. 2002) itself. 

 

http://www.expasy.ch/tools/
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More recently, using the chromatin immunoprecipitation (ChIP) and paired-end ditag 

sequencing strategy, Loh and colleagues produced a genome-wide map of Oct4 and 

Nanog binding sites in mouse ES cells (Loh et al. 2006). They were able to distill a sox-

oct consensus binding logo, which serves as a general guide of the prototypic sox-oct 

binding site (Fig .11). 

 

 

Sox                      Oct 

Figure 11. Oct-Sox Consensus Binding Logo (Loh et al. 2006) 

 

Next, I examined the sequence conservation of the sox-oct element in the Sox2 regulatory 

region bound by the Sox2/Oct4 protein complex, this molecular interaction considered to 

contribute to Sox2 auto-regulation. This element is found in a highly conserved region 1.2 

kb downstream of the Sox2 mRNA’s 3’ UTR. I used sequence in this region for multi-

species BLAST analysis in order to find the equivalent region in other mammal and non-

mammal vertebrate species. As shown, the sox-oct element is quite well conserved with 

11 of the 15 positions invariant (shown in bold print) from chick to mouse (Fig. 12). 

Since it is already present in the opossum and the chick, this finding precludes the 

possibility that the simple presence of the element is a eutherian-specific change. 

Focusing on the nucleotide level changes, the chick sox-oct element is the most divergent, 
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differing from the eutherian consensus by three base pairs. To investigate if these changes 

will result in an impairment of transcription factor binding, promoter assays were 

performed. This is discussed in detail in Chapter 4. 

 

Sox2

Binding site is ~1200bp downstream of Sox2 3’UTR.

Tomioka et al. 2002 NAR

Sox2    Oct4

Mouse CTCGGGCAGCCATTGTGATGCATATA-GGATTATT

Rat CTCGGCCAGCCATTGTGATGCATATA-GGATTATT

Human CCTGGCCAGCCATTGTAATGCATATACGGATTATT

Dog CCTGGCCAGCCATTGTAATGCATATACGGATTATT

Elephant    CCCGGCCAGCCATTGTAATGCATATACGGATTATT 

Opossum GCTGCCCGGCTTTTGTAATGCATATA-GGATTATT

Chick GCTGTGCGGCGTTTGTAATGCATCTGGGGATTATT

Frog                  No sox-oct site

 

Figure 12. Alignment of sox-oct binding site in Sox2 

 

In contrast, the sox-oct binding site of Nanog is not found in the chick or the opossum. It 

is conserved only in eutherians and has remained unchanged for over 250 million years of 

cumulative evolution (Fig. 13). This strongly suggests the functional importance of this 

sequence. Experiments done by myself and others from our lab have shown that the sox-

oct element is important to drive Nanog expression in ES cells (Rodda et al. (2005); see 

Chapter 4). This appears to be a striking example of eutherian-specific cis-evolutionary 

change. 
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Sox2   Oct4

Mouse CCACCATGGACATTGTAATGCAAAAGAAGCTGTAA

Rat CCACCAAGGACATTGTAATGCAAAAGAAGCTGTAA

Human TCACCAAGGCCATTGTAATGCAAAAGTAGCTGCAG

Cow TCACCAAGGCCATTGTAATGCAAAAGAGAGTTGCA

Elephant    TCATCAAGTCCATTGTAATGCAAAAGTTCCTGAAA

Opossum No sox-oct site

Chick No sox-oct site

Nanog

Binding site is ~181 bp upstream of TSS.

Rodda et al. 2005 JBC

 

Figure 13. Alignment of sox-oct binding site in Nanog 

Like Sox2, Pou5f1 is also auto-regulated by the Sox2/Oct4 complex. The enhancer 

element is highly conserved and there are only three nucleotide differences from elephant 

to mouse (Fig. 14). The opossum cis-region sequence is not available as the trace files do 

not extend far enough in the 5’ direction; similarly there is no data for platypus as the 

primer walking effort was unable to yield the first exon of the gene. There appears to be 

no chick equivalent of this conserved region, which is understandable since chick PouV is 

not located in the same genome context as its eutherian counterparts.  

Sox2    Oct4

Mouse TATCATGCACCTTTGTTATGCATCTGCCGTCTGCC

Human ATCACGGCACCTTTGTCATGCATCTCTCTGCTGTC 

Dog   ATCACGGCACCTTTGTCATGCATCTATCTGCTGTC

Elephant ATCACAGCACTTTTGTCATGCACCTATCTGCTGTC

Chick                  Not found

Oct4

Binding site is ~1992 bp upstream of TSS.

Chew et al. 2005 MCB

 

Figure 14. Alignment of sox-oct binding site in Pou5f1 
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3.4 Results of Coding Sequence Analysis 

 
Sox2 has existed for a long time in vertebrate evolutionary history, present in ancient 

lineages such as the fish. It is highly conserved from fish to mouse, the yellow blocks 

showing identical sequence (Fig .15). In fact in its 79 amino acid DNA binding domain, 

the HMG box, only two amino acids differ from fish to mouse. There is very limited 

diversification in the N and C-terminal ends as well – most of these changes do not 

conform to any phylogenetic pattern and are likely to be neutral substitutions. As such, I 

can conclude that functionally important eutherian-specific amino acid changes do not 

exist in the Sox2 coding sequence. 

1 11410 20 30 40 50 60 70 80 90 100(1)

MYNMMETELKPPGPQQASGG-GGGGG------NATAAATGGNQKNSPDRVKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSETEKRPFIDEAKRLRALHMKEHMm.Sox2 (1)

MYNMMETELKPPGPQQASGG-GGGGG------NATAAATGGNQKNSPDRVKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSETEKRPFIDEAKRLRALHMKEHRn.Sox2 (1)

MYNMMETELKPPGPQQTS---GGGGG------NSTAAAAGGNQKNSPDRVKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSETEKRPFIDEAKRLRALHMKEHHs.Sox2 (1)

MYNMMETELKPPGPQQTSGGGGGGGGGGGG--NSTAAAAGGNQKNSPDRVKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSETEKRPFIDEAKRLRALHMKEHCf.Sox2 (1)

MYNMMETELKPPGPQQTSGGGGGGGG------NSTAAAAGGNQKNSPDRVKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSETEKRPFIDEAKRLRALHMKEHBt.Sox2 (1)

MYNMLETDLKPPGPQQTSGGGGGGGGGGGGGGPNSTSAGGTNQKNSPDRVKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSEAEKRPFIDEAKRLRALHMKEHMd.Sox2 (1)

MYNMMETDLKPPAPQQASGG-------------NSNSGSNNQSKNSPDRVKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSEAEKRPFIDEAKRLRALHMKEHXt.Sox2 (1)

MYNMMETELKPPAPQTNTGGTG----------NTNTSGTGGNQKNSPERVKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSENEKRPFIDEAKRLRALHMKEHTr.Sox2 (1)

MYNMMETELKPPAPQPNTGG------------TGNTNSSGNNQKNSPDRIKRPMNAFMVWSRGQRRKMAQENPKMHNSEISKRLGAEWKLLSESEKRPFIDEAKRLRALHMKEHDr.Sox2 (1)

115 228120 130 140 150 160 170 180 190 200 210(115)

PDYKYRPRRKTKTLMKKDKYTLPGGLLAPGGNSMASGVGVGAG--LGAGVNQRMDSY-AHMNGWSNGSYSMMQEQLGYPQHPGLNAH----------GAAQMQPMHRYDVSALQMm.Sox2 (108)

PDYKYRPRRKTKTLMKKDKYTLPGGLLAPGGNSMASGVGVGAG--LGAGVNQRMDSY-AHMNGWSNGSYSMMQEQLGYPQHPGLNAH----------GAAQMQPMHRYDVSALQRn.Sox2 (108)

PDYKYRPRRKTKTLMKKDKYTLPGGLLAPGGNSMASGVGVGAG--LGAGVNQRMDSY-AHMNGWSNGSYSMMQDQLGYPQHPGLNAH----------GAAQMQPMHRYDVSALQHs.Sox2 (106)

PDYKYRPRRKTKTLMKKDKYTLPGGLLAPGGNSMASGVGVGAG--LGAGVNQRMDSY-AHMNGWSNGSYSMMQDQLGYPQHPGLNAH----------GAAQMQPMHRYDVSALQCf.Sox2 (113)

PDYKYRPRRKTKTLMKKDKYTLPGGLLAPGGNSMASGVGVGAG--LGAGVNQRMDSY-AHMNGWSNGSYSMMQDQLGYPQHPGLNAH----------GAAQMQPMHRYDVSALQBt.Sox2 (109)

PDYKYRPRRKTKTLLKKDKYTLPGGLLAPGGNSMGGGVGVGAGG-LGGGVNQRMDSY-AHMNGWSNGGYSMMQEQLGYSQHPGLNAHNAAAAAAAAAAAAQMQPMHRYDVSALQMd.Sox2 (115)

PDYKYRPRRKTKTLMKKDKYTLPGGLLAPGANPMTSGVGASLG----AGVNQRMDTY-AHMNGWTNGGYGMMQEQLGYPQHPGLSAHN----------APQMQPMHRYDVSALQXt.Sox2 (102)

PDYKYRPRRKTKTLMKKDKYTLPGGLLAPGGNGMGAGVGVGVGAGLGGGVNQRMDSYAAHMNGWSNGGYGMMQDQLSY-QHPGLNAHN----------PSQMQSMHRYDMSALQTr.Sox2 (105)

PDYKYRPRRKTKTLMKKDKYTLPGGLLAPGGNGMGAGVGVGAG--LGAGVNQRMDSY-AHMNGWTNGGYGMMQEQLGYPQHPSLNAHN----------TAQMQPMHRYDMSALQDr.Sox2 (103)

230 343240 250 260 270 280 290 300 310 320 330(230)

NSMTSSQTYMNGSPTYS-MSYSQQGTPG----------MALGSMG--SVVKSEASSS-PPVVTSSSHSRA-PCQAGDLRDMISMYLPGAEVPEPAAPSRLHMAQHYQSGPVPGTMm.Sox2 (210)

NSMTSSQTYMNGSPTYS-MSYSQQGTPG----------MALGSMG--SVVKSEASSS-PPVVTSSSHSRA-PCQAGDLRDMISMYLPGAEVPEPAAPSRLHMAQHYQSGPVPGTRn.Sox2 (210)

NSMTSSQTYMNGSPTYS-MSYSQQGTPG----------MALGSMG--SVVKSEASSS-PPVVTSSSHSRA-PCQAGDLRDMISMYLPGAEVPEPAAPSRLHMSQHYQSGPVPGTHs.Sox2 (208)

NSMTSSQTYMNGSPTYS-MSYSQQGTPG----------MALGSMG--SVVKSEASSS-PPVVTSSSHSRA-PCQAGDLRDMISMYLPGAEVPEPAAPSRLHMSQHYQSGPVPGTCf.Sox2 (215)

NSMTSSQTYMNGSPTYS-MSYSQQGTPG----------MALGSMG--SVVKSEASSS-PPVVTSSSHSRA-PCQAGDLRDMISMYLPGAEVPEPAAPSRLHMSQHYQSGPVPGTBt.Sox2 (211)

NSMTSSQTYMNGSPTYSSMAYSQQAAPGGGAGGGGGGAMALGSMG--SVVKSEASSS-PPVVTSSSHSRA-PCQAGDLRDMISMYLPSAEVPEPAAPSRLHMSQHYQGAPVPSTMd.Sox2 (228)

NSMSSSQTYMNGSPTYS-MSYSQQGAPG----------MSLGSMG--SVVKSESSSS-PPVVTSSSHSRA-PCQAGDLRDMISMYLPGAEVPEPAAQSRLHMSQHYQSASVAGTXt.Sox2 (202)

NTMTSSQSYMNGSPTYS-MSYSQQTTPG---------MTALGSMGPSSVVKSESSSSSPPVVTSSSHRAAPGCQSGDLRDMISMYLPGTEVSEQGAQTRLHMSGHYQS-TVPGTTr.Sox2 (209)

NSMTNSQTYMNGSPTYS-MSYSQQSTPG----------MTLGSMG--SVVKSESSSS-PPVVTSSSHSRAGQCQTGDLRDMISMYLPGAEVQDQSAQSRLHMSQHYQSAPVPGTDr.Sox2 (205)

HMG box

 

Figure 15. Sox2 protein alignment 

Yellow denotes identical bases, blue and green are similar bases. White sections are 

dissimilar and dash sections cannot be aligned (such as insertions and deletions). Species 

abbreviations for this alignment: Dr = Danio rerio (Zebrafish), Tr = Takifugu rubripes 

(Fugu), Xt = Xenopus tropicalis (Frog), Md = Monodelphis domestica (Opossum), Bt = 

Bos taurus (Cow), Cf = Canis familiaris (Dog), Hs = Homo sapiens (Human), Rn = 

Rattus norvegicus (Rat) and Mm = Mus musculus (Mouse). 
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Nanog, on the other hand, appears to be a newer gene and is more variable. Only the 

DNA-binding homeodomain is quite conserved, but even within this region there is 

variability among eutherian species. There is a region where interesting changes have 

occurred – the tryptophan repeat region (WR), which is highlighted in the red box (Fig. 

16). 

