157 research outputs found

    Improving the Accuracy of Industrial Robots by offline Compensation of Joints Errors

    Get PDF
    The use of industrial robots in many fields of industry like prototyping, pre-machining and end milling is limited because of their poor accuracy. Robot joints are mainly responsible for this poor accuracy. The flexibility of robots joints and the kinematic errors in the transmission systems produce a significant error of position in the level of the end-effector. This paper presents these two types of joint errors. Identification methods are presented with experimental validation on a 6 axes industrial robot, STAUBLI RX 170 BH. An offline correction method used to improve the accuracy of this robot is validated experimentally

    CALIBRATION OF CAPACITIVE SENSORS AND ELECTRONIC LEVELS FOR THE STRAIGHTNESS MEASUREMENTS USING MULTIPROBE METHOD

    Get PDF
    In this work, the straightness length 300 mm measurement under nanometer uncertainty. The proposed methodology represents a process known as propagation using the assumption of small displacement which leads to solving an overdetermined linear system. The experimental studies were carried out on the capacitive sensors and electronic levels. The least squares mathematic method is apply to calculate the optimal solution. This method requires taking into account the uncertainties of the two different types of sensors leads to method of weighted least squares. The first step is to calibrate the sensors and to estimate the effect on the calculated straightness

    Z calibration of the LNE ultra precision coordinate measuring machine

    Get PDF
    The Laboratoire National de Métrologie et d’Essais (LNE) has developed an innovative ultra precision coordinate measuring machine [1,2] traceable to the national length standard. This machine can be equipped with different kinds of sensors and is dedicated to the measurement with nanometer uncertainties of features, standards and in more general way three-dimensional objects. The measuring range is 300 mm x 300 mm x 50 μm. The objective in term of uncertainty is to reach 30 nm in X and Y directions for a 300 mm displacement and about few nanometers for the 50 μm vertical displacement. For the geometric calibration of this machine, dedicated procedures have been developed. The present paper will focus more specifically on the one used for the Z calibration

    LNE Activies in Nanometrology: flatness reference calibration algorithm

    Get PDF
    The Laboratoire National de Métrologie et d’Essais (LNE) has developed an innovative ultra precision coordinate measuring machine [LAH07] traceable to the national length standard to measure three-dimensional objects with nanometric uncertainties (figure 1). The measuring range is 300 mm x 300 mm x 50 μm. The objective in term of uncertainty is to reach 30 nm in X and Y directions for a displacement of 300 mm and about few nanometers for a vertical displacement of 50 μm. On this machine, we use four capacitive sensors to measure the position along z direction. These sensors target the flat surface of cylinders (300 mm diameter) used as flatness references. To measure the shape of these aluminum references with nanometric uncertainties, we propose a measurement method based on a propagation process in which we introduce an angular measurement to compensate the curvature error inherent in this method. The measurement process uses the same sensor technology (capacitive sensor) we use on the machine. This paper presents the measurement method, its validation and the first results

    Relationship between Fungal Colonisation of the Respiratory Tract in Lung Transplant Recipients and Fungal Contamination of the Hospital Environment

    Get PDF
    International audienceBackgroundAspergillus colonisation is frequently reported after lung transplantation. The question of whether aspergillus colonisation is related to the hospital environment is crucial to prevention.MethodTo elucidate this question, a prospective study of aspergillus colonisation after lung transplantation, along with a mycological survey of the patient environment, was performed.ResultsForty-four consecutive patients were included from the day of lung transplantation and then examined weekly for aspergillus colonisation until hospital discharge. Environmental fungal contamination of each patient was followed weekly via air and surface sampling. Twelve patients (27%) had transient aspergillus colonisation, occurring 1–13 weeks after lung transplantation, without associated manifestation of aspergillosis. Responsible Aspergillus species were A. fumigatus (6), A. niger (3), A. sydowii (1), A. calidoustus (1) and Aspergillus sp. (1). In the environment, contamination by Penicillium and Aspergillus was predominant. Multivariate analysis showed a significant association between occurrence of aspergillus colonisation and fungal contamination of the patient’s room, either by Aspergillus spp. in the air or by A.fumigatus on the floor. Related clinical and environmental isolates were genotyped in 9 cases of aspergillus colonisation. For A. fumigatus (4 cases), two identical microsatellite profiles were found between clinical and environmental isolates collected on distant dates or locations. For other Aspergillus species, isolates were different in 2 cases; in 3 cases of aspergillus colonisation by A. sydowii, A. niger and A. calidoustus, similarity between clinical and environmental internal transcribed spacer and tubulin sequences was >99%.ConclusionTaken together, these results support the hypothesis of environmental risk of hospital acquisition of aspergillus colonisation in lung transplant recipients

    Analysis of a compartmental model of endogenous immunoglobulin G metabolism with application to multiple myeloma

