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Immunoglobulin G (IgG) metabolism has received much attention in the literature for

two reasons: (i) IgG homeostasis is regulated by the neonatal Fc receptor (FcRn), by a

pH-dependent and saturable recycling process, which presents an interesting biological

system; (ii) the IgG-FcRn interaction may be exploitable as a means for extending the

plasma half-life of therapeutic monoclonal antibodies, which are primarily IgG-based. A

less-studied problem is the importance of endogenous IgG metabolism in IgG multiple

myeloma. In multiple myeloma, quantification of serum monoclonal immunoglobulin

plays an important role in diagnosis, monitoring and response assessment. In order

to investigate the dynamics of IgG in this setting, a mathematical model characterizing

the metabolism of endogenous IgG in humans is required. A number of authors have

proposed a two-compartment nonlinear model of IgG metabolism in which saturable

recycling is described using Michaelis–Menten kinetics; however it may be difficult to

estimate the model parameters from the limited experimental data that are available.

The purpose of this study is to analyse the model alongside the available data from

experiments in humans and estimate the model parameters. In order to achieve this aim

we linearize the model and use several methods of model and parameter validation:

stability analysis, structural identifiability analysis, and sensitivity analysis based on

traditional sensitivity functions and generalized sensitivity functions. We find that all model

parameters are identifiable, structurally and taking into account parameter correlations,

when several types of model output are used for parameter estimation. Based on these

analyses we estimate parameter values from the limited available data and compare

them with previously published parameter values. Finally we show how the model can

be applied in future studies of treatment effectiveness in IgG multiple myeloma with

simulations of serum monoclonal IgG responses during treatment.

Keywords: biomedical systems, lumped-parameter systems, identifiability, parameter identification, sensitivity

analysis, immunoglobulin G, metabolism, multiple myeloma
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1. INTRODUCTION

Immunoglobulin G (IgG) is protected from degradation by
the neonatal Fc receptor (FcRn), resulting in an unusually
long metabolic half-life at normal concentrations (∼23 days;
Rosenthal and Tan, 2010) and a high serum concentration in
healthy adults (10–16 g l−1; Hall and Yates, 2010). The half-life of
IgG is not constant, but varies with its serum concentration, due
to saturation of recycling receptors. Elevated IgG concentrations
saturate receptors such that a greater proportion of circulating
IgG is degraded; conversely at low concentrations a greater
proportion of IgG is recycled and the half-life is extended.
Circulating IgG is internalized into intracellular endosomes
in order to be degraded. FcRn expressed within the cells
binds IgG inside the acidic environment of endosomes with
a pH-dependent affinity. FcRn then sequesters the bound IgG
away from the degradation pathway and back to the cell
membrane, releasing it once again into the circulation. Those
IgG molecules that are not bound to FcRn continue to follow the
pathway to be degraded in lysosomes (Junghans and Anderson,
1996).

In multiple myeloma, clonal plasma cells in the bone marrow
secrete a unique, monoclonal immunoglobulin (Ig). Half of
patients have IgG-producing clones and are said to have IgG
myeloma (Anderson, 2003). The monoclonal Ig produced by
the cancer offers a convenient opportunity for clinicians to
monitor the response of the tumor to therapy via the secreted
protein, which is readily quantified in a blood sample. The
cancer itself is only accessible by bone marrow biopsy or
aspirate, both of which are unpleasant, invasive procedures. The
concentration of monoclonal Ig in the blood is therefore the
preferred measure by which the tumor is monitored; patient
monitoring in clinical trials and the non-trial setting alike is
heavily reliant on measurements of monoclonal Ig concentration
in the blood (Kumar et al., 2016).

IgG myeloma patients typically present with an elevated
concentration of serum monoclonal IgG. During treatment, the
malignant plasma cells are killed and the production rate of
monoclonal IgG correspondingly decreases, resulting in a fall in
serum monoclonal IgG concentration. In this way, the serum
monoclonal IgG response is used as a surrogate for the tumor
response to treatment. The possible effects of the metabolism of
IgG on its application as a cancer marker in multiple myeloma
have been little studied, but are acknowledged in the literature.
Sullivan and Salmon (1972) first brought the issue of IgG
metabolism to the attention of themultiplemyeloma community.
Serum monoclonal IgG concentration, plasma volume, and
IgG synthesis rate per cell were measured in 11 patients with
IgG myeloma. Calculating the fractional catabolic rate of IgG
using the equation provided by Waldmann and Strober (1969),
Sullivan and Salmon (1972) estimated the tumor burden at
a number of time points during treatment for each patient,
concluding that increases and decreases in the tumor burden
were underestimated by increases and decreases in monoclonal
IgG. More recently, Bradwell et al. (2013), Koulieris et al. (2012),
and Durie et al. (2006) have cited the concentration-dependent
metabolism of IgG as a possible explanation for why monoclonal

IgG may be seen as an unreliable response marker in multiple
myeloma.