1 11410 20 30 40 50 60 70 80 90 100(1)

MSVGLPGPHSLPSSEEASNSGNASSMPAVFHP-ENYSCLQGS-ATEMLCTEAASPRPSSEDLPLQGSPDSSTSPKQKLSSPEADKGPEE-EENKVLARKQKMRTVFSQAQLCALMm.Nanog (1)

MSVDLSGPHSLPSCEEASNSGDSSPMPAVHLPEENYSCLQVS-ATEMLCTETASPPPSSGDLPLQDSPDSSSNPKLKLSGPEADEGPEKKEENKVLTKKQKMRTVFSQAQLCALRn.Nanog (1)

MSVDPACPQSLPC-FEASDCKESSPMPVICGPEENYPSLQMS-SAEMPHTETVSPLPSSMDLLIQDSPDSSTSPKGKQP-TSAEKSVAK-KEDKVPVKKQKTRTVFSSTQLCVLHs.Nanog1 (1)

-MSAIQLSAMPAG-PQAPNSRDPSPMPEVYGPRGNPASLPMS-SAETPHAETVSPLPSSMDLLTQDSPDSSTSPRVKLPPTSGEERTAR-KEDATQGKKQKMRTVFSQTQLYVLCf.Nanog (1)

MSVGPACPQSLLG-PEASNSRESSPMP-----EESYVSLQTS-SADTLDTDTVSPLPSSMDLLIQDSPDSSTSPRVKPL-SPSVEESTE-KEETVPVKKQKIRTVFSQTQLCVLBt.Nanog (1)

----------------------------------------------------ISPAPSSMDKCIQDTPDSATSPTSNSLSSQ-NKPKTHQGKDQSPIKKPKMRTVFSQAQLNVLMd.Nanog2 (1)

MSVDLASPQSLP---EACDSRDTSPISAILEAEENYTSLQMS-SAEALYSETASPLPSSTDGLIQDSPDSSTSPQIKPSTSALVGKSTVKKEGKGQGKKQKVRTVFSQMQLCILLa.Nanog (1)

MSAHLAMPSYGSVRCGHYYWPSPGSMDSASAAEAPAADLSLTTEQKTPCHPDASPASSSSGTLIQYTPDSATSPTADHPSHRPTFQKVKDKGESG-TRKAKSRTAFSQEQLQTLGga.Nanog (1)

115 228120 130 140 150 160 170 180 190 200 210(115)

KDRFQKQKYLSLQQMQELSSILNLSYKQVKTWFQNQRMKCKRWQKN-QWLKTSNGLIQKGSAPVEYPSIHCSYPQGYLVNASGSLSMWGSQTWTNPTWSSQ-----TWTNPTWNMm.Nanog (112)

KDRFQRQRYLSLQQMQDLSTILNLSYKQVKTWFQNQRMKCKRWQKN-QWLKTSNGLTQKGSAPVEYPSIHCSYSQGYLMNASGNLPVWGSQTWTNPTWNNQ-----TWTNPTWSRn.Nanog (114)

NDRFQRQKYLSLQQMQELSNILNLSYKQVKTWFQNQRMKSKRWQKN-NWPKNSNGVTQKA-SAPTYPSLYSSYHQGCLVNPTGNLPMWSNQTWNNSTWSNQ-----TQNIQSWSHs.Nanog1 (111)

NDRFQRQKYLSLQQMQELSNILNLSYKQVKTWFQNQRMKSKRWQKS-NWPKESNSVTQNSSATTEYAGFYP-CRQGYLLNPSGNLPLWSSQAWNNPNWSSQ-----TWNSQSWSCf.Nanog (111)

NDRFQRQKYLSLQQMQELSNILNLSYKQVKTWFQNQRMKCKKWQKN-NWPRNSNGMPQGP-AMAEYPGFYS-YHQGCLVNSPGNLPMWGNQTWNNPTWSNQ-----SWNSQSWSBt.Nanog (106)

NSRFVEQKYLSPQQIRNVAENLNLTYKQVKTWFQNQRMKSKRWQKDTMWTKNGNRNVQNGSALGEYISLYSPFHQDYMVSSSGTLPVWSNQTWNNQFQNSGE---GSYQHQIFQMd.Nanog2 (62)

KDRFQKQKYLSLQQMQELSEALNLTYKQVKTWFQNQRMKCKRWQKNTNWSKTSNSVTHVS-VPIEFLDLYSSSHQGCLPS--GNLSMWSNQTWSNQTWNSQSWSNHSWNSQAWSLa.Nanog (111)

HQRFQSQKYLSPHQIRELAAALGLTYKQVKTWFQNQRMKFKRCQKESQWVDKGIYLPQNGFHQAAYLDMTPTFHQGFPVVANRNLQAVTSAHQAYSSGQTYG--NGQGLYPFMAGga.Nanog (114)

228 334240 250 260 270 280 290 300 310 320(228)

NNQTWTNPTWSSQAWTAQS-WN-----GQPWNAAPLHNFGEDFLQPYVQLQQNFSASDLEVNLEATRESH-------AHFSTP-QALELFLNYSVTPPGEI------Mm.Nanog (219)

SNQTWTNPTWSNQAWSTQS-WCTQAWNSQTWNAAPLHNFGEDSLQPYVPLQQNFSASDLEANLEATRESQ-------AHFSTP-QALELFLNYSVNSPGEI------Rn.Nanog (221)

SNHSWNTQTWCTQSWNNQA-WN-----------SPFYNCGEESLQSCMQFQPNSPASDLEAALEAAGEGLNVIQQTTRYFSTP-QTMDLFLNYSMNMQPEDV-----Hs.Nanog1 (217)

SSHSWNSQTWCPQAWNNQA-WN-----------NPLHNCEEESLQPPIQFQQNS-MGDLESIFETAGESHGVLQQSTKYFSTP-QIMDFFPNYSEHST---------Cf.Nanog (217)

SNHSWNSQAWCPQAWNNQP-WN-----------NQFNNYMEEFLQPGIQLQQNSPVCDLEATLGTAGENYNVIQQTVKYFNSQQQITDLFPNYPLNIQPEDL-----Bt.Nanog (211)

QHSYPASDLGATFGNNTGGAYSMKSQTSLSFN-TPYPMEYLPSYSMNMQLTHSKSEEDYDYRQASDAQTQFLDPSVVPVFQS-------------------------Md.Nanog2 (172)

SNHSWNSQAWSNHSWNSQSSWNSQSSWNNQVWNNQFQNCGEEFLLPQVQFQQNS---------VSDLETS--------------QTIDLFLNYSMNIQPEDVVTMGILa.Nanog (221)

AVEDEGFFGKGGTSCNTQQAMG----------LLSQQMNFYHGYSTNVDYDSLQAEDTYSFQSTSDSITQFSSSPVRHQYQAPWHTLGTQNGYET------------Gga.Nanog (225)

WRHomeodomain C1

C2

 

Figure 16. Nanog protein alignment 

Yellow denotes identical bases, blue and green are similar bases. White sections are 

dissimilar and dash sections cannot be aligned (such as insertions and deletions). Species 

abbreviations for this alignment: Gga = Gallus gallus (Chicken), La = Loxodonta 

africana (Elephant), Md = Monodelphis domestica (Opossum), Bt = Bos taurus (Cow), 

Cf = Canis familiaris (Dog), Hs = Homo sapiens (Human), Rn = Rattus norvegicus (Rat) 

and Mm = Mus musculus (Mouse). 

 

The tryptophan repeat region has previously been shown to be important for the 

transactivation ability of Nanog (Pan and Pei 2005). The mechanism of its activity is not 

yet known. There are at least 8 tryptophan repeats in eutherian mammals, but only two in 

the opossum and none in the chick (Table 8). This suggests that the appearance of these 

repeats occur at around the base of mammalian radiation (Fig. 17). 
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Table 8. Number of Tryptophan repeats in Nanog transactivation domain 

 

 

Figure 17. Detailed alignment of the Nanog transactivation domain 

Blue and green are similar bases. White sections are dissimilar and dash sections cannot 

be aligned (such as insertions and deletions). Species abbreviations for this alignment: 

Gga = Gallus gallus (Chicken), Md = Monodelphis domestica (Opossum), La = 

Loxodonta africana (Elephant), Bt = Bos taurus (Cow), Cf = Canis familiaris (Dog), Hs 

= Homo sapiens (Human), Rn = Rattus norvegicus (Rat) and Mm = Mus musculus 

(Mouse). 

 

 

Like Nanog, Oct4 is also not highly conserved outside of its DNA binding domain, which 

is made up of two parts: the POU domain and the homeodomain. This is a functionally 

important part of the protein, especially the POU domain which is crucial for protein 

interactions with Sox2 and is highlighted in a red box (Fig. 18). More details about the 

POU domain will be discussed later. 
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1 10310 20 30 40 50 60 70 80 90(1)

------------------------------------------------------------MAGHLASDFASSPPPGGG-DGSAGLEPGWVDSRTWLSFQGPPGTranslation of Mm.Oct4 cDNA (1)

------------------------------------------------------------MAGHLASDFAFSPPPGGGGDGPGGPEPGWVDPRTWLSFQGPPGTranslation of Hs.Oct4 cDNA (1)

------------------------------------------------------------MAGHLASDFAFSPPPGGGGDGPGGPEPGWVDPRTWMSFQGPPGTranslation of Bt.Oct4 mRNA (1)

MSEGSQSP-GGQSRPFDFSRANTCVQNVGQDHLGSPASFQFPHGVLPDPGLFYNKAAFGGITPGSAQTFFPFPTVTTDYRGSDPQAGDFGQPKHWYPFAAPEYTranslation of Tr.Oct4 cDNA (1)

MTERAQSPTAADCRPYEVNRA-MYPQAAGLDGLGG-ASLQFAHGMLQDPSLIFNKAHFNGITPATAQTFFPFS---GDFKTNDLQGGDFTQPKHWYPFAAPEFTranslation of Dr.Pou2 cDNA (1)

104 206110 120 130 140 150 160 170 180 190(104)

G----------------PGIGPGSEVLGIS--------------------------------------PCPPAYEFCGGMAYCGPQVGLGLVP------QVGVTranslation of Mm.Oct4 cDNA (43)

GPGIG------------PGVGPGSEVWGIP--------------------------------------PCPPPYEFCGGMAYCGSQVGVGLVP------QGGLTranslation of Hs.Oct4 cDNA (44)

GSGIG------------PGVVPGAEVWGLP--------------------------------------PCPPPYDLCGGMAYCAPQVGVGPVP------PGGLTranslation of Bt.Oct4 mRNA (44)

IGQVPGVAAATQPVNISPPIAETREQIKLP-EVKIEKDAGDDYSTDVK-IQQYPTPPASSAMSHGVFYSAAWNPSFWPGMTQTTPPGANNPNPPTPSASSPSLTranslation of Tr.Oct4 cDNA (103)

TGQVAGATAATQPANISPPIGETREQIKMPSEVKTEKDVEEYGNEENKPPSQYHLTAGTSSVPTGVNYYTPWNPNFWPGLSQITAQANISQAPPTPSASSPSLTranslation of Dr.Pou2 cDNA (99)

207 309220 230 240 250 260 270 280 290(207)

ETLQP------EGQAGARVESNSEGTSSEPCADRPNAVKLEK--VEPTPEESQDMKALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGKVFSQTTICRFTranslation of Mm.Oct4 cDNA (86)

ETSQP------EGEAGVGVESNSDGASPEPCTVTPGAVKLEKEKLEQNPEESQDIKALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGKVFSQTTICRFTranslation of Hs.Oct4 cDNA (91)

ETPQP------EGEAGAGVESNSEGASPDPCAAPAGAPKLDKEKLEPNPEESQDIKALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGKVFSQTTICRFTranslation of Bt.Oct4 mRNA (91)

SPSPPCSGLPGNVFFGGNATQAAGGPSGQNPASSTRSTGSSSGGCSDSEEE----ILTTEELEQFAKELKHKRITLGFTQADVGLALGNLYGKMFSQTTICRFTranslation of Tr.Oct4 cDNA (204)

SPSPPGNGFGSPGFFSGGTAQNIPSAQAQS---APRSSGSSSGGCSDSEEEE---TLTTEDLEQFAKELKHKRITLGFTQADVGLALGNLYGKMFSQTTICRFTranslation of Dr.Pou2 cDNA (202)

310 412320 330 340 350 360 370 380 390 400(310)

EALQLSLKNMCKLRPLLEKWVEEADNNENLQEICKSETLVQAR---KRKRTSIENRVRWSLETMFLKCPKPSLQQITHIANQLGLEKDVVRVWFCNRRQKGKRTranslation of Mm.Oct4 cDNA (181)

EALQLSFKNMCKLRPLLQKWVEEADNNENLQEICKAETLVQAR---KRKRTSIENRVRGNLENLFLQCPKPTLQQISHIAQQLGLEKDVVRVWFCNRRQKGKRTranslation of Hs.Oct4 cDNA (188)

EALQLSFKNMCKLRPLLQKWVEEADNNENLQEICKAETLVQAR---KRKRTSIENRVRGNLESMFLQCPKPTLQQISHIAQQLGLEKDVVRVWFCNRRQKGKRTranslation of Bt.Oct4 mRNA (188)

EALQLSFKNMCRLKPLLQKWLNEAETTENPQDVNVQGGAGVRGTRKRKRRTSLEGAVRSALEAYFIKCPKPNTQEITHISDDLGLERDVVRVWFCNRRQKGKRTranslation of Tr.Oct4 cDNA (303)