    Get PDF
    Immunoglobulin G (IgG) metabolism has received much attention in the literature for two reasons: (i) IgG homeostasis is regulated by the neonatal Fc receptor (FcRn), by a pH-dependent and saturable recycling process, which presents an interesting biological system; (ii) the IgG-FcRn interaction may be exploitable as a means for extending the plasma half-life of therapeutic monoclonal antibodies, which are primarily IgG-based. A less-studied problem is the importance of endogenous IgG metabolism in IgG multiple myeloma. In multiple myeloma, quantification of serum monoclonal immunoglobulin plays an important role in diagnosis, monitoring and response assessment. In order to investigate the dynamics of IgG in this setting, a mathematical model characterizing the metabolism of endogenous IgG in humans is required. A number of authors have proposed a two-compartment nonlinear model of IgG metabolism in which saturable recycling is described using Michaelis-Menten kinetics; however it may be difficult to estimate the model parameters from the limited experimental data that are available. The purpose of this study is to analyse the model alongside the available data from experiments in humans and estimate the model parameters. In order to achieve this aim we linearize the model and use several methods of model and parameter validation: stability analysis, structural identifiability analysis, and sensitivity analysis based on traditional sensitivity functions and generalized sensitivity functions. We find that all model parameters are identifiable, structurally and taking into account parameter correlations, when several types of model output are used for parameter estimation. Based on these analyses we estimate parameter values from the limited available data and compare them with previously published parameter values. Finally we show how the model can be applied in future studies of treatment effectiveness in IgG multiple myeloma with simulations of serum monoclonal IgG responses during treatment

    Planetary system LHS 1140 revisited with ESPRESSO and TESS

    Get PDF
    Context. LHS 1140 is an M dwarf known to host two transiting planets at orbital periods of 3.77 and 24.7 days. They were detected with HARPS and Spitzer. The external planet (LHS 1140 b) is a rocky super-Earth that is located in the middle of the habitable zone of this low-mass star. All these properties place this system at the forefront of the habitable exoplanet exploration, and it therefore constitutes a relevant case for further astrobiological studies, including atmospheric observations. Aims. We further characterize this system by improving the physical and orbital properties of the known planets, search for additional planetary-mass components in the system, and explore the possibility of co-orbitals. Methods. We collected 113 new high-precision radial velocity observations with ESPRESSO over a 1.5-yr time span with an average photon-noise precision of 1.07 m s-1. We performed an extensive analysis of the HARPS and ESPRESSO datasets and also analyzed them together with the new TESS photometry. We analyzed the Bayesian evidence of several models with different numbers of planets and orbital configurations. Results. We significantly improve our knowledge of the properties of the known planets LHS 1140 b (Pb ∼ 24.7 days) and LHS 1140 c (Pc ∼ 3.77 days). We determine new masses with a precision of 6% for LHS 1140 b (6.48 ± 0.46 Mpdbl) and 9% for LHS 1140 c (mc = 1.78 ± 0.17 Mpdbl). This reduces the uncertainties relative to previously published values by half. Although both planets have Earth-like bulk compositions, the internal structure analysis suggests that LHS 1140 b might be iron-enriched and LHS 1140 c might be a true Earth twin. In both cases, the water content is compatible to a maximum fraction of 10-12% in mass, which is equivalent to a deep ocean layer of 779 ± 650 km for the habitable-zone planet LHS 1140 b. Our results also provide evidence for a new planet candidate in the system (md = 4.8 ± 1.1Mpdbl) on a 78.9-day orbital period, which is detected through three independent methods. The analysis also allows us to discard other planets above 0.5 Mpdbl for periods shorter than 10 days and above 2 Mpdbl for periods up to one year. Finally, our co-orbital analysis discards co-orbital planets in the tadpole and horseshoe configurations of LHS 1140 b down to 1 Mpdbl with a 95% confidence level (twice better than with the previous HARPS dataset). Indications for a possible co-orbital signal in LHS 1140 c are detected in both radial velocity (alternatively explained by a high eccentricity) and photometric data (alternatively explained by systematics), however. Conclusions. The new precise measurements of the planet properties of the two transiting planets in LHS 1140 as well as the detection of the planet candidate LHS 1140 d make this system a key target for atmospheric studies of rocky worlds at different stellar irradiations.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts

    Get PDF
    Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database. This re-annotation project is being performed exhaustively on every member of each gene family. Performing a family-wide annotation makes the task easier and more efficient than a gene-by-gene approach since many features obtained for one gene can be extrapolated to some or all the other genes of a family. A complete annotation procedure based on the most efficient prediction tools available is being used by 16 partner laboratories, each contributing annotated families from its field of expertise. A database, named GeneFarm, and an associated user-friendly interface to query the annotations have been developed. More than 3000 genes distributed over 300 families have been annotated and are available at http://genoplante-info.infobiogen.fr/Genefarm/. Furthermore, collaboration with the Swiss Institute of Bioinformatics is underway to integrate the GeneFarm data into the protein knowledgebase Swiss-Prot

    GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts

    Get PDF
    Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database. This re-annotation project is being performed exhaustively on every member of each gene family. Performing a family-wide annotation makes the task easier and more efficient than a gene-by-gene approach since many features obtained for one gene can be extrapolated to some or all the other genes of a family. A complete annotation procedure based on the most efficient prediction tools available is being used by 16 partner laboratories, each contributing annotated families from its field of expertise. A database, named GeneFarm, and an associated user-friendly interface to query the annotations have been developed. More than 3000 genes distributed over 300 families have been annotated and are available at http://genoplante-info.infobiogen.fr/Genefarm/. Furthermore, collaboration with the Swiss Institute of Bioinformatics is underway to integrate the GeneFarm data into the protein knowledgebase Swiss-Pro

    Replication Fork Polarity Gradients Revealed by Megabase-Sized U-Shaped Replication Timing Domains in Human Cell Lines

    Get PDF
    In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome
    corecore