In order to investigate the dynamics of IgG in multiple
myeloma, a mathematical model characterizing the metabolism
of endogenous IgG in humans is required. Many mathematical
models of IgG metabolism have been published in the literature
(more than 20 at the time of writing), usually with the aim
of describing the pharmacokinetics of therapeutic monoclonal
antibodies that are similarly regulated by FcRn. Many of the
models are therefore pharmacokinetic in nature: their parameter
values are obtained from animal experiments and they may
be physiologically based, with up to ten organs and the
lymphatic system explicitly represented in the model (Hansen
and Balthasar, 2003; Ferl et al., 2005; Garg and Balthasar,
2007; Fang and Sun, 2008; Urva et al., 2010; Chen and
Balthasar, 2012; Deng et al., 2012; Xiao, 2012; Yan et al., 2012;
Fronton et al., 2014; Ng et al., 2014). Physiologically based
pharmacokinetic (PBPK) models may be unnecessarily complex
for investigating serum IgG dynamics in multiple myeloma,
particularly considering the limited human-derived data that
are available for parameter estimation. More suitably, several
authors have proposed a comparatively simple two-compartment
model of IgG metabolism in which saturable recycling by FcRn
is described using Michaelis–Menten kinetics (Waldmann and
Strober, 1969; Kim et al., 2007; Hattersley et al., 2013). They also
provide certain parameter values for humans.

In order to investigate serum IgG responses in IgG multiple
myeloma, the parameter values used are highly important in
order to have confidence in model-based predictions. Parameter
estimation using limited data is an important problem in
the mathematical modeling of physiological systems. Methods
for parameter identification including structural identifiability
analysis and sensitivity analysis should be used in the early
stages of the model validation process; specifically, these analyses
address whether parameters can be estimated from the available
measurements and, where further experiments are possible,
inform experiment design. In this paper we analyse the nonlinear
two-compartment model of IgG metabolism (Waldmann and
Strober, 1969; Kim et al., 2007; Hattersley et al., 2013) and the
available measurements in humans for structural identifiability
and sensitivity, in order to make optimal use of the limited data
available in the literature. Having considered the identifiability
problem, we estimate parameter values from the data, with the
intention that the model can be used in the future to make
generalized predictions for patients.

2. METHODS

2.1. Experimental Data
Data for parameter estimation were obtained from the literature.
Studies of protein metabolism involve intravenously injecting a
subject with radioisotopically labeled protein, known as a tracer,
and then monitoring the proportion of tracer remaining in the
blood over a period of time following administration. Radioactive
tracers allow for distinction between the injected dose and the
endogenously produced protein, enabling direct visualization of
the distribution and elimination processes of a protein despite it
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being homeostatic. The radioactive label (usually iodine) remains
bound to the protein until the protein is degraded, at which point
the label is released and rapidly excreted in urine. Several tracer
studies were performed for IgG in humans in the middle of the
last century and the results collated by Waldmann and Strober
(1969).

2.1.1. Individual Timecourse Data
The data from a single subject consist of the timecourse of
the proportion of an administered dose of radiolabeled IgG
remaining in plasma and the proportion remaining in the whole
body, calculated by subtracting the radioactivity in urine from
the administered dose. The data collected from an individual
are shown in Figure 1A. The data have been extracted from a
plot by Solomon et al. (1963) using OriginPro1. Seven plots of
this type have been found by the authors in the literature. The
data in these plots are assumed to arise from seven individuals
to whom we refer as subjects A–G. The data for subjects
A–D are taken from Solomon et al. (1963), for subjects E
and F from Waldmann and Terry (1990) and for subject G
from Waldmann and Strober (1969). Subjects A and C have
IgG myeloma, subject D has macroglobulinemia and subject E
has familial hypercatabolic hypoproteinemia. These conditions
do not preclude the subjects from this study but there may
be a correlation between these conditions and individuals’
parameter values of IgG metabolism; this is discussed in
Section 3.2.

2.1.2. Fractional Catabolic Rate and Half-Life
In compartmental analysis, parameters are often considered
as either micro constants or macro (hybrid) constants. The
micro constants are dependent upon the assumed structure
of the compartmental model, whereas the macro constants
can be determined directly from the profile of concentration
or radioactivity over time, such as the exponents of a multi-
exponential profile, and do not assume a particular model
structure (Riviere, 2011).

Waldmann and Strober (1969) have plotted two macro
parameters, the fractional catabolic rate (FCR) and the terminal
half-life (T1/2), that can be calculated directly from an individual
subject’s timecourse of radioactivity. The FCR is defined as the
fraction of the administered IgG in plasma that is catabolized
per day and is calculated by dividing the rate at which the
administered dose leaves the body at any time t > 0 by the
amount of the dose remaining in plasma at that time. The rate
at which the dose leaves the body is given by the slope of the
timecourse of the dose remaining in the whole body. The T1/2

is defined as the time taken for half of the administered IgG to
be eliminated, after completion of the distribution phase. This is
obtained from the terminal slope of the timecourse observations
plotted on a logarithmic scale.

The plots of FCR and T1/2 provided byWaldmann and Strober
(1969) are reproduced in Figures 1B,C. Each point in these plots
was obtained from the timecourse data of a single subject, an
example of which is shown in Figure 1A. The parameters have

1Originpro (2016). Windows. Northampton: OriginLab Corporation.

been taken from a large number of subjects (FCR − 41 subjects;
T1/2 − 44 subjects) with a wide range of plasma concentrations
of IgG, in order to capture the concentration-dependent behavior
of IgG metabolism. Macro parameters are functions of the
micro parameters of the assumed compartmental structure—
therefore in this paper the FCR and T1/2 data are used in the
estimation of the parameters of the underlying compartmental
model.