EALQLSFKNMCKLKPLLQRWLNEAENSENPQDMYKIERVFVD-TRKRKRRTSLEGTVRSALESYFVKCPKPNTLEITHISDDLGLERDVVRVWFCNRRQKGKRTranslation of Dr.Pou2 cDNA (299)

410 487420 430 440 450 460 470(410)

GKRSSIEYSQRE--EYEATGTPFPGGAVSFPLPPGPHFGTPGYGSPHFTTLYS-VPFPEGEAFPSVPVTALGSPMHSNTranslation of Mm.Oct4 cDNA (278)

GKRSSSDYAQRE--DFEAAGSPFSGGPVSFPLAPGPHFGAPGYGSPHFTALYSSVPFPEGEAFPPVSVTTLGSPLHSNTranslation of Hs.Oct4 cDNA (285)

GKRSSSDYSQRE--DFEAAGSPFTGGPVSSPLAPGPHFGTPGYGGPHFTTLYSSVPFPEGEVFPSVSVTALGSPMHANTranslation of Bt.Oct4 mRNA (285)

GKRLALPLDEDC-EGQYYEQSPSP-LNMVPSPITTQGYPAPGYPPAPPPTLYMPQLHRADVLKQSLHPGLVGHLTG--Translation of Tr.Oct4 cDNA (403)

GKRLALPFDDECVEAQYYEQSPPPPPHMGGTVLPGQGYPGPAHPGG-APALYMPSLHRPDVFKNGLHPGLVGHLTS--Translation of Dr.Pou2 cDNA (398)

POU domain

Homeodomain

 

Figure 18. Oct4 protein alignment 
Yellow denotes identical bases, blue and green are similar bases. White sections are 

dissimilar and dash sections cannot be aligned (such as insertions and deletions). Species 

abbreviations for this alignment: Dr = Danio rerio (Zebrafish), Tr = Takifugu rubripes 

(Fugu), Bt = Bos taurus (Cow), Cf = Canis familiaris (Dog), Hs = Homo sapiens 

(Human), Rn = Rattus norvegicus (Rat) and Mm = Mus musculus (Mouse). 

 

 

This initial protein alignment of Oct4 suggested there were eutherian-specific residues 

within the DNA binding domain. To determine if this were true I did a more 

comprehensive alignment of this region with multiple mammalian sequences: 15 

eutherian sequences, two metatherian species, and the prototherian platypus. Strikingly, 

this revealed 12 amino acid positions that are apparently under eutherian-specific 

selection – these are marked by small arrows (Fig .19) – they are invariant in all the 

eutherian species but differ in the non-eutherian mammals. Notably, there is a great 

similarity between platypus and metatherian amino acid sequences in this region, 

highlighted within the red box. 
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177 219190 200(177)

KVFSQTTICRFEAQQLSFKNMCKLRPLLQRWLEAADDNDRLQEOa.Oct4 (40)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWLEAADDNDHLQEMd.Oct4 (42)

KVFSQTTICRFEAQQLSFKNMCKLRPLLQKWLEAADDNDHLQEMe.Oct4 (42)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADSNENLQEDn.Oct4 (42)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQECh.Oct4 (42)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQELa.Oct4 (42)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEPc.Oct4 (42)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQECf.Oct4 (177)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEEe.Oct4 (42)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEBt.Oct4 (177)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQESs.Oct4 (177)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEEc.Oct4 (177)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEFc.Oct4 (177)

KVFSQTTICRFEALQLSLKNMCKLRPLLQKWVEEADNNENLQEMl.Oct4 (177)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQETb.Oct4 (175)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEHs.Oct4 (177)

KVFSQTTICRFEALQLSLKNMCKLRPLLEKWVEEADNNENLQERn.Oct4 (170)

KVFSQTTICRFEALQLSLKNMCKLRPLLEKWVEEADNNENLQEMm.Oct4 (170)

KVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEConsensus (177)

136 176150 160(136)

--QETPSREELEQFAKELKRKRITLGYTQADVGVTLGALFGOa.Oct4 (1)

QPQENPSPEELEQFAKELKRKRITLGYTQADVGITLGALFGMd.Oct4 (1)

QPQETPSPEELEQFAKELKRKRITLGYTQADVGITLGALFGMe.Oct4 (1)

AQDIKALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGDn.Oct4 (1)

SQDIKALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGCh.Oct4 (1)

SQDIKTRQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGLa.Oct4 (1)

SQDIKTRQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGPc.Oct4 (1)

SQDIKALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGCf.Oct4 (136)

SQDIKELQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGEe.Oct4 (1)

SQDIKALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGBt.Oct4 (136)

SQDIKALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGSs.Oct4 (136)

SQDIKALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGEc.Oct4 (136)

SQDIKALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGFc.Oct4 (136)

LQNMRALQKDLEQFAKLLKQKRITLGYTQADVGLTLGVLFGMl.Oct4 (136)

SQDIEALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGTb.Oct4 (134)

SQDIKALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGHs.Oct4 (136)
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Figure 19. Detail alignment of Oct4 DNA binding domain 

Yellow denotes identical bases, blue and green are similar bases. White sections are 

dissimilar and dash sections cannot be aligned (such as insertions and deletions). Red box 

highlights non-eutherian mammals. Arrows point to eutherian-specific changes. Species 

abbreviations: Oa = Ornithorhynchus anatinus (Platypus), Md = Monodelphis domestica 

(Opossum), Me = Macropus eugenii (Kangaroo), Dn = Dasypus novemcinctus 

(Armadillo), La = Loxodonta africana (Elephant), Cf = Canis familiaris (Dog), Bt = Bos 

taurus (Cow), Ss = Sus scrofa (Pig), Ec = Equus caballus (Horse), Fc = Felis catus (Cat), 

Hs = Homo sapiens (Human), Rn = Rattus norvegicus (Rat) and Mm = Mus musculus 

(Mouse). 

 

 

From this identity table, it appears that the entire Oct4 DBD is under eutherian-specific 

selection pressure (Fig. 20). Eutherians (red numerals) are highly similar to each other, 

whereas non-eutherians (green numerals) are highly similar to each other. If changes in 

this region were neutral the metatherian sequences should be more similar to the 
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eutherians than to the prototherians as they last shared a common ancestor more recently. 

The changes that led to the 12 eutherian-specific amino acids presumably appeared in the 

eutherian line sometime between 160 and 80 million years ago at the base of eutherian 

mammal evolution. Since Oct4 is essential for the formation of the inner cell mass, the 

appearance of these changes correlates with the emergence of the inner cell mass. The 

location of these changes, within the DNA binding domain, suggests they may affect 

Oct4 DNA binding specificity and its interaction with other protein partners in the 

pluripotency transcriptional network. I was intrigued with the possibility that these 

eutherian-specific features of Oct4 coding sequence may play some eutherian-specific, 

possibly pluripotency-related function. 
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Figure 20. Sequence identity of the Oct4 DBD 

Red figures = comparisons among eutherians, green = comparison among non-eutherians. 

 

 

One obvious interacting partner that may be influenced by these eutherian-specific 

changes in the Oct4 DNA binding domain is Sox2. In 2003, Reményi and colleagues 

solved the crystal structure of the Oct1-Sox2-DNA ternary complex (Reményi et al. 
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2003). I used their structure to see where these eutherian-specific changes were 

positioned with respect to Sox2 and its interaction with DNA. By doing a sequence 

alignment of Oct1 and Oct4, I mapped the eutherian-specific amino acid positions onto 

this crystal structure, and then displayed it using RasMOL. Here Oct1 is shown in yellow, 

Sox2 in orange and DNA in blue, while eutherian-specific amino acid positions are 

highlighted in red (Fig. 21). Some of these may be important for DNA binding specific, 

and some of these may affect Oct-Sox protein-protein interaction. 

 

Figure 21. Eutherian-specific changes in Oct4 mapped onto Oct1 crystal structure 

Oct1 is shown in yellow, Sox2 in orange and DNA in blue. Red denotes amino acid 

positions mapped from Oct4. 

 

 

As mentioned earlier, the POU domain of Oct4 is crucial because it is postulated to have 

protein-protein interactions with the HMG box of Sox2 that allow them to bind together 

and form a protein complex. A solution structure has been solved for Sox2 and Oct1, 

which was applied to Oct4 using homology modeling (Williams et al. 2004). It can be 
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immediately seen that the region of Sox2 HMG involved in this interaction is completely 

identical from fish to mouse. For Oct4, I have filled in the blanks with sequence 

information of the opossum and the platypus from my BAC sequencing efforts (Fig. 22). 
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Figure 22. Comparison of amino acid variation in the Sox-Oct interface region 

Red box highlights non-eutherian mammals. Arrows point to key differences between 

fish and mouse. Species abbreviations: Tr = Takifugu rubripes (Fugu), Dr = Danio rerio 

(Zebrafish), Xl = Xenopus laevis (Frog), Gg = Gallus gallus (Chicken), Oa = 

Ornithorhynchus anatinus (Platypus), Md = Monodelphis domestica (Opossum), Me = 

Macropus eugenii (Kangaroo), La = Loxodonta africana (Elephant), Cf = Canis 

familiaris (Dog), Bt = Bos taurus (Cow), Hs = Homo sapiens (Human) and Mm = Mus 

musculus (Mouse). 

 

 

Here, there are two key amino acid differences between fish and mouse which may be 

crucial in Sox2-Oct4 binding – a glutamate (acidic) to lysine (basic) change and a 

histidine (basic) to glutamine (polar) – indicated with small arrows. The eutherian-

specific glutamine 18 residue of Oct4 is also conserved in mouse Oct1 and Brn2, two 

other octamer proteins that are known to interact with Sox2. By zooming in on the 
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structure, you can see that glutamine 18 (highlighted in red) is positioned at the Oct-Sox 

interface. Thus, among all the other eutherian-specific changes, an amino acid 

substitution in this position appears to have the greatest potential to affect protein binding 

(Fig. 23). 

 

Figure 23. Position of Glutamine 18 is near the Oct-Sox interface 

Oct1 is shown in yellow, Sox2 in orange and DNA in blue. Glutamine 18 position shown 

in red. The dashed line approximates the interface between Oct and Sox proteins. 

 

 

With a number of eutherian-specific changes found, the next step was to prioritize and 

select some of the most salient changes that have a good chance of playing a direct and 

significant role in pluripotency. These changes were then functionalized using mouse 

sequences as the raw material and then using molecular techniques to revert them into 

non-eutherian sequences in order to reveal any interesting cell-level phenotype through a 

loss-of-function approach. The details of these experiments are discussed in the next 

chapter. 
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Chapter 4: Functionalization At Cell Level 

 
4.1 Overview  
 

 

The pluripotent transcriptional network is likely to involve a large number of genes. 

Within the Oct-Sox-Nanog core, Nanog alone already has dozens of direct protein 

partners (Wang et al. 2006). Moreover all three transcription factors have pleiotropic 

effects – both Oct4 and Nanog are also involved in germ cell development, whereas Sox2 

is also involved in neuronal differentiation. As such it is beyond the scope of this project 

to functionalize every interesting eutherian-specific change in this network. In order to 

avoid chancing upon changes that are not involved in pluripotency, the focus is to select 

some of the most promising ones that lie at the heart of the network – more precisely, 

molecular changes that allow Sox2 and Oct4 to work together.  

 

These include both cis-element changes that allow the Sox-Oct complex to target a 

specific gene, and coding sequence changes that allow the formation of the Sox-Oct 

complex in the first place. Based on sequence analysis the following three directions were 

considered the highest priority to be pursued: 

1. Promoter assays of Sox-Oct element changes. 

2. Oct4 DBD-activator/repressor fusion protein experiments. 

3. Oct4 Full-length chimera induced pluripotency experiments. 

 

There were a few other experiments that also have a good potential to yield measurable 

results but are not as high in priority or are plagued by technical difficulties. 
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4.2 Sox-oct Element Materials and Methods 
 

 

The Sox-Oct element identified in the Sox2, Nanog and Pou5f1 genes are conserved, but 

with a few base pair differences when compared across a number of eutherian and non-

eutherian species. These specific base differences may affect its function as the binding 

site for the Sox2-Oct4 heterodimer. To investigate this, the promoter regions of mouse 

Sox2, Nanog (Fig. 24) and Pou5f1 are subcloned into a pGL3 Basic luciferase reporter 

(Promega). The Nanog promoter is obtained by PCR from genomic DNA, the Pou5f1 

promoter obtained by long PCR (Roche Expand) from a BAC clone provided by Dr. 

Thomas Lufkin’s lab, and the Sox2 promoter is from Dr. Ng Huck Hui’s lab. 

Nanog

iMet

(+190)

TSS 

(+1)

406bp promoter

5’end

(-289)

3’end 

(+117)

LucpGL3 Basic

406bp promoter

 
 

Figure 24. Nanog promoter subcloning 

 

Next the Sox-Oct elements are modified by mutagenesis (Clontech Transformer / 

Stratagene QuikChange II) to resemble homologous regions in a number of species (Fig. 

25-27). Luciferase assays are performed in the F9 EC culture system, to see if there is any 

significant reduction in reporter activity after these changes. 
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Figure 25. Point mutations on the Sox2 sox-oct element 

Each colour denotes one successive round of site-directed mutagenesis. Green denotes a 

drastic change to abolish sox-oct binding to the element, serving as a negative control. 