2.2. Model of Endogenous IgG Metabolism
The nonlinear two-compartment model of endogenous IgG
metabolism, with Michaelis–Menten kinetics describing the rate
of recycling by FcRn receptors (Waldmann and Strober, 1969;
Kim et al., 2007; Hattersley et al., 2013), is given by:

ẋ1(t) = −

(

k21 + k31 −
Vmax

KM + x1(t)

)

x1(t)+ k12x2(t)+ I(t)

ẋ2(t) = k21x1(t)− k12x2(t)
(1)

where x1(t) and x2(t) represent the quantities in µmol of IgG
in plasma and in a peripheral compartment, respectively. I(t)
represents the synthesis of IgG into plasma in µmol day−1.
Rate constants kij represent material flow from compartment
j to compartment i. The rate constant of the removal of IgG
from the plasma compartment into intracellular endosomes for
degradation is given by k31, with the indices denoting the transfer
from plasma to a third compartment representing intracellular
endosomes, which is omitted from the model. The rate of FcRn-
mediated recycling, as a fraction of the quantity of IgG in plasma,
is given by Vmax/(KM + x1(t)). The parameters Vmax and KM

are the maximum absolute rate of FcRn-mediated recycling in
µmol day−1 and theMichaelis constant, representing the quantity
of IgG in plasma in µmol at which the absolute recycling rate
is half Vmax. Those IgG molecules which are removed from the
plasma compartment into intracellular endosomes and which
do not get recycled by FcRn are degraded in lysosomes. The
amino acid products of lysosomal degradation are reused in the
synthesis of new proteins (Appelqvist et al., 2013). A schematic of
the system model is shown in Figure 2. Table 1 summarizes the
model states and parameters.

All states and parameters can only take non-negative values.
The rate at which IgG is recycled cannot exceed the rate at
which it leaves the plasma compartment to be degraded in
intracellular endosomes; equivalently, the net elimination rate
must be positive for all states and input rates: k31 −

Vmax
KM

> 0.
When the production rate of IgG is assumed constant, I(t) =

I0, in order to determine themodel’s steady states, solving ẋ1(t) =
0 and ẋ2(t) = 0 simultaneously gives the equilibrium point:

x̂1 =
−k31KM + I0 + Vmax +

√

4k31KMI0 + (−k31KM + I0 + Vmax)2

2k31

x̂2 =
k21

k12
x̂1.

(2)
The stability of this equilibrium point for all parameter values is
demonstrated in Section 2.2.1.

Frontiers in Physiology | www.frontiersin.org 3 March 2017 | Volume 8 | Article 149

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Kendrick et al. Modeling IgG Metabolism Multiple Myeloma

A B C

FIGURE 1 | (A) Proportion of administered IgG remaining in plasma (blue circles) and the body (red triangles) in a typical normal subject; data from Solomon et al.

(1963). Plasma concentration dependence of (B) fractional catabolic rate (FCR) and (C) half-life (T1/2) of IgG; redrawn from Waldmann and Strober (1969) with

permission from S. Karger AG, Basel.

FIGURE 2 | Endogenous IgG metabolism model schematic.

2.2.1. Stability of Steady States
Linearizing the system described by Equation (1) about the
equilibrium point gives:

(

ẋ1(t)
ẋ2(t)

)

=

(

−k21 − k31 −
Vmaxx̂1

(KM + x̂1)2
k12

k21 −k12

)

(

x1(t)
x2(t)

)

. (3)

According to the Routh–Hurwitz stability criterion, the two-state
system is stable provided the coefficients of the characteristic
polynomial of the linearized system are positive (Routh, 1877).
The coefficients of the characteristic polynomial are given by:

a2 = 1

a1 =

k31K
2
M − KMVmax + 2k31KMx̂1 + k31x̂

2
1 + k12(KM + x̂1)2

+ k21(KM + x̂1)2

(KM + x̂1)2

a0 =
k12

(

k31
(

KM + x̂1
)2

− KMVmax

)

(

KM + x̂1
)2 . (4)

The denominators in the expressions for a0 and a1 are
always positive. All parameters and the steady state x̂1 are
positive. The sign of a0 is thus given by the sign of
(

k31
(

KM + x̂1
)2

− KMVmax

)

. For stability of the equilibrium

point it is necessary that
(

k31
(

KM + x̂1
)2

− KMVmax

)

> 0. This

condition is met when k31K
2
M − KMVmax > 0, or equivalently

TABLE 1 | States and parameters of IgG metabolism model.

Name Units Physiological interpretation

x1 µmol Quantity of IgG in the central (plasma) compartment

x2 µmol Quantity of IgG in the peripheral (tissue) compartment

k21 day−1 Rate constant of flow of IgG from plasma to peripheral

compartment

k31 day−1 Rate constant of flow of IgG from plasma into endosomes by

pinocytosis

k12 day−1 Rate constant of flow of IgG from peripheral compartment to

plasma

Vmax µmol day−1 Maximum absolute recycling rate

KM µmol Michaelis constant; the quantity of IgG in plasma at which the

absolute recycling rate is half Vmax

k31−
Vmax
KM

> 0. The sign of a1 is given by the sign of its numerator,

k31K
2
M − KMVmax + 2k31KMx̂1 + k31x̂

2
1 + k12(KM + x̂1)2 +

k21(KM + x̂1)2. Once again, the sign of a1 is positive provided
that k31 −

Vmax
KM

> 0.
Both of the coefficients a0 and a1 are positive provided that all

parameter values are positive and k31 −
Vmax
KM

> 0. Referring back
to Equation (1), that is the condition which ensures a positive IgG
elimination rate for all x1 > 0. A negative elimination rate does
not make sense physiologically and as such parameter values are
not permitted which violate this condition. The equilibrium point
is thus stable for all permitted parameter values.

2.3. Model of Observed Measurements
In this section we consider how the observable measurements
(timecourse of radioactivity, FCR and T1/2) relate to the system
model. Tracer experiments are designed specifically so that the
tracer-labeled protein observes linear kinetics, despite the mode
of metabolism being in fact nonlinear (Anderson, 1983). A linear
model describing the timecourse observations is derived here.