Species abbreviations: Gga = Gallus gallus (Chicken), Md = Monodelphis domestica 

(Opossum), Hs = Homo sapiens (Human), Mm = Mus musculus (Mouse). 

 

 

 
 

Figure 26. Point mutations on the Nanog sox-oct element 
Species abbreviations: La = Loxodonta africana (Elephant), Bt = Bos taurus (Cow), Hs = 

Homo sapiens (Human), Rn = Rattus norvegicus (Rat), Mm = Mus musculus (Mouse). 
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Figure 27. Point mutations on the Pou5f1 sox-oct element 
Each colour denotes one successive round of site-directed mutagenesis. Green denotes a 

drastic change to abolish sox-oct binding to the element, serving as a negative control. 

Species abbreviations: La = Loxodonta africana (Elephant), Hs = Homo sapiens (Human), 

Mm = Mus musculus (Mouse). 

 

 

4.3 Sox-oct Element Results and Discussion 
 

 

The mutation constructs are then transfected into F9 teratocarcinoma cells, co-transfected 

with the renilla luciferase control plasmid (Promega Dual Luciferase Assay). Luciferase 

levels were read using the Centro LB960 luminometer (Berthold Technologies), 

normalised and then expressed as a percentage of wild-type levels. These assays were 

performed in triplicate. 

 

In Sox2, the point mutations to change the mouse element to the chick sequence produced 

no significant reduction in reporter activity, suggesting that the element is functionally 

active in chick (Fig. 28). This was initially a surprise when the result was obtained 

because there was a reported absence of chick Oct4, thus I postulated that the sox-oct 

element could serve as a binding site for other protein complexes such as Brn1-Sox2. 

With the discovery of chick Oct4 (Lavial et al. 2007) it is more likely that this element is 

already used for Oct4-Sox2 binding in the autoregulation of Sox2. 
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Figure 28. Sox2 promoter assay results. 

 

 

Nanog promoter assays demonstrate the strong effect of point mutations on the activity of 

the Oct-Sox site. A three nucleotide change to either the Oct or Sox element is enough to 

reduce the luciferase activity to less than 20% of wildtype levels. A 6 base pair mutation 

to both reduces the luciferase activity further to less than 10% (Fig. 29). This provides 

strong evidence for the functional importance of this sox-oct element, which resides in 

the proximal promoter, to drive pluripotent expression of Nanog. The presumption then, 

is that this element is required to drive pluripotent expression of Nanog in all eutherian 

mammals as its location in the proximal promoter and its sequence is conserved in all 

eutherian mammals analyzed including the most distal, the elephant. It was then 

intriguing that there was no evidence for this sox-oct element in the metatherian and 

prototherian mammals nor in the chick Nanog.  
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Figure 29. Nanog promoter assay results. 
 

 

Luciferase assays in F9 EC cells also indicated a requirement for the sox-oct element 

within the Pou5f1 enhancer to drive maximal expression, a six base pair mutation 

resulting in the disruption of both the octamer and sox elements reduced promoter 

activity to less than 40% of its wildtype levels (Fig. 30). That said, this was not as great a 

drop as that seen for the similarly designed Nanog promoter perhaps suggesting the sox-

oct element plays a greater role in the expression of Nanog then it does of Pou5f1. With 

this considerations it is interesting to note that the sox-oct element within the Pou5f1 

enhancer was less conserved between eutherians than was the Nanog element (compare 

Figures 26 & 27). There was no available sequence information on the cis-regions of the 

opossum and platypus, and thus no out-group sequences to compare with.  
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Figure 30. Pou5f1 promoter assay results. 
 

 

4.4 VP16/EnR Fusion Materials and Methods 
 

 

As I detected 12 amino acid residues within the DNA binding domain of Oct4 to be 

eutherian-specific I next sought to investigate the importance of these changes on the 

ability of Oct4 to bind downstream targets. I chose first to use a strategy which involved 

fusing the Oct4 DNA binding domain of various relevant species to either a strong 

activator or repressor of transcription. The system used to test this is the VP16 activator/ 

EnR repressor system which is used extensively in developmental biology (Carsona et al. 

2004). The principle behind this is that genes normally repressed by a transcription factor 

of interest would remain repressed with the EnR fusion protein but activated by the VP16 
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fusion protein. Thus, this is a brute force method to elicit the strongest possible response. 

A number of expression constructs from relevant mammal species have been made, 

transfected into ES cells and the changes in global gene expression studied using real 

time PCR and Illumina BeadArray analyses. 

Oct4 DBD VP16

Oct4 DBD EnR

Platypus

Mouse

Human

210

80

58

Elephant

 

Figure 31. Oct4 DNA binding domain constructs 

 

 

The strategy was to study four species: mouse, human, elephant and platypus (Fig. 31). 

Mouse and human data is useful for optimizing the protocol and checking expected Oct4 

downstream targets. Elephant data is important because it is the most distant eutherian to 

the mouse. I postulated that platypus Oct4 DBD should target different genes compared 

to eutherian mammals, potentially through different binding partners or DNA recognition 

sites, as a result of having different amino acid residues at the 12 positions previously 

identified to be eutherian-specific. 

 

The data can also be used to generate more interesting results. By comparing the pan-

mammalian DBD targets with eutherian-specific targets, I can check if we have binding 
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site data for these genes, and find out how the platypus Oct4 binding elements differ from 

eutherian-specific elements (Fig. 32). 

 

 

 

Elephant
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DBD target genes

Human
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Figure 32. Discover eutherian-specific functions of Oct4 

 

The preparatory work for this set of experiments can be divided into two main parts: (1) 

cloning the Oct4 DBD constructs and (2) optimizing the ES cell culture conditions. 

 

1.  The mammalian Oct4 DBD spans 4 exons (2-5) and thus making this part of the 

construct should necessitate a multistep PCR cloning strategy (Fig. 33) as I did not have 

access to mRNA (or cDNA) of elephant and platypus material, only genomic DNA. 

However, in the interest of time and to avoid PCR errors due to the numerous PCR steps, 

in the case of Platypus and Elephant Oct4 DBD, the whole DBD was synthesized de novo 

(Codon Devices) flanked with suitable restriction sites on both ends. 
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For the mouse and human Oct4 DBD, the process is more straightforward since the 

fragment can simply be obtained by PCR in one step from the cDNA stocks available in 

the lab. 

 

 
 

 

 
 

 

Figure 33. Cloning strategy for Platypus Oct4 DBD  

(A) Initial strategy involving multistep PCR  

(B) Actual strategy using synthesized DNA 

 

The VP16 and EnR fragments were separately obtained by PCR from their respective 

plasmids and cloned together with the Oct4 DBD fragments into the CAG-pIRES-EGFP 

expression vector. A short, two amino acid long linker (MluI = Thr-Arg) connects the 

DBD to the VP16 or EnR to form a fusion protein (Fig. 34).  

A 

B 
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Figure 34. Mammalian Oct4 DBD VP16 expression construct 

 

This process was repeated in the same way for all four species (Fig. 35) and the 

constructs were verified by DNA sequencing.  
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Figure 35. Eight constructs made for the Oct4 DBD fusion experiments 

 

2. The completed constructs were then transfected (Lipofectamine 2000) using a 

suspension transfection protocol in E14 ES cells to optimize the cell culture conditions in 
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a 6-well plate. By tweaking the conditions to minimize cell death, I was able to optimize 

a reliable set of conditions for subsequent experiments (Table 9). 

 

ES cell type E14 passage 31+ 

Medium Standard ES medium 

Volume of Lipofectamine 10 ul 

Amount of DNA 4 ug 

Volume of cells seeded 500 ul (1.6 X of protocol) 

Time point for cell harvest 24h 

 

Table 9. Optimized E14 culture conditions 

 

In the first set of experiments, the transfected cells were examined at 24h post-

transfection for robust proliferation and GFP expression (Fig. 36). Next, the cells were 

collected and protein was extracted for Western blot verification. 

 

 
 

Figure 36. E14 (p33) transfections at the 24h time point 
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To check that the Oct4 DBD fusion proteins were expressed in the ES cells in their 

entirety, Western blot analysis was performed using antibodies to VP16 (total DBD-

VP16 size of 29 kDa) and EnR (total DBD-EnR size of 51 kDa). The results indicate 

fusion proteins of correct size (Fig. 37 and 38). 

VP16 1:200 Mouse IgG 1:10000

Mouse Human Eleph Platy

VP16 VP16 VP16

EnR

VP16

EnR EnR EnR

CAG NoT

Expected size ~ 29 kDa

 
 

Figure 37. Western blot verification using VP16 antibody 

CAG = CAG vector only, NoT = No transfection control 
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Figure 38. Western blot verification using EnR antibody 

CAG = CAG vector only, NoT = No transfection control 

 

 

4.5 VP16/EnR Fusion Results and Discussion 
 

 

Next, an experiment was done in triplicate and RNA was extracted from the transfected 

ES cells to be used for real time PCR analysis. Details of the real time PCR (BioMark) 

protocol are in Appendix C. 

 

This real time PCR format can analyze the expression of up to 48 genes in a single run, 

thus a selection of 48 real time probes of genes relevant to pluripotency and early embryo 

development were analyzed (Table 10). 
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Gene name Function 

Actb Normalization control 

Ascl1 (Mash1) Neural development 

Bmp4 Bone and muscle development 

Cdh1 Cell-cell adhesion, tumour suppressor 

Cdx2 Placental development 

Dll1 Haematopoiesis 

EGFP Fluorescent marker 

Elavl3 Neural development 

Eomes Trophoblast development 

Esrrb Placental development 

Fbox15 Pluripotency marker 

Fgf4 Cell proliferation, oct-sox target, bone development 

Fgfr2 Fgf receptor, bone development 

Gadd45g Placental marker, tumour suppressor 

Gata3 Mesoderm differentiation, T lymphocyte development 

Gata6 Endoderm differentiation 

Gdf3-exon1 Mesendoderm development 

Hand1 Trophoblast development, heart development 

Hes6 Neuronal differentiation 

Irx3 Neural development 

Klf2 Pluripotency maintenance 

Klf4 Pluripotency maintenance 

Klf5 Pluripotency maintenance 

Lfng Mesoderm development, Notch signaling 

Mfng Mesoderm development, Notch signaling 

Nanog Pluripotency, germ cell development 

Nes Neural development 

Nrarp Blood vessel formation, Notch signaling 

Pax6 Eye development, neural development 

Pecam Inner cell mass marker, endothelial marker 

Pou3f1 Neural development 

Pou3f2 (Brn2) Neural development 

Pou5f1 Pluripotency, germ cell development 

Rax Eye development 

Rest Neural development 

Rhbdl3 Membrane protein, signal transduction 

Sall4 Pluripotency 

Sox11 Neural development 

Sox15 Placental marker, skeletal muscle regeneration 

Sox17 Endoderm formation 

Sox2 Pluripotency, neural development, tumourigenic 

Sox21 Neural development, hair formation 

Sox3 Neural development 

Sox4 Apoptosis 

Sox7 Endoderm formation 

Tubb3 Microtubule component, control 

Utf1 Pluripotency marker 

Zfp42 (Rex1) Pluripotency marker 

 

Table 10. Real time PCR probes and some of the gene functions 
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The real time PCR raw data is first displayed as a heat map (Fig. 39) and then the data is 

processed to show gene expression differences as fold change on a bar chart. Genes that 

have increased expression level in response to the Oct4 DBD VP16 fusion protein and 

corresponding decreased expression in response to the Oct4 DBD EnR fusion protein are 

considered to be strong direct targets of Oct4 (Fig. 40).  

VP16

EnR

Assay (48 genes)

CAG

NoT

Samples

(30)

VP16

EnR

VP16

EnR

VP16

EnR

 
Figure 39. BioMark Real Time PCR – Raw Data (Heat Map) 

Red = high expression, Blue = low expression 

 

 

Meanwhile, genes with the converse response are considered to be strong indirect targets, 

while genes that display unidirectional response to both VP16 and EnR are likely to be 

abnormally regulated due to the aggressive treatment in this experimental strategy. Genes 

with abnormal regulation responses are not such interesting candidates compared to the 

strong direct or indirect targets. 
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Figure 40. How to interprete the real time PCR results 

 

 

In the first set of experiments, the gene expression response of known Oct4 targets 

involved in pluripotency are shown in Figure 41. As can be clearly seen, the levels of 

Oct4 itself appear to be very high for both Mouse Oct4 VP16 and EnR fusion 

experiments, because the real time PCR probes are designed to Mouse Oct4 and cannot 

distinguish between endogenous Oct4 and the transfected Oct4 fusions proteins. For the 

other species, Fgf4 and Sox2 respond normally while other Oct4 targets display abnormal 

regulation. Contrary to expectations, there is no qualitative difference in response 

between the platypus Oct4 DBD fusions and the eutherian Oct4 DBD fusions. 
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Comparing overexpression of Oct4 DBD of different 

species
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Figure 41. Real time PCR results of pluripotency-related genes 

 

The strongest responses are not from genes involved in pluripotency, but those involved 

in other aspects of early embryo development. Mash1, Dll1 and Pax6 present as strong 

direct targets of all the Oct4 DBD fusions, while Gata3 and Gata6 are clearly strong 

indirect targets (Fig. 42). Again, there is no distinct difference in response between 

platypus and the eutherians; indeed, for Dll1 and Pax6 the quantitative difference is 

greater between the human and the mouse, compared to between the platypus and the 

mouse. The direction of the response is practically identical for all the species in this 

experiment. 
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Comparing overexpression of Oct4 DBD of different 

species
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Figure 42. Real time PCR results of genes with strongest response 

 

Other results also indicate the similarity of response direction and magnitude (Fig. 43) 

between the platypus and the eutherians. An unexpected but consistent finding is the 

difference in response between the mouse and the human, exemplified here by Cdx2 and 

Hand1. 
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Figure 43. Real time PCR results of other genes with normal response 
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Due to the fact that some pluripotency related genes displayed abnormal regulation, I 

postulated this could be due to excessively high levels of Oct4 competing for binding 

sites, since endogenous Oct4 expression remained intact in this set of experiments. 

 

To address this, a second set of experiments was done where an Oct4 RNAi vector was 

co-transfected with the fusion protein vectors in order to knockdown the endogenous 

Oct4 expression. The results show a normal response for Nanog, suggesting that Nanog 

may be abnormal regulated when Oct4 levels are too high (Fig. 44), while other genes 

now appear to be abnormally regulated. 

 

 

Figure 44. Real time PCR of pluripotency genes with Oct4 RNAi co-transfection. 

When the result for all 48 genes was analyzed, once again there was no qualitative 

difference between the response to platypus and eutherian fusions, just like in the first 

experiment. Thus there is a strong possibility that interesting gene expression changes lie 

outside this selection of 48 genes. 
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To broaden the search for potential targets differentially regulated by platypus Oct4 DBD 

compared to the eutherian Oct4 DBDs, I utilized mouse Illumina BeadArrays to achieve a 

more global readout of gene expression changes resulting from the above over-expression 

experiments. An initial cut-off of two fold change or less from normalized levels yielded 

only a handful of genes that have expression level differences, suggesting that the 

responses are highly similar for all four Oct4 DBD fusions.  

 

In order to avoid missing any subtle change, a lower cut-off of 1.5 fold or less was used, 

and the complete list of these genes is available in Appendix D. This list of several 

hundred genes was then manually analyzed to shortlist those genes that have directionally 

different responses between the platypus and the eutherian group. Only six genes fulfill 

this condition, and none have been previously implicated in playing a role in pluripotency 

(Table 11). Three of these genes have unknown function, whereas two (Nlrp3 and Irf1) 

play a role in the immune response. It is interesting to speculate, as they are 

downregulated in eutherians in contrast to the platypus, that the down-regulation of these 

two immune response genes is functionally related to the requirement for the maternal 

immune system to be suppressed upon eutherian embryo implantation.. 
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Gene name Function Expression Level Change 

2010002N04Rik 

(Nid67) 

Small membrane protein 

(unknown function) 

Upregulated in eutherians, unchanged 

in platypus 

BC055811 

(Igsf21) 

Immunoglobin, 

extracellular (unknown 

function) 

Downregulated in eutherians, 

unchanged in platypus 

Nlrp3 

(Cias1) 

Apoptosis, inflammatory 

response, NALP3 

inflammasome complex 

Downregulated in eutherians, 

unchanged in platypus 

Fbxw5 Ubiquitin cycle (unknown 

function) 

Downregulated in eutherians, 

unchanged in platypus 

Herpud1 Unfolded protein response, 

stress response 

Downregulated in eutherians, 

unchanged in platypus 

Irf1 Transcription factor, 

inflammatory response, 

tumour suppression 

Downregulated in eutherians, 

unchanged in platypus 

 

Table 11. Genes with the greatest gene expression difference between Platypus and 

the eutherian group 

 

 

4.6 Oct4 Full-length Chimera iPS Materials and Methods 
 

 

The use of strong modulators like VP16 and EnR produce Oct4 expression levels that far 

exceed the levels found in an endogenous setting. To create a closer approximation of 

endogenous conditions, full-length mouse Oct4 chimeras containing the elephant and 

platypus DBD were constructed (Fig. 45) to be tested in the iPS cell culture system to 

find out if the platypus chimera will lack the ability to reprogramme mouse fibroblasts 

into iPS cells, in contrast to mouse Oct4. The elephant was chosen for in-group 

comparison because it is the most distantly related eutherian relative to the mouse. 
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Mouse Oct4 Platy DBD

Mouse Oct4 Eleph DBD

Mouse – Eleph Oct4 Chimera

Mouse – Platy Oct4 Chimera

 
Figure 45. Full-length mouse Oct4 chimeras containing elephant or platypus DBD 

 

 

The initial plan was to construct the entire chimera at one go using a fusion PCR strategy 

(Fig. 46).  The mouse Oct4 sections (1&3) were obtained by PCR from a full-length 

mouse Oct4 expression vector, while the elephant and platypus sections (2) were 

obtained by PCR from the Oct4 DBD fusion constructs made in the previous VP16/EnR 

experiments. 

 

 

Figure 46. Fusion PCR strategy for construction of Oct4 chimeras 
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Unfortunately, a PCR product fused from 3 sections could not be obtained in one step. A 

two-step fusion strategy also did not work as only 2 sections of any combination could be 

fused together in total (Table 12). 

 

Attempt Combinations tried Does it work? 

Single PCR Mouse 1 

Eleph 2 

Platy 2 

Mouse 3 

Yes 

Yes 

Yes 

Yes 

One-step fusion PCR Mouse-Eleph 1+2+3 

Mouse-Platy 1+2+3 

No 

No 

Two-step fusion PCR 

(a) 

Mouse-Eleph 1+2 

Mouse-Eleph 2+3 

Mouse-Platy 1+2 

Mouse-Platy 2+3 

Yes 

Yes 

Yes 

Yes 

(b) Mouse-Eleph (1,2) + (2,3) 

Mouse-Eleph (1,2) + 3  

Mouse-Eleph 1 + (2,3) 

Mouse-Platy (1,2) + (2,3) 

Mouse-Platy (1,2) + 3 

Mouse-Platy 1 + (2,3) 

No 

No 

No 

No 

No 

No 

 

Table 12. Exhausting all fusion PCR permutations to produce Oct4 chimera 

 

A new hybrid strategy was adopted that combined fusion PCR with two additional 

cloning steps (Fig. 47). These fragments were to be cloned into the pMXs-gw-Oct4 viral 

expression vector, which already contains full-length wild-type mouse Oct4 (Takahashi 

and Yamanaka 2006). Although the pMXs vector uses Gateway cloning technology, I 

decided to select restriction sites within the Oct4 coding sequence in order to keep the 

sequence between the coding sequence and Gateway clone sites identical, eliminating any 

functional variability that may result from the cloning process. 
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Figure 47. Hybrid PCR-cloning strategy and use of internal RE sites to avoid 

disturbing Gateway clone sites 

 

 

The modified plasmids were sequence verified to be error-free. Then, they were 

transfected into Platinum-E cells in 10-cm dishes for retroviral production. In total seven 

plates of Plat-E cells containing different viral vectors were prepared: Yamanaka’s mouse 

Oct4, Sox2, Klf4, c-Myc, and an empty pMX vector and my two chimeric platypus DBD-

mouse Oct4 and elephant DBD-mouse Oct4 constructs. Finally the viruses were isolated, 

concentrated and used to infect BL6 embryonic fibroblast cells plated on 6-cm dishes.  

For details of the iPS protocol, please refer to Appendix E.  
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The first set of experiment consisted of six conditions including controls and was done in 

triplicate (Table 13). In the two experimental conditions, wild-type mouse Oct4 was 

replaced by either the platypus or elephant Oct4 chimera. 

 

 
 

Table 13. iPS experimental setup 

 

 

4.7 Oct4 Full-length Chimera iPS Results and Discussion 
 

 

On the 5th day of the protocol, the viral-laden media on the 6-cm dishes was aspirated 

away and replaced by fresh ES cell media. Each dish was closely monitored daily for the 

appearance of induced cell colonies. Some of the early colonies stopped growing a few 

days after they appeared, while others grew very rapidly. Curiously, well-defined 

colonies started to appear on the platypus plates (Fig. 48). 
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Figure 48. A selection of photos of induced colonies 

“Day” denotes the number of days post-infection 

Red boxes highlight colonies that failed to continue growing - alternate  

colonies (eg. Day 12 on +Ctrl plate) were then monitored 

Purple colouration on Day 15 due to AP staining 

 

On the 15th day post-infection, one set of plates was treated with alkaline phosphotase 

(AP) which stains for rapidly proliferating cells. Interestingly, the platypus experimental 

plate had the largest number of AP+ colonies, relative to the elephant and the mouse 

plates (Fig. 49). No AP+ colony was detected in the other three control plates. 
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Figure 49. Alkaline phosphate staining on Day 15 post-infection 

 

 

This result does not indicate that the platypus Oct4 chimera is the most effective at 

colony induction, since viral titres were not directly measured and so there may be 

variability in the viral infection efficiency. Nonetheless it is unexpected since the 

platypus Oct4 DBD does not have the eutherian-specific amino acid changes initially 

thought to be involved in the pluripotent function of Oct4, and thus should have no ability 

to induce any colony at all. 

 

To find out if the induced colonies have long-term proliferation ability and maintain ES 

cell-like morphology, eight colonies (large and medium-sized) were picked for each of 

the mouse, elephant and platypus and seeded into a 24-well plate for growth monitoring. 
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Once a colony grows to confluency, it is then re-seeded into a 6-cm dish and stored for 

future analysis. 

 

 

Figure 50. Monitoring the re-seeded iPS cells 

 

 

In all three conditions, there were colonies that robustly proliferated after re-seeding (Fig. 

50). However they did not uniformly display ES cell-like morphology with clearly 

defined colony edges. Some of the fast growing cell populations did not grow in colonies, 

or exhibited a flatter, EC-like morphology (Fig. 51). These variations could have been 

caused by incomplete induction of pluripotency in some of the plates, leading to partially 

reprogrammed iPS cells that are significantly different from ES cells.  
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Figure 51. Three main types of morphology 

 

 

Thus, there is a possibility that the platypus Oct4 chimera could only induce cells to a 

partially reprogrammed state, where the other two eutherian Oct4 chimeras could fully 

reprogramme cells into true iPS cells. To further validate the endogenous activation of 

pluripotency genes, I derived fibroblast cells from mice containing an EGFP reporter 

knocked into the Sox2 locus (Ellis et al. 2004). In these mice, EGFP recapitulates 

endogenous Sox2 expression and this has been used to visualize and identify fully 

reprogrammed cells (Stadtfeld et al. 2008). These mice were available from  Sohail 

Ahmed’s lab (IMB, A*Star, Singapore). 

 

I prepared adult fibroblasts from these mice by dissection to obtain lungs and a short 

section of their tails, which contain a large proportion of fibroblast cells (Fig. 52). These 

tissue samples are rinsed several times, finely minced and then plated onto T75 tissue 

culture flasks for continuous expansion until they reach sufficient cell numbers to be used 



 77 

for the iPS experiments. Due to their faster doubling time and homogeneity of the cell 

population, tail fibroblasts were selected for this purpose. 

 

 

 
 

Figure 52. Primary culture of Sox2-EGFP fibroblast from adult mouse lung and tail 

Green box indicates that tail fibroblasts were used for subsequent iPS experiments 

 

 

The exact same iPS protocol was repeated using these Sox2-EGFP adult fibroblasts 

instead of BL6 embryonic fibroblasts. This time the colony induction process seemed to 

be slower, with distinct colonies appearing from Day 23 post-induction onwards, but they 

then proceeded to proliferate quickly as in the previous experiment. 

 

Here again the platypus plate yielded a surprise when EGFP+ cells started to appear from 

Day 25, shining brightly within some of the induced colonies, similar to the eutherian 

plates (Fig. 53). This data indicates that the platypus Oct4 chimeric construct has the 
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capability to fully reprogramme, based on morphology and the induction of endogenous 

Sox2 expression, adult fibroblast cells into iPS cells further validating the my previous 

finding with embryonic fibroblasts. 

 

 

 
 

Figure 53. A selection of photos of Sox2-EGFP expressing colonies 

 

 

In some of the colonies, the EGFP+ cells make up the majority of the cells, and the 

boundary of the colony is clearly demarcated under visible light and UV light (Fig. 54). 

Later, alkaline phosphate staining confirmed that many of these colonies are AP+ (Fig. 

55). 
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Figure 54. Close up of a Sox2-EGFP positive colony on the platypus plate, Day 31 

post-infection 

 

 
 

Figure 55. Alkaline phosphatase staining of Sox2-EGFP iPS plates 

[+] = mouse Oct4, LH1 = elephant Oct4 chimera and LH2 = platypus Oct4 chimera 

 

 

Although the platypus Oct4 chimera appeared to be capable of fully inducing 

pluripotency in the Sox2-EGFP fibroblasts, a possibility remains that the timing of the 

induction process might be delayed or slower relative to the eutherian Oct4.  
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To investigate this, all the experiment dishes in triplicate were examined daily and a 

colony scoring method was devised. Once the first green colonies begin to appear, all 

colonies are marked and the total number of EGFP+ and EGFP- colonies was counted 

daily for each dish. These figures are then averaged over the three replicates to minimize 

the variation of infection efficiency in each dish. The mean figures are then compiled and 

presented as an area chart to show the absolute growth in the number of colonies over 

time, and the relative growth of the green colonies vs non-green colonies (Fig. 56) 
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Figure 56. Increase in EGFP positive colonies over time 
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Once more the platypus had a surprise in store; instead of the delayed appearance of 

green colonies or a slower proliferation rate of the green colonies, the exact opposite 

occurred. Right from the beginning, the platypus dishes had proportionally more EGFP+ 

colonies and more in terms of absolute numbers than the mouse or the elephant. The 

elephant and the platypus had a higher rate of increase of EGFP+ colonies than the mouse. 