2.3.1. Timecourse Observations
Assuming that the radiolabeled IgG dose and unlabeled
endogenous IgG are indistinguishable by the system, both are
described by the model in Equation (1). The injected and
endogenous IgG can be explicitly represented by letting xi(t) =
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xi,T(t) + xi,E(t) for i = 1, 2, with “T” denoting tracer and
“E” denoting endogenous IgG. Then, from Equation (1), the
dynamics of labeled and unlabeled IgG are given by:

ẋ1,T(t) = −

(

k21 + k31 −
Vmax

KM + x1,E(t)+ x1,T(t)

)

x1,T(t)

+ k12x2,T(t)

ẋ2,T(t) = k21x1,T(t)− k12x2,T(t) (5)

ẋ1,E(t) = −

(

k21 + k31 −
Vmax

KM + x1,E(t)+ x1,T(t)

)

x1,E(t)

+ k12x2,E(t)+ IE

ẋ2,E(t) = k21x1,E(t)− k12x2,E(t)

where xi,T(t) and xi,E(t) represent the quantities in µmol of
radiolabeled and endogenous IgG in compartment i, respectively.

The intravenous bolus injection of tracer can be treated as a
non-zero initial condition for x1,T(t); thus the initial conditions
of the tracer are given by:

x1,T(0) = D

x2,T(0) = 0
(6)

where D is the dose of tracer in µmol. The production rate of
endogenous IgG, IE µmol day−1, is assumed constant. The initial
conditions of the endogenous IgG are given by the equilibrium
point in Section 2.2, with I0 = IE. The experimenter measures the
proportion of the initially injected radioactivity in plasma and in
the whole body. The observation functions are thus given by:

y1(t) = x1,T(t)/D

y2(t) =
(

x1,T(t)+ x2,T(t)
)

/D.
(7)

A sufficiently small quantity of radiolabeled IgG, typically 0.5–
1 mg (3.33× 10−3–6.67× 10−3 µmol) (Solomon et al., 1963), is
administered into plasma so as not to perturb the steady state

of the endogenous protein. Thus x1,E and x2,E can be assumed
constant. Then the equations describing the tracer dynamics are
no longer coupled with those describing the endogenous IgG
dynamics. A second assumption is required in order to derive a
linearmodel: the quantity of tracer, x1,T(t), is assumed to bemuch
smaller than the quantity of the subject’s endogenous IgG, x1,E.
Thus the term Vmax

KM + x1,E + x1,T(t)
can be approximated by Vmax

KM + x1,E
.

In this way, the elimination rate of the tracer is determined by
the quantity of the subject’s endogenous plasma IgG only. A
further simplification can be made by noticing that for a linear
model, the initial conditions and observation gain cancel out (see
Equations 6, 7). The equations describing the tracer kinetics are
thus given by:

ẋ1,P(t) = −

(

k21 + k31 −
Vmax

KM + x1,E

)

x1,P(t)+ k12x2,P(t)

ẋ2,P(t) = k21x1,P(t)− k12x2,P(t)

(8)

where x1,P(t) and x2,P(t) represent the proportion of the
radiolabeled IgG dose D in the central and peripheral
compartments, respectively, at time t. x1,E represents the quantity
of the subject’s endogenous IgG in the central compartment,
which is assumed to remain in steady state. All other parameters
are defined as in Section 2.2.

The initial conditions of the model are now given by:

x1,P(0) = 1

x2,P(0) = 0.
(9)

The corresponding observation functions are given by:

y1(t) = x1,P(t)

y2(t) = x1,P(t)+ x2,P(t).
(10)

The linearized model represented by Equations (8–10) is a valid
approximation of the nonlinear model (Equations 5–7) when

A B

FIGURE 3 | Simulations of timecourse responses y1(t) and y2(t) as described by Equations (5–7) (nonlinear model – solid line) and Equations (8–10)

(linearized model – dashed line). The quantity of endogenous IgG in plasma at t = 0, x1,E(0), is 5 µmol. The tracer dose D is (A) 0.01 µmol and (B) 10 µmol.
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the administered dose of radiolabeled IgG, D, is sufficiently
smaller than the quantity of endogenous IgG in plasma at
t = 0, x1,E(0). In Figure 3 simulations of the nonlinear
model and the linearized model are compared. The parameter
values used are those estimated in this paper and summarized
in Table 6. The production rate of endogenous IgG is set to
IE = 0.0727 µmol day−1 to give x1,E(0) = 5 µmol for the
nonlinear model and x1,E = 5 µmol for the linearized model,
representing the lower limit of the quantities of endogenous
IgG in plasma seen in the data. In Figure 3A the tracer dose
D is 0.01 µmol, representing the upper limit of administered
tracer doses (Solomon et al., 1963). The nonlinear and linearized
model responses are indistinguishable, illustrating that for typical
tracer doses the linearized model is a valid approximation of the
nonlinear model. In Figure 3B the tracer doseD is 10 µmol, 1,000
times larger; at this point the assumptions weaken and there is a
noticeable difference between the responses of the two models.