The overall rate of increase in the number of colonies, however, is fairly similar among 

all three species. While a single triplicate experiment is not enough to conclude that the 

platypus Oct4 chimera is better at inducing pluripotency than the eutherian Oct4, results 

so far strongly suggest that it is at least not deficient in this capability. 

 

Finally, there was one last surprise. Of the 46 EGFP+ colonies on one of the platypus 

plates (LH2 plate1), six of them contain a differentiated cluster of cells that contain 

cardiomyocytes, despite the high LIF concentrations in the ES medium to maintain 

pluripotency. These EGFP+ cells beat spontaneously like a tiny heart at about 30 beats 

per minute and are only seen in that one plate, not on the plates of any other species (Fig. 

57).  

 
 

Figure 57. EGFP positive cardiomyocyte cluster in platypus dish 
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Chapter 5: Conclusion and Suggestions 
 

5.1 Key Conclusions 
 

 

Results from the functional studies so far do not show any major cell-level effects caused 

by the coding sequence difference between the platypus Oct4 DBD and that of eutherian 

mammals.  

 

Subtle differences were revealed in the VP16/EnR real-time PCR experiments in the 

magnitude of downstream target responses, but no directionally different responses were 

seen. In the microarray experiment, the expression profile after the VP16/EnR treatment 

was highly similar between the platypus and the eutherians, and the handful of genes 

which did respond slightly differently are not known to be involved in the Oct4-Sox2-

Nanog regulatory network, or pluripotency in general. 

 

Likewise in the Oct4 chimera iPS experiments, the platypus Oct4 DBD chimera was fully 

capable of inducing both mouse embryonic and adult fibroblasts into iPS colonies. In fact, 

current results hint towards the possibility that the platypus Oct4 DBD may be more 

effective at inducing pluripotency than its eutherian counterparts, which seems 

counterintuitive. Either way, my data provides useful structure-function data with respect 

to Oct4 and its ability to reprogramme. Of the four original Yamanaka reprogramming 

factors Oct4 is the only one that was not replaceable by a homolog. Sox2 could be 

replaced by Sox1, 3, 18 and others, Klf4 with Klf2, 5 and others, while Myc is now 

known not to be an essential component. In contrast, Oct4 could not be replaced by Oct1 
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or Oct6 (Nakagawa et al. 2008). It will be interesting to see how far the reprogramming 

potential of Oct4 orthologs extends into the non-mammalian vertebrates. 

 

During the early stages of this project, two assumptions were made. It was believed that 

(1) the early embryonic development in the platypus was in a discrete category separate 

from the eutherians, and that (2) significant amino acid changes in the Oct4 protein near 

the oct-sox interface is likely to have a significant effect on pluripotency. Based on these 

assumptions, a loss-of-function strategy was designed in anticipation of qualitatively 

different results between the platypus and the eutherians. 

 

1. Halfway through my iPS experiments a research study was published that 

revealed the platypus has a simple placenta, formed from trophectoderm-like cells, that 

supports the embryo in the egg (Niwa et al. 2008). This observation suggests that 

platypus early development may not be as discretely different from eutherian 

development as first thought – the eutherian placenta may be an elaboration of a simple 

placenta in early mammals, rather than an outright evolutionary novelty. In that case, the 

platypus would not be a suitable out-group species. In addition, if this had been known 

earlier, an experimental strategy that is more sensitive to the quantitatively different 

results between the platypus and the eutherians would have to be employed. 

 

The study also reported that the full-length platypus Pou5f1 is able to restore self-renewal 

in an ES cell line with its endogenous Pou5f1 expression conditionally repressed by 

tetracycline treatment (Niwa et al. 2008), while zebrafish Pou2 and opossum Pou2 



 85 

homologs are unable to do so. Mouse ES cells maintained using platypus Pou5f1 were 

morphologically indistinguishable from untreated ES cells, expressing Sox2 and Nanog. 

This result contrasts with a similar complementation assay done using the chick PouV, 

where stem cell colonies were generated, but expressed low levels of Sox2 and Nanog, 

had limited capacity to be passaged and exhibited a differentiated morphology (Lavial et 

al. 2007). The researchers also did mutation experiments in the mouse Pou5f1 on amino 

acid positions that differ between Pou5f1 orthologs and Pou2 orthologs in an attempt to 

abolish its pluripotent function, but were unable to do so. Their findings are consistent 

with my experimental results that the platypus Oct4 DBD is capable of pluripotent 

function. 
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Lizard Tcf19PouV

Opossum Pou5f2 Fut7 Tcf19Pou5f1

Platypus Tcf19Pou5f1
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Scaffold 639 (fragment) Scaffold 29

Chr 16
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Mouse Chr 17

Contig22957

Chr 1 Chr 2

Axolotl AmOct4
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Tcf19
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Figure 58. Emergence of Pou5f1 in a mammalian genomic context predates the 

evolution of mammals 

Yellow = orthologs of Pou5f1 

Blue = orthologs of Pou2 

Grey = uncertain due to insufficient surrounding sequence data 

Open block arrows = gene not found 
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Moreover, when we revisit the Pou5f1 gene synteny map, it can be seen that lizard PouV 

gene is already syntenic with the Tcf19 gene, just like in the mammalian genomic context, 

predating the later divergence between reptiles and mammals (Fig. 58). This suggests that 

the earliest opportunity for functional novelty in Oct4 via differences in cis-regulatory 

regions already exist before the platypus. 

 

 

The gene synteny map is then used to create a reconstructed history of the evolution of 

Oct4. A recent study has found an additional Pou5f2 ortholog in the platypus (Niwa et al. 

2008) and latest research suggests that the axolotl AmOct4 is more similar to mammalian 

Pou5f1 than to Pou2 related homologs (Frankenberg et al. 2010). These findings have 

been incorporated in my reconstruction of Oct4 history (Fig. 60). As you can see, Pou5f2 

is likely the ancestral gene, found in the same genomic context in the fish and the frog. 

 

 
 

Figure 59. Reconstructed evolutionary history of Oct4 

Yellow = orthologs of Pou5f1 

Blue = orthologs of Pou5f2 

Grey = uncertain due to insufficient sequence data 

Dashed line = possible gene death 
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The gene duplication event that led to the emergence of paralog Pou5f1 most likely 

occurred before the divergence between amphibians and other tetrapods. Pou5f1 is 

already in the mammalian genomic context in the lizard. Notably, both Pou5f1 and 

Pou5f2 exist in the non-eutherian mammals shown here, suggesting that the loss of 

Pou5f2 occurred at the base of the eutherians. 

 

2. Based on the multi-species alignment, eutherian-specific amino acid changes in 

the Oct4 DBD were identified as having the potential to affect oct-sox binding, and thus 

affect the pluripotent functions of the protein.  

 

These highly-conserved coding sequence changes are most likely to be important to 

eutherian mammals. However, Oct4 is not only involved in pluripotency – it also plays a 

crucial role in the maintenance of the germline (Kehler et al. 2004) and the differentiation 

of cardiomyocytes (Zeineddine et al. 2006). Since the focus of the current project is on 

pluripotency, any importance of the sequence changes to these other functions were not 

evaluated. For example, the unexpected propensity for the platypus Oct4 chimera to 

induce cardiomyocytes even under ES media conditions with high LIF, hints to the 

tantalizing possibility that platypus Oct4 DBD may have an enhanced ability to direct the 

differentiation of heart muscle compared to its eutherian counterpart. 

 

Moreover, it is not clear whether the absence of eutherian-specific changes actually 

inhibit oct-sox binding at the molecular level. Gel shift experiments done by a 

collaborator Ralf Jausch indicated that the platypus Oct4 DBD binds even more strongly 
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to the canonical oct-sox element with mouse Sox2 compared to the binding between 

mouse Oct4 DBD and mouse Sox2,. This result, in conjunction with my results from the 

iPS experiments strongly suggests that the direction of the change is opposite to my 

initial postulation. 

 

5.2 Cis-evolution of Critical Genes 
 

 

Some developmental biologists believe that mutations to the cis-regulatory regions of 

genes are relatively more important to the evolution of morphological features than 

coding sequence mutations (Carroll 2008). In the early stages of this study, it was 

believed that coding sequence changes to transcription factors are essentially as important 

to cell-type evolution as cis-regulatory changes, since transcription factors bind to 

specific DNA binding sites and thus the cis-acting and trans-acting changes operate in a 

continuum.  

 

However, all three core members of the Oct4-Sox2-Nanog regulatory network are critical 

genes for pre-implantation development and also have important functions in other 

aspects of development, such as neural and germ cell development. Thus, the potential 

for lethal mutations is high, and the whole network as a system needs to maintain 

robustness against small changes at the molecular level just to survive the developmental 

process. So although these genes have many downstream targets, the cell-level effects of 

small coding sequence changes may be masked instead of amplified – via compensatory 

mechanisms between the members of the network to prevent the whole network from 

disintegrating due to a small number of replication errors. 
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As such the coding sequence of highly-interconnected, critical genes is not really the 

most optimal target if one wishes to look for small mutations that can result in large 

phenotypic effects. Another approach is to target the cis-regulatory regions. For example, 

in the Nanog promoter assays discussed earlier in Section 4.3, point mutations of only 3 

base pairs could significantly reduce the promoter activity of the Sox2-Oct4 site. 

Moreover, there is no evidence of a Sox2-Oct4 binding site in non-eutherian mammal or 

chick Nanog. In a similar vein, in the Niwa paper the researchers examined the CR4 

region of the platypus Pou5f1 promoter and found that the auto-regulatory element 

involved in the reciprocal inhibition between Pou5f1 and Cdx2 is missing (Niwa et al. 

2008). This is important because high Cdx2 expression is essential for placental 

formation. When promoter assays were performed on the CR4 region they found that it 

had no enhancer function. They postulate that this difference may result in the simpler 

placenta of the platypus in contrast with the sophisticated eutherian placenta. 

 

5.3 Future Work 
 

Since the platypus Oct4 can maintain pluripotency, while the zebrafish paralog cannot, 

one way forward is to study the PouV gene in the Anolis carolinensis to find out if the 

pluripotent capability of the Oct4 protein itself already exists in the lizard. The gene 

vicinity can also be compared with the mouse and the platypus to see if there are any 

differences in the cis-regulatory elements. 
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Apart from the study of pluripotency, from a purely technical perspective it would be 

interesting to perform more quantitative experiments to find out how much more efficient 

the platypus Oct4 chimera is in the induction of iPS relative to mouse Oct4, and to 

characterize the specific amino acid changes that lead to improved efficiency. The use of 

platypus Oct4 chimera as a supplement for the directed differentiation of cardiomyocytes 

can also be further investigated. 
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Appendix A 
 

BAC Library Screening Database 
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Appendix B 
 

BAC Screening Protocol 

 
This protocol has three parts: 

I. Radioactive Work Protocol 

II. BAC High-density Filter Screening 

III. Protocol for reading BAC IDs 

 

Part I. Radioactive Work Protocol 

This information is to be used as an introduction to basic procedures and safety in 

research work involving radioactive materials. It is specific to Robson Lab, Genome 

Institute of Singapore, and reflects the recommended procedures in Jan 2007. 

 

For further details and clarifications please consult the current radiation work committee. 

 

General Procedures 

1. Please be suitably attired prior to entry into radiation room. 

 

Attire:  

- Long-sleeved lab coat 

- Plastic goggles (if not wearing spectacles) 

- TLD Badge (the black dosimeter tag, to be worn on the collar/lab coat 

chest pocket) 

- Covered shoes. 
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2. Enter using access pass. 

 

3. Please put on double-gloves after entering the room. 

The outer layer is to be discarded into radioactive waste box immediately when 

contaminated (or suspect to be contaminated). The inner layer, if not contaminated, can 

be worn until the end of the experiments. 

 

4. Turn on the Geiger counter and begin checking the work area. 

Turn the Geiger counter’s dial to“X1”. Turn audible to “On”. It should start clicking 

randomly and sparsely (on average about once a second). Free the pancake scanner arm 

and scan yourself and the work area by hovering the pancake over the area of interest. 

The wire mesh detector must face the direction you want to scan. Do not let the detector 

touch anything - it may become contaminated.  To verify that the counter is working, 

simply open the radioactive waste box and hover the pancake over it – the counter should 

click vigorously (several clicks per second). Close the waste box when done, and check 

your gloves with the counter. 

 

It is recommended to check other areas such as: Door handle, light switch, fridge/freezer 

handle, outside of radioactive waste boxes and heating blocks. This is to verify that the 

previous user did not leave any contamination behind. 

 

5. Set up the Geiger counter to monitor your work area. 
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Rotate the pancake to face the work area. Hover your gloves or other items over the 

detector to check for contaminations. 

 

6. Proceed with radiation work. 

Guidelines: 

- Be very sure of your protocol. If possible, rehearse the procedure 

without the radioactive material first. 

- Minimize exposure time. The radio-material should be in its lead 

container or in the acrylic housing box almost all of the time. You 

should be behind the acrylic shield whenever the radio-material is not 

covered adequately. If you must raise the tube into the air, work 

quickly (but do not rush!) and return the tube into container. 

Remember that your fingers are still absorbing the radiation even 

though your body is behind the shield. The clattering counter will 

encourage you to work quickly. 

- Handle the material confidently and cautiously. Avoid accidental 

splashes and spills. If these occur, clean up promptly. Check often with 

counter. 

- Check your gloves often. Change when in doubt. Err on the side of 

wastefulness. 

 

7. Clean up any contaminations promptly. 
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Use the Radiac detergent solution to wipe up the spill. Throw the contaminated paper 

towels into the large radioactive waste box. Repeat until the counter reads only 

background levels. 

 

8. When the experiment is complete, scan the entire work area again. 

This practice protects the next user, who could be you. 

 

9. Scan yourself. 

Check gloves, coat sleeves, your lab coat, pants and don’t forget your shoes as well. This 

practice protects you and lab members outside the radiation room. Also scan any items or 

reagents that you are taking out of the room, such as film cassettes or buffer bottles. 

 

10. Throw away your gloves. 

Into appropriate bins. 

 

11. You can now leave the radiation room. Turn off the lights and lock the room if 

there are no further users. 

 

Handling 32P 

1. The radio-material will come in a yellow lead container. It is cylindrical and very 

heavy. 
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2. When first delivered, bring it into the radiation room. Open the box and remove the 

packing material and notes. Be aware that the lead container is heavy, do not let it drop! 

Store the lead container at 4 deg C. 

 

3. Once you are ready to use the 32P, take the lead container out of the fridge and place 

behind the acrylic shield. Set up the Geiger counter as usual. 

 

4. Break the paper seal on the side holding the cap of the lead container. Turn anti-

clockwise to loosen the cap until it stops turning. Now lift the cap away. Note: The cap is 

heavy! 

 

5. Loosen the internal plastic cap by turning anticlockwise. Lift the cap and place it inside 

facing up. You will see a splash-guard with a depression in the middle. The Geiger 

counter will start to clatter. 

 

6. Now use a short 10ul filter-tip (only use the short one! The long one may splinter) and 

jab it firmly (not too hard) into the depression to loosen the splash guard. Lift vertically, 

and shoot the tip+splash-guard into radioactive waste bin. Note: The Geiger counter will 

scream like mad. Be prepared for the sound. 

 

7.  Prepare your sample tubes on acrylic box and open their caps. Draw the required 

amount of 32P (red color liquid) and transfer into your sample tubes. Work quickly to 

minimize exposure. Close caps and cover the acrylic box. 
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8. Re-cap the plastic cap and lead cap on the yellow container. Check the lead container 

and work area for any splash contamination with the Geiger counter. 

 

9. If completely used up, put the lead container into the radiation waste area. Otherwise, 

return the container to 4 deg C. 

 

Part II. BAC High-density Filter Screening 

Overview 

Here are the recommended reagent amounts: 

 

Number of filters per library = 8 or more 

Amount of initial [Gamma32P]-ATP needed per filter = 1.0ul (10uCi) 

Exposure time = 1-3 hours using storage phosphor screen and Typhoon phosphoimager. 

Approx. 1 hour exposure per 10 000 cpm (measured 1 cm above the filter). 

 

 

1. 5’ End Labeling reaction 

Dilute the oligo probes (~30bp desalt quality) to 5 uM (usually 1:20 dilution). 

 

Reaction Mix 

     Per 10ul 

Nuclease-free water (Ambion)  2 
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Probe (5 uM)    1 

[Gamma-32P]-ATP   5 

10X Kinase Buffer (NEB)  1 

T4 Polynucleotide Kinase (Ambion) 1 

 

(inside the radioactive room) 

- gently mix 

- incubate at 37C for 1 h  

 

2. Preparation of NucAway spin columns 

- tap column to settle dry gel 

- hydrate using 650ul nuclease-free water 

- cap, vortex, tap out air bubbles and leave at room temperature 5 – 15 min 

- can be stored up to 3 days at 4C if needed 

- spin column at 750g for 2 min (put into elute tube) 

- check orientation 

- discard elute tube 

- apply sample directly to centre of gel bed (don’t touch sides or gel surface) 

- place column in collection tube, using the same orientation as the first spin 

- spin column at 750g for 2 min 

- discard spin column into radioactive waste container 

- store sample at -20C (radioactive room freezer) 
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3. Scintillation counter (optional step) 

- 1ul of labeled probe + 1ul of scintillation fluid in an eppendorf tube 

- go to level 4 scintillation counter, select 32P option 

- obtain 1 minute average 

- typical readings about 1 million counts per minute (cpm) 

 

4. Hybridization using UltraHyb-Oligo (Ambion) 

- preheat a 125ml pack to 55C for 5 min to dissolve precipitated materials 

- take the BAC high-density filters and separate with a piece of nylon mesh between 2 

filters 

- up to 4 filters (+3 mesh) can fit into one long hybridization bottle 

- add a minimum of 50ml of UltraHyb into bottle (for 4 filters, add 80ml) 

- set hybridization oven to 42C, prehyb the blot for 30 min with low rotisserie speed 

- decant the hyb solution into a 50ml falcon tube 

- add ~1 million cpm/ml (final conc) of labeled probes from Step 2 into falcon tube 

 

Usually 10ul for 8 filters, 15ul for 13 filters (at least 1ul per filter) 

 

- cap the falcon tube and invert a few time to mix 

- add the hot mixture back into the hyb bottle. 

- hyb overnight in the oven at 42C for 14-24h 

 

5. Washing and mounting the hot filters 
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- pour away the hot hyb buffer into liquid radiowaste bottle 

- immediately add 50ml 1xSSC (+0.5%SDS) and wash in hyb oven 42C for 1 hour 

- (optional) pour out and repeat the wash step 

- pour out the 1xSSC and place on paper towels to absorb excess hot solution 

- when sufficiently dry, prepare transparent plastic sheets 

- mount the filter between two transparent plastic sheets 

- store the mounted filters in an acrylic container at 4C. 

 

6. Visualizing labeled filters in phosphoimager 

-Collect large storage phosphor screens from Level 4 

- Place hot filter on the velvet side of the X-ray cassette, with pencil marks/printed 

numbers facing up 

- Position the phosphor screen between the enhancer (white surface) and the hot filter, 

with the white part of the phosphor facing the filter. 

- Close the cassette and leave it for a duration dependent on this formula: 

 

1 hour exp per 10 000 cpm at 1 cm distance. 

 

Eg. A 3 000 cpm hot filter must be exposed for at least 3 hours 20 minutes 

-open cassette, wipe clean and return the hot filter back into 4C. 

- bring the phosphor screen down to Level 4 inside its cardboard box to use Typhoon 

 

Part III. Protocol for Reading BAC IDs 
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The protocols for reading BAC clone identity are different for BACPAC or AGI/CUGI 

resources. Please refer to the company documentation for specific details. 

 

 

 

 

BACPAC Protocol For Reading BAC IDs 

Overlay -  
Read Panel No., Coordinates 

Vector Sheet -   
Filter No., Vector, Plate Range 

Plate Locator -  
Determine exact plate 
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AGI/CUGI Protocol For Reading BAC IDs 

Field2 Field6 Field3 

Field4 

 

Field1 

 

Field5 

 

Grid Pattern – Field No., Coordinates Field Chart –  
Duplication Pattern, Plate Range 

Decoder –  
Filter No., Exact plate No. 



 110 

Appendix C 
 

Real-time PCR Protocol 

 
This protocol has three parts: 

 

IV. Preparing RNA 

V. Preparing cDNA 

VI. BioMark operation 

Part I. RNA preparation 
 

Harvesting cells 

 

1. Wash the cells in 1 x PBS. 

2. Add 1ml Trizol to dish/well. Pipette up and down to disperse cells. 

3. Transfer into a 1.7ml microfuge tube. 

4. Proceed to RNA extraction or store at -80C immediately. 

 

RNA Extraction (adapted from Kevin’s protocol) 

 

1. Incubate at room temp for 5 min. 

2. Add 200ul chloroform. Shake vigorously for 15 sec. 

3. Incubate at room temp for 3 min. 

4. Spin at 13000 rpm, 4C for 15 min. 

5. The liquid will separate into two phases. Carefully pipette ~450ul of the top phase 

into a new tube, avoiding the protein interface. 

6. Add 450ul 70% ethanol. Mix by inverting tube. 

7. Apply 700ul to RNA kit column (from Qiagen RNeasy Mini Kit). 

8. Spin at 13000 rpm, 15 sec (this and subsequent spin steps at room temp). Discard 

flow-through. 
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9. Add remainder from step 7 to column. 

10. Spin at 13000 rpm, 15 sec. Discard flow-through. 

11. Add 700ul buffer RW1 to column. 

12. Spin at 13000 rpm, 15 sec. Discard collection tube. 

13. Transfer column to new collection tube (provided by kit). 

14. Add 500ul buffer RPE. 

15. Spin at 13000 rpm, 15 sec. Discard flow-through. 

16. Add 500ul buffer RPE. 

17. Spin at 13000 rpm, 15 sec. Discard collection tube. 

18. Transfer column to clean centrifuge tube (not provided by kit) 

19. Dry the column by spinning 13000 rpm for 1 min. Discard tube. 

20. Place column in a new microfuge tube for elution (provided by kit) 

21. Add 30ul RNase-free water directly to the membrane. Let it stand for 1 min. 

22. Spin at 13000 rpm, 1 min. 

23. Repeat steps 21-22 

24. Quantitate by Nanodrop 

25. Store at -80C. 

 

Check RNA yield and quality 

 

1. Use 1.5ul per sample in the Nanodrop machine. A good yield of RNA should be ~ 

100 – 1000 ng/ul depending on cell number. 

2. For RNA, optimal 260/280 ratio is around 1.9 

3. For RNA, optimal 260/230 ratio is around 1.6 
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4. Check the UV spectrum, if it there is a smooth curve peaking at 260 nm, the RNA 

quality is good. 

Part II. cDNA preparation 
 

Reverse Transcription  

(Using ABI High-capacity cDNA Reverse Transcription Kit (4368813) 

 

1. Prepare reactions on ice and remember to use filter tips. 

2. Two sets of reactions to be made: RT mix and RNA mix. 

3. For the RT mix, prepare a master mix using the below ratios: 

10✕ RT Buffer     2.0 

25✕ dNTP Mix (100 mM)   0.8 

10✕ RT Random Primers   2.0 

MultiScribe™ Reverse Transcriptase 1.0 

Nuclease-free H2O    4.2 

Total per Reaction    10.0 ul 

 

4. For the RNA mix, prepare individually the below: 

 

RNA sample   (1 ug equivalent volume) 

Nuclease-free H2O  Top up to 10 ul 

Total per Reaction   10.0 ul 

 

5. Pipette 10 µL of RT master mix into each well of 8-tube PCR strip or 96-well 

reaction plate. 

6. Pipette 10 µL of RNA sample into each well, pipetting up 

and down two times to mix. 

7. Seal the plates or tubes. 

8. Briefly centrifuge the plate or tubes to spin down the 

contents and to eliminate any air bubbles. 

9.   Place the plate or tubes on ice until you are ready to load the 

thermal cycler (set rxn volume to 20ul): 
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Temperature (°C)   25   37   85   4 

Time    10 min  120 min  5 sec   ∞ 

 

10.  Store the cDNA at -20C. 

 

Pooling TaqMan assays 

 

1. Combine equal volumes of each 20X Taqman Gene Expression Assay, up to 100 

assays (max. 48 for BioMark).For BioMark, add 10ul of each assay in a 

microfuge tube. 

2. Dilute the pooled TaqMan assays using TE buffer such that each assay is at final 

concentration of 0.2X. For BioMark, add 520ul TE for final volume of 1ml. 

 

Pre-Amplification 

 

1. Prepare the preamplification mix using the below ratios: 

 

TaqMan PreAmp Master Mix (2X)  5.0 

Pooled assay mix (0.2X)    2.5 

cDNA sample     2.5 

Total per Reaction     10.0 ul 

 

2. Place the 8-strip or plate into PCR machine with these cycle conditions: 

 

Temperature (°C)  95   95  60  4 

Time   10 min (hold)  15sec  4 min  ∞ 

       └─ 10 cycles ──┘ 

 

3. Upon completion, immediately place on ice. 

4. Dilute 1:5 using TE buffer (Add 40ul TE buffer to each reaction) 

5. Store at -20C. 

 

Part III. BioMark operation 
 

Assay and Sample Preparation 

 

1. Remember to use filter tips. 
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2. Two sets of reactions to be made: Assays and Sample mix 

3. For the Assays, prepare individually using the below ratios: 

20X TaqMan Gene Expression Assay   2.5 

DA Assay Loading reagent   2.5 

Total volume per Reaction   5.0 

 

4. For the Sample, prepare a master mix using these ratios: 

 

TaqMan Universal PCR Master Mix  2.5 

DA Sample Loading reagent   0.25 

cDNA sample(from preAmp step)  2.25 

Total volume per Reaction   5.0 

 

5. Vortex briefly, spin down and place these reactions on ice while priming the chip. 

 

Priming the Chip 

 

1. Open a new pack.  

2. Caution! Use the chip within 24 hours of opening.  

3. Using the syringe provided, inject control line fluid into each of the two 

accumulators on the chip.  