2.3.2. Fractional Catabolic Rate and Half-Life
The FCR is defined as the proportion of the radiolabeled IgG
in plasma that is catabolized per day. From Equation (8) this is
given by:

FCR = k31 −
Vmax

KM + x1,E
. (11)

The terminal half-life, T1/2, is related to the elimination phase
of the kinetics, after the distribution phase is complete. The
model described by Equation (8) is a linear two-compartment
model with the solutions for x1,P(t) and x2,P(t) given by the
bi-exponential functions:

x1,P(t) = A11 exp(λ1t)+ A12 exp(λ2t)

x2,P(t) = A21 exp(λ1t)+ A22 exp(λ2t)
(12)

where Aij and λj are macro constants, with |λ1| > |λ2|. By
definition, T1/2 is given by:

T1/2 = −
log 2

λ2
. (13)

Solving Equation (8) for λ2 and substituting into
Equation (13) gives the following expression for T1/2

in terms of the micro parameters of the model:

T1/2 = 2 log 2

/(

k12 + k21 + k31 −
Vmax

KM + x1,E

−

√

−4k12

(

k31 −
Vmax

KM + x1,E

)

+

(

k12 + k21 + k31 −
Vmax

KM + x1,E

)2
)

. (14)

From Equations (11, 14), we find that the relationship between
T1/2 and FCR is given by:

T1/2 =
2 log 2

k12 + k21 + FCR−

√

−4k12FCR+
(

k12 + k21 + FCR
)2
.

(15)

3. RESULTS

3.1. Structural Identifiability of Model
Parameters
Structural identifiability addresses the question of whether
model parameters can be uniquely identified from available
observations, under the assumption of the availability of
ideal (i.e., noise-free) and continuous observational data.
Structural identifiability of parameters does not imply that
they are identifiable in practice, from observations that are
inevitably measured with noise; therefore in this paper structural
identifiability analysis is used alongside sensitivity analysis.

Here we determine which of the model parameters
are structurally uniquely identifiable from the following
measurements: an individual subject’s timecourse, FCR vs. the
quantity of endogenous IgG in plasma, and T1/2 vs. the quantity
of endogenous IgG in plasma.

3.1.1. Individual Timecourse
Here the transfer function method is used (Bellman and Åström,
1970). To apply this approach the system described by Equations
(8–10) is re-written in vector-matrix notation as

ẋ(t, p) = A(p)x(t, p)+ B(p)u(t)

x(0, p) = 0

y(t, p) = C(p)x(t, p),

(16)

where x(t, p) =
(

x1,P(t), x2,P(t)
)

, and y(t, p) =
(

y1(t), y2(t)
)

are column vectors representing the state and the observation,
respectively. u(t) represents the single input to the system, an
impulse at time t = 0, given by u(t) = δ(t). A(p) and C(p) are
2 × 2 matrices and B(p) is a column vector. A(p), B(p), and C(p)
are given by:

A(p) =

(

−
(

k21 + k31 −
Vmax

KM+x1,E

)

k12

k21 −k12

)

,

B(p) =

(

1
0

)

,C(p) =

(

1 0
1 1

)

. (17)

Note that the administration of a bolus dose is now represented as
an impulse at time t = 0, rather than a non-zero initial condition,
such that x(0, p) = 0.

Taking Laplace transforms of Equation (16), the input-
output relation is described by Y(s) = G(s)U(s), where G(s)
is the transfer function matrix, given by G(s) = C(p)(sI −

A(p))−1B(p), where I is the 2 × 2 identity matrix. G(s) has two
elements, corresponding to the two measured outputs, which are
given by:
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G1(s) =
s + k12

s2 +
(

k31−
Vmax

KM + x1,E
+ k12 + k21

)

s +
(

k31 − Vmax
KM + x1,E

)

k12

G2(s) =
s + k12 + k21

s2 +
(

k31 − Vmax
KM + x1,E

+ k12 + k21

)

s +
(

k31 − Vmax
KM + x1,E

)

k12.

(18)

Let 8(p) = (φ1(p), ...,φ4(p)), where p =
(

k12, k21, k31,Vmax,KM, x1,E
)

, denote the (distinct) coefficients
of s in Equation (18). The coefficients, 8(p), are uniquely
determinable from the input-output relationship of the system
and are given by:

φ1(p) = k12

φ2(p) = k12 + k21

φ3(p) = k12

(

k31 −
Vmax

KM + x1,E

)

φ4(p) = k31 −
Vmax

KM + x1,E
+ k12 + k21.

(19)

Introducing an alternative parameter vector p̄ =
(

k̄12, k̄21, k̄31, V̄max, K̄M, x̄1,E
)

and equating 8(p) = 8(p̄), it

can readily be seen from φ1(p) and φ2(p) that the parameters
k12 and k21 are uniquely determined (i.e., k12 = k̄12 and
k21 = k̄21) and therefore structurally globally identifiable from
the timecourse of radioactivity remaining in plasma and the
body. The parameters k31, Vmax,KM and x1,E are not uniquely
identifiable; however the FCR (given by Equation 11) is uniquely
identifiable.

3.1.2. Fractional Catabolic Rate
The relationship between the FCR and x1,E is given by Equation
(11). The SolveAlways function was used in Mathematica2 to
find out whether the parameters k31, Vmax, and KM are uniquely
determinable by the relationship in Equation (11). Introducing

an alternative parameter vector
(

k̄31, V̄max, K̄M

)

and solving the

equation:

k31 −
Vmax

KM + x1,E
= k̄31 −

V̄max

K̄M + x1,E
, (20)

over all values of x1,E, gives
(

k̄31, V̄max, K̄M

)

=
(

k31,Vmax,KM
)

as the only solution for the unknown parameters. Therefore, the
parameters k31, Vmax, and KM are uniquely determinable from
the relationship between the FCR and x1,E.