4. Remember to insert the needle all the way into the gasket. Fill up to the lowest 

mark on the accumulator well. 

5. Caution! Do not spill control line fluid on any other part of the chip. 

6. Place the chip into NanoFlex IFC controller. Note the A1 position. 

7. Press “Admin”, the password is admin. 

8. Select 113x Chip Prime script to run (approx 10 min to complete) 

9. Caution! Load the chip within 30 min after priming. 

Loading the Chip 

 

1. Remove primed chip and peel the protective blue film from bottom of chip. 

2. Place the chip on the black-coloured work station. 
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3. Load the Assays using a short 10ul filter tip. Assay inlets are on the left side of 

the chip. Do not go pass the first stop on the pipette, avoid introducing bubbles. 

It’s OK to load slightly less than 5ul.  

4. Load the Samples in the same manner. Sample inlets are on the right side of the 

chip. 

5. Place the chip into NanoFlex IFC controller. 

6. This time select the sample loading script to run (approx 1 hour to complete) 

7. Caution! Start the run within 4 hours after loading. 

Power Up the BioMark Instrument 

 

1. Press the big round button (jacketed by octagonal plastic) on the left side of the 

instrument. 

2. Press the square button on the right side. 

3. Press the green switch on the left side. 

4. Click the BioMark Data Collection Software icon to launch the software. 

5. Check the status bar to make sure that the cooling process has started (approx 1 

hour to complete) 

6. Instrument will be ready when it is cooled to -5C. Begin the run within an hour of 

that. 

 

Starting the run 

 

1. Remove loaded chip and remove any dust over the top of chip centre using a 

small piece of tape. 

2. Place the chip into the BioMark Instrument loading tray. Note the A1 position. 

3. Click Start 
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4. Click Load Chip 

5. Type the barcode number 

6. Browse to file location for saving data. 

7. Application type: Gene Expression 

8. Assay: Single probe 

9. Browse to find thermal protocol file (only one available) 

10. Select Auto Exposure, Passive Reference ROX, Probe Type FAM-MGB. 

11. Verify chip run info. 

12. Start Chip Run (approx 3 hours to complete) 

Data analysis 

 

1. Click the BioMark Real-Time PCR Analysis software icon to launch software. 

2. Click Open Chip Run 

3. Analysis setting is Auto (Detectors). Click Analyze. 

4. Select Sample Setup to label your Samples. 

5. Select Detector Setup to label your Assays. 

6. Export data as a .csv file. Transfer file out using a thumbdrive. 

Copy and paste wholesale into Cell A1 of the “BioMark_16x48_version2” Excel 

template made by Andrew and Lee Thean. 
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Appendix D 
 

Oct4 DBD VP16 / EnR Microarray Results 
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Appendix E 
 

Mouse iPS Cell Protocol 

Required Materials: 

Please prepare the below reagents before starting the protocol. 

(A) Viral packaging cells (Plat-E) 

Prepare FP medium with the following components: 

Media components Amount for 500ml 

10% FBS 50ml 

50U and 50mg ml
-1

 Pen/Strep 2.5ml 

DMEM containing 4.5gl
-1

 

glucose 

Fill to 500ml 

 

Blasticidin S hydrochloride 

Dissolve in distilled water at 10 mg ml
-1 

and sterilize through a 0.22µm filter. Aliquot and 

store at -20
○
C. 

Puromycin 

Dissolve in distilled water at 10 mg ml
-1

 and sterilize through a 0.22µm filter. Aliquot 

and store at -20
○
C. 

Polybrene (Hexadimethrine bromide) 

Dissolve 0.8g of polybrene in 10ml of distilled water for a 10X stock (80mg ml
-1

). Dilute 

1ml of 10X stock solution with 9ml of distilled water, filter with a 0.22µm filter. Store at 

4
○
C. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(B) Fibroblasts (balb/c) 

Prepare Mef Medium with the following components: 

Media components Amount for 500ml 

10% FBS 50ml 

50U and 50mg ml
-1

 Pen/Strep 2.5ml 

L-glutamine 5ml 

DMEM containing 4.5gl
-1

 glucose Fill to 500ml 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(C) ES colonies 

Prepare ES medium with the following components:  

Media components Amount for 500ml 

15% FBS 75ml 

50U and 50mg ml
-1

 Pen/Strep 2.5ml 

L-glutamine 5ml 

NEAA 5ml 

2-mercaptoenthanol 1ml 

DMEM containing 4.5gl
-1

 glucose Fill to 500ml 

LIF 2ml 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Induction of Pluripotent Stem Cells from Fibroblast Cells (Modified 

from Tahira’s protocol) 

A. Plat-E Production  
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This procedure takes around 3 days, depending on the cell number required. 

Thawing Plat-E (Platinum-E) cells 

1. Prepare 10ml of FP medium in a 15-ml tube. Prepare a 15-cm tissue culture dish 

(no need to gelatin-coat). 

2. Remove vial of frozen Plat-E stocks from the liquid nitrogen tank and put the vial 

in a 37
○
C water bath until most (but not all, a small portion still thawing) cells are 

thawed. Note that each tube contains 6 million Plat-E cells. 

3. Wipe the vial with ethanol and transfer the cells to the 15-ml tube with FP 

medium. 

4. Centrifuge at 180g for 5min and remove supernatant. 

5. Resuspend the cells with 10ml of FP medium and transfer to the 15-cm plate. 

Incubate the cells in a 37
○
C, 5% CO2 incubator. 

6. The next day, replace the medium with new FP medium supplemented with 

puromycin and blasticidin S hydrochloride. For a 20ml FP medium, add 20µl of 

1mg ml
-1

  puromycin stock and 20µl of 10mg ml
-1

 .(Note: Add the puromycin and 

blasticidin freshly to the medium for each time usage.) 

 

 

 

Passaging Plat-E cells 

1. Aspirate the spent medium and add 20ml of PBS. Rinse the surface of the cells 

with PBS and aspirate. Add 4ml of 0.05% trypsin and incubate for 3 min in the 

37
○
C incubator.  
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2. Detach cells from the flask by tapping and inactivate trypsin with 20ml of FP 

medium and break cells into single cell suspension by pipetting up and down 

several times. Seed them into new 15cm dishes (Up to 1:4 ratio). 

3. Passage Plat-E cells until sufficient cell number is produced. Note that each 

confluent 15cm dish contains approx. 20 million live cells. 

B. Retrovirus Production 

This procedure takes about four days. 

Day ONE: Seeding the appropriate number of Plat-E cells 

Note: FP culture does not contain puromycin or blasticidin. These antibiotics will not be 

used from this point onwards. 

 

1. Aspirate the spent medium and wash the cells with 20ml of PBS. Aspirate the 

PBS and add 0.05% trypsin and incubate for 3 min in the 37
○
C incubator. Prepare 

a number of 10-cm tissue culture dishes as required. 

2. After incubation add 20ml of FP medium and dislodge the cells into single cell 

suspension. Transfer the cells into a 50ml tube.  

3. Centrifuge the cells at 180g for 5 min. 

4. Discard the supernatant and break the pellet by finger tapping and add appropriate 

volume of FP medium.  

5. Count the number of cells and seed cells at 8 million cells (in 10ml of FP 

medium) per 10cm dish and incubate overnight at 37
○
C, 5% CO2 incubator. 
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(Note: At least one Plat-E dish should be prepared for one pMX plasmid DNA. Eg: If 

you have four pMXs plasmid DNA (encoding Oct3/4, Sox2, Klf4 and c-Myc), then 

you should prepare a minimum of four plates of Plat-E cells for transfection.) 

 

DAY TWO: Transfection of pMXs plasmid DNA into Plat-E 

 

1. Transfer 0.3ml of DMEM into a 1.5ml eppendorf tube (Alternatively you can 

prepare a master mix in a 15-cm tube). 

2. Add 27µl of Fugene 6 transfection reagent per 0.3ml of DMEM. Incubate for 

5min at room temperature. 

3. Add 9µg of pMXs plasmid DNA (encoding Oct3/4, Sox2, Klf4 and c-Myc) drop-

by-drop into the Fugene 6/DMEM- containing tube, mix gently by finger tapping 

and incubate for 15mins. 

4. Add the DNA/Fugene 6 complex dropwise into the Plat-E dish and incubate 

overnight at 37
○
C, 5% CO2 incubator. Also, transfect with a suitable control eg. 

empty vector. Having a control is critical. 

 

Also, on this very day, thaw inactivated MEFs onto gelatin coated plates: 

1. Coat 6cm dishes with 10ml of gelatin. Incubate for 30mins at room temperature. 

2. Prepare 10ml of MEF medium on a 15ml tube. 

3. Remove vial of inactivated MEF (frozen down at 2.0 x 10
6
) from liquid nitrogen 

stock and place it onto the 37
○
C water bath until most (but not all, a small portion 

still thawing) cells are thawed. 
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4. Transfer cells to the tube with MEF medium and centrifuge at 160g for 5mins. 

5. Aspirate the supernatant and add appropriate medium to seed cells. Each iMEF 

tube can used to seed six 6cm dishes. 

 

DAY THREE: Changing spent medium from the Plat-E plates 

Note: From this point onwards, standard virus handling procedures are to be followed. 

The supernatant in Plat-E plates contain retroviruses. Remember to immerse used 

labware and unwanted cultures in bleach separately before disposal. 

 

1. Aspirate the transfection reagent-containing medium. (Aspirate separately using 

the pipettor into bleach beaker. DO NOT USE VACUUM SUCTION!) 

2. Add 6ml of fresh FP medium and return cells to the incubator. 

 

Also, on this very day, prepare BL6 fibroblasts which will be re-programmed into 

pluripotent stem cells. 

1. MEFs used for re-programming should be of passage <3. Thaw the cells using the 

MEF medium. Note that each tube contains 3 million cells. 

2. Centrifuge at 160g for 5mins. Aspirate the supernatant and add appropriate 

volume of MEF medium. 

3. Seed approximately 267,000 cells onto each 6cm dish of the inactivated MEFs 

that were prepared the day before. 

4. Incubate the dish overnight at 37
○
C, 5% CO2 incubator. 
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DAY FOUR: Harvesting the viruses and infecting the BL6 fibroblasts 

Note: Remember to follow standard virus handling procedures. 

 

1. Collect the medium for the Plat-E cells (~6ml) by using a 10ml sterile disposable 

syringe, filtering it through a 0.45µm pore size cellulose acetate filter, transferring 

into a 15ml tube, from each of the pMX plasmid DNA plate. 

2. Add 5µl of 8 mg ml
-1 

polybrene solution into the filtered virus-containing medium. 

Mix gently by pipetting up and down. 

3. Make a mixture of equal parts of the medium containing Oct3/4, Sox2, Klf4 and 

c-Myc retroviruses. Retroviruses should be used freshly. Do not freeze/thaw 

the retroviruses as it will decrease the titer of the retrovirus. 

4. Aspirate the medium from the BL6 dishes and add appropriate amounts of the 

polybrene/virus containing medium. Typically, 1ml of each factor is added to 

each 6cm dish (ie. 4 factors = 4ml total per dish). For the “Empty vector only 

control” plates, add 4ml of empty vector virus-containing medium. For the “No 

Infection control” plates, simply add fresh FP medium. Incubate the cells from 

4hrs to overnight at 37
○
C, 5% CO2 incubator. 

 

C. Monitoring iPS Progress 

 

DAY FIVE: Changing the spent medium on the BL6 plates 

Note: Remember to follow standard virus handling procedures. 
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1. Aspirate the medium and add fresh FP medium. 

 

DAY SIX – TWENTY: Changing the spent medium on the BL6 plates 

Note: No need for virus handling procedure from this point onwards. 

 

1. Aspirate the medium and switch to fresh ES medium. Change medium daily. 

2. One day before picking the colonies, thaw inactivated MEFs onto a 24-well plate. 

 

D. Handling iPS Cells 

Picking up the iPS colonies 

 

1. Aliquot 20 µl of 0.25% trypsin per well of a 96-well plate. 

2. Remove the spent medium from the fibroblast dish and add 10ml of PBS. 

3. Aspirate the PBS and add 5ml pf PBS. 

4. Pick colonies from the dish using a glass Pasteur pipette and transfer the colonies 

using a pipetman into the 96-well plate with trypsin. Incubate for 15mins at at 

37
○
C. 

5. Add 180 µl of ES medium to each well, and pipette up and down to break up the 

colony to single cells. 

6. Transfer the cell suspension into the well of a 24-well plate with inactivated 

MEFs. Add 300 µl ES medium and incubate until cells reach 80-90% confluency. 

At this point they should be passaged into 6-well plates. 6 well plates with 

inactivated MEFs should be ready a day before the passage. 
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Expansion of iPS cells 

 

1. Aspirate the medium and wash the cells with 1 ml PBS. 

2. Remove PBS completely and add 0.1ml of 0.25% trypsin and incubate at 37
○
C for 

10min. 

3. Add 0.4ml of the ES medium and suspend the cells by pipetting up and down to 

single cell suspension. 

4. Transfer the cell suspension to a 6- well plate and add 1.5ml ES medium and 

incubate at 37
○
C, 5% CO2 incubator until cells reach 80-90% confluency in the 6 

well plates. At this point, prepare frozen stock of the cells. 