3.1.3. Terminal Half-Life
The relationship between T1/2 and x1,E is given by Equation
(14). We now wish to know whether the parameter vector
p =

(

k12, k21, k31,Vmax,KM
)

is uniquely determinable

2Mathematica 10.4 (2016). Windows. Champaign: Wolfram Research Inc.

from the relationship in Equation (14). From Equation
(13), this is equivalent to asking whether p is uniquely
determinable from the relationship between λ2 and x1,E,
given by:

λ2 =
1

2

(

− k12 − k21 − k31 +
Vmax

KM + x1,E

+

√

−4k12

(

k31−
Vmax

KM + x1,E

)

+

(

k12 + k21 + k31 −
Vmax

KM + x1,E

)2
)

.

(21)

The structural identifiability problem amounts to determining
whether there exists an alternative parameter vector p̄
such that λ2(x1,E, p) = λ2(x1,E, p̄) with p 6= p̄. λ2 is
one of the roots of the characteristic polynomial equation,
given by:

λ2 +

(

k12 + k21 + k31 −
Vmax

KM + x1,E

)

λ

+ k12

(

k31 −
Vmax

KM + x1,E

)

= 0. (22)

We wish to know whether there exists an alternative parameter
vector p̄ 6= p, such that:

λ2 +

(

k12 + k21+k31 −
Vmax

KM + x1,E

)

λ + k12

(

k31 −
Vmax

KM + x1,E

)

= λ2 +

(

k̄12 + k̄21 + k̄31 −
V̄max

K̄M + x1,E

)

λ

+ k̄12

(

k̄31 −
V̄max

K̄M + x1,E

)

.

(23)
The coefficients of the quadratic are unique, therefore

k12 + k21 + k31 −
Vmax

KM + x1,E
= k̄12 + k̄21 + k̄31 −

V̄max

K̄M + x1,E

k12

(

k31 −
Vmax

KM + x1,E

)

= k̄12

(

k̄31 −
V̄max

K̄M + x1,E

)

.

(24)
The only solution to Equation (24), over all values of x1,E and
for positive parameter values only, is p = p̄. Therefore the
parameters k12, k21, k31,Vmax, and KM are uniquely determinable
from the relationship between T1/2 and x1,E.

3.1.4. Summary of Structural Identifiable Parameters
From an individual’s timecourse of radioactivity remaining
in plasma and the body, described by Equations (8–10), the
parameters k12 and k21 are structurally uniquely identifiable. The
parameters k31, Vmax,KM, and x1,E are not uniquely identifiable;
however the FCR is uniquely identifiable. The parameter x1,E may
be measured independently; however the parameters k31, Vmax,
and KM remain unidentifiable even when x1,E is known. This
result is intuitive, as the unidentifiable parameters describe the
nonlinear behavior which is not demonstrated when the quantity
of endogenous IgG in plasma, x1,E, is constant.
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In order to show the nonlinear behavior of the model,
observations need to be made over a range of steady state
quantities of endogenous IgG in plasma, x1,E. Given a set of
timecourses, each described by Equations (8–10), for a range of
different values of x1,E, it is possible to measure the FCR, T1/2

and x1,E for each timecourse. From the relationship between the
FCR and x1,E, the parameters k31, Vmax and KM are structurally
globally identifiable. From the relationship between T1/2 and
x1,E, the parameters k12, k21, k31,Vmax, and KM are structurally
globally identifiable. The structurally identifiable parameters are
summarized in Table 2.

3.2. Estimation of Parameters from
Individual Timecourse Data
The model parameters k12 and k21 along with the FCR are
structurally globally identifiable from the individual timecourse
measurements y1(t) and y2(t), as described by the linearized
model in Equations (8–10). These three parameters were
estimated from timecourse data from seven individuals whom
we refer to as subjects A–G. The data are described in
Section 2.1.

Parameter values were estimated for each subject by
analytically solving the linear ODE system and minimizing the
sum of squared residual errors between the model output and
the data, using the functionNonlinearModelFit inMathematica2.
For each subject, the model outputs y1(t) and y2(t) were
simultaneously fitted to the plasma and whole body timecourse
data, respectively. Three examples of the fits (subjects A–C) are
shown in Figure 4. The corresponding plots for all subjects are
provided in the Supplementary Material.

The parameter estimates and their standard errors are given
in Table 3. For all three parameters across all subjects, the

TABLE 2 | Structurally identifiable parameters.

Observation Structurally globally identifiable parameters

Individual subject’s timecourse k12, k21

FCR vs. x1,E k31, Vmax, and KM

T1/2 vs. x1,E k12, k21, k31,Vmax, and KM

standard errors are small relative to their respective parameter
estimates. The distribution of parameter estimates among the
seven subjects is illustrated in Figure 5. The mean and median
of each parameter are summarized in Table 3. The root mean
squared error (RMSE), as a measure of the goodness-of-fit, for
each fitted timecourse is also provided in Table 3.

As stated in Section 2.1, several subjects have IgG myeloma,
macroglobulinemia or familial hypercatabolic hypoproteinemia.
Patients with familial hypercatabolic hypoproteinemia do not
express FcRn, explaining the large value of the FCR (0.247
day−1) for subject E. The parameter Vmax (not estimated here)
for subject E should be equal to zero, reflecting the absence of
recycling receptors. Subjects A and C have IgG myeloma and
subject D has macroglobulinemia. The high or low values of the
FCR in these patients should be explained by the concentration-
dependent catabolism of IgG, as described by Equation (11),
with abnormally high or low plasma IgG concentrations likely
occurring as symptoms of the respective disease.

3.2.1. Sensitivity to Model Parameters
Along with structural identifiability, parameter identification
requires sensitivity of the model output to the parameters.
There are two types of sensitivity function: traditional sensitivity
functions (TSFs) and generalized sensitivity functions (GSFs)
(Thomaseth and Cobelli, 1999). Used together, TSFs and GSFs
can provide insight in terms of the information about individual
parameters provided by a measured output over the time
duration of the experiment.

In order to estimate a model parameter from measurements
of a model output it is necessary that the measured output
is sensitive to the parameter over the time interval of the
experiment (Banks et al., 2007). The TSF of a measured model
output with respect to one component of the model parameter
vector is given by the partial derivative of the output with respect
to the parameter, for example:

sTSF,y1 ,k12 (t) =
∂y1

∂k12
(t) (25)

is the TSF of the model output y1(t) with respect to the parameter
k12. The TSF is locally defined for the “true” parameter vector of
the system. For the inverse problem in this section the true model

A B C

FIGURE 4 | Timecourse fits: model described by Equations (8–10) fitted to timecourse data extracted from plots in Solomon et al. (1963) for (A–C)

subjects A, B, and C.
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TABLE 3 | Parameter estimates and their standard errors (SE) and the root mean squared error (RMSE) for each fitted timecourse.

Subject FCR (day−1) k12 (day−1) k21 (day−1) RMSE

Estimate SE Estimate SE Estimate SE

A 0.0359 0.00169 0.130 0.0182 0.231 0.0218 0.0336

B 0.0761 0.00190 0.381 0.0539 0.426 0.0546 0.0182

C 0.125 0.00397 0.382 0.0643 0.378 0.0516 0.0235

D 0.0311 0.000863 0.432 0.0746 0.347 0.0559 0.0136

E 0.247 0.00632 0.341 0.125 0.140 0.0333 0.0197

F 0.0728 0.00108 0.358 0.0233 0.476 0.0268 0.0134

G 0.0766 0.00149 0.656 0.0538 0.965 0.0716 0.0222

Mean 0.0950 0.383 0.423

Median 0.0761 0.381 0.378
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FIGURE 5 | Parameter estimates for individual timecourses. Dashed

lines connect the estimates obtained for an individual subject.

and parameter vector for each subject is unknown; therefore
the TSFs are calculated for the estimated parameter vectors for
each subject to investigate parameter sensitivity over a range of
parameter vectors that are likely to be seen in individuals.

The TSFs for the timecourse outputs y1(t) and y2(t) are
plotted in Figure 6, evaluated at the parameter estimates for
subjects A, B, and C, respectively, provided in Table 3. The
TSFs were calculated in Mathematica2. The TSFs show that the
model outputs are sensitive to all three parameters over the
time interval of observation for each of the parameter vectors.
The corresponding plots for all subjects are provided in the
Supplementary Material. A similar pattern is observed for the
remaining subjects D–G.

A shortcoming of the TSF is that it does not account for
correlation between parameters. An alternative function, the
GSF, takes account of parameter correlations and quantifies

the information content of a model output on an individual
parameter over the time duration of observation. The GSFs for
a general model output function y(t) = f (t, θ0) with parameter
vector θ0 are defined as:

sGSF,y,θ (tl) =
l
∑

i = 1

1

σ 2(ti)
[F−1 ×∇θ f (ti, θ0)] • ∇θ f (ti, θ0), (26)

where

F =

n
∑

j = 1

1

σ 2(tj)
∇θ f (tj, θ0)∇θ f (tj, θ0)

T (27)

is the Fisher information matrix and the model output y(t) =

f (t, θ0) is observed with error at discrete times tl, l = 1, ..., n. The
measured values of the output are given by Yl = f (tl, θ0)+ǫl with
σ 2(tl) the variance of the error on the observation at time tl, ǫl
(Thomaseth and Cobelli, 1999). In the definition of the GSF the
true parameter vector θ0 is assumed known. Here the GSFs are
calculated for the estimated parameter vectors for each subject,
in order to investigate the inverse problem for the different
dynamics seen in individuals.

The GSFs for the timecourse outputs y1(t) and y2(t) are
plotted in Figure 6, for the parameter estimates of subjects
A, B, and C, respectively, provided in Table 3. The GSFs
were calculated in Mathematica2. Unlike the TSF, the GSF
is defined only at discrete measurement times. In order to
obtain an approximation of the smooth function for continuous
measurement data, as in Thomaseth and Cobelli (1999) and
Banks et al. (2007), we assume a high rate of sampling, calculating
the GSF as though a measurement is taken every 0.1 days for each
subject. We assume that the variances of the errors are equal at
all measurement times, such that the variance terms cancel out in
the definition of the GSF (see Equations 26, 27).

According to the interpretation of GSFs given by Thomaseth
and Cobelli (1999), a steep increase in the GSF of a particular
parameter between 0 and 1 indicates the interval on which
the information on that parameter, provided by the measured
output, is concentrated. Figures 6H,I show the ideal pattern of
three distinct intervals of steep increase between 0 and 1 for
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FIGURE 6 | Traditional sensitivity functions (TSFs) of timecourse outputs y1(t), for (A–C) subjects A, B and C, and y2(t), for (D–F) subjects A, B, and C.

Generalized sensitivity functions (GSFs) of timecourse outputs y1(t), for (G–I) subjects A, B, and C, and y2(t), for (J–L) subjects A, B, and C.
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the three parameters, respectively, with the information on k21
concentrated at the beginning of the experiment, followed by
k12 and then the FCR. Intuitively this makes sense, because the
dose is administered to the first compartment, from where it
transfers to the second compartment in the initial days of the
experiment. The pattern shown by the GSFs of y1(t) for subject
A, depicted in Figure 6G, appears slightly different to that shown
by subjects B and C; however, if we extend the experiment time
to 50 days for subject A, the GSFs then appear extremely similar
to those of subjects B and C. This is due to the slower dynamics
exhibited by this subject—see Table 3 and Figure 4. The pattern
exhibited by the GSFs of y2(t) for each patient indicates a high
correlation between the parameters, producing large oscillations
in the GSFs. The corresponding plots for all subjects are provided
in the Supplementary Material.

The GSF is clearly a useful tool for understanding the
behavior of estimators of correlated parameters; however, it is
still important to use the TSF alongside the GSF when analysing
parameter sensitivity. As mentioned, the GSFs of y1(t) for subject
A appear more similar to those for subjects B and C when the
duration of the experiment is extended. The trajectory of the GSF
is dependent on the times at which data are collected, and is
forced to equal one at the final measurement time. This can result
in misleading GSFs when the observation interval is defined over
a period of low sensitivity (as defined by the TSF) of the output to
the parameters. For this reason we use the TSF andGSF alongside
one another. This is discussed in more detail by Banks et al.
(2007).

3.3. Estimation of Parameters from
Fractional Catabolic Rate and Half-Life
As shown in Section 3.1, the parameters k31, Vmax, and
KM are structurally unidentifiable from an individual subject’s
timecourse data, assuming the linearized model given by
Equations (8–10). It is therefore necessary to make use of
the relationships between FCR and T1/2, respectively, and the
quantity of endogenous IgG in plasma, x1,E. Unfortunately, these
relationships are not known for an individual subject; obtaining
them would require performing the tracer experiment over a
range of different plasma concentrations of endogenous IgG
within an individual subject, which is not practically feasible.
We therefore estimate parameters from the FCR and T1/2

measurements taken from a sample of patients with a wide range
of endogenous IgG plasma concentrations, as though the data
arose from an individual subject, in what may be described as a
naive pooled approach (Wright, 1998). It is therefore not possible
to gain a sense of the distribution of the parameters k31, Vmax,
and KM within the population as for those parameters estimated
from the individual timecourse data, k12 and k21, as illustrated in
Figure 5.

The parameters k12, k21, k31, Vmax, and KM were estimated
from FCR vs. x1,E and T1/2 vs. x1,E data, simultaneously.
Waldmann and Strober (1969) provide plots of FCR and T1/2 vs.
plasma endogenous IgG concentration in g l−1. The data were
extracted using the Digitizer tool in OriginPro1. The plasma IgG
concentration in g l−1 was converted to µmol l−1 by dividing by

TABLE 4 | Parameter estimates and standard errors estimated from FCR

and T½ data.

Parameter Units Estimate Standard

error (SE)

95% confidence

interval

k31 day−1 0.159 0.0111 (0.137, 0.181)

Vmax µmol day−1 40.0 10.5 (19.1, 60.9)

KM µmol 272 55.4 (162, 382)

k12 day−1 0.158 0.155 (−0.150, 0.467)

k21 day−1 0.187 0.231 (−0.273, 0.647)

the molar mass of IgG, 0.15 g µmol−1. The concentration was
then multiplied by an average plasma volume of 3 l (Solomon
et al., 1963) to obtain the quantity x1,E in µmol.

The FCR and T1/2 data were fitted simultaneously by the
model outputs described in Equations (11, 14). The parameter
values were estimated by minimizing the sum of squared residual
errors between the model outputs and the measured values, using
the function NonlinearModelFit in Mathematica2. Due to the
different scales of the parameters (0.02 < FCR < 0.17 day−1;
10 < T1/2 < 72 days) the T1/2 data points were assigned different
weights to the FCR data points. It was assumed that the standard
deviation of the residual errors is of the order of the size of the
measured values, for both FCR and T1/2, respectively. Therefore,
the weights given to the T1/2 data points were equal to the squared
mean of the measured T1/2 values divided by the squared mean of
the measured FCR values, and the weights given to the FCR data
points were set to 1. Using this approach, the variance of the T1/2

residuals was assumed to be 1.08× 105 times the variance of the
FCR residuals.

The data and model fits are shown in Figure 7. The parameter
estimates and their standard errors are given in Table 4. The
standard errors are almost as large as, or larger than, the
estimates themselves for the parameters k12 and k21, indicating
that these parameters cannot be estimated with a reasonable level
of precision. This may be because the measured output T1/2 is
insensitive to variations in the parameters k12 and k21 or due to
correlations between the parameters.

3.3.1. Sensitivity to Model Parameters and Parameter

Correlations
The sensitivity of the outputs FCR and T1/2 to the model
parameters is illustrated by the TSFs shown in Figure 8. In
Figure 8 the TSFs are evaluated for the parameter estimates given
in Table 4. Due to the wide range in parameter estimates (0.158–
272), each TSF is multiplied by the value of the corresponding
parameter estimate; thus the normalized TSF can be seen as
representing the sensitivity of the output to variation in a
parameter proportional to its value (for the particular parameter
values used here). The GSFs of the FCR with respect to the
parameters k31, Vmax, and KM were calculated for the parameter
estimates inTable 4. We assumemeasurements taken in intervals
of 10 µmol between 0 µmol and 2000 µmol plasma endogenous
IgG, x1,E, in order to get an approximately smooth function.
Again we assume that the variances of the errors are equal over
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FIGURE 8 | Traditional sensitivity functions (TSFs) of (A) FCR and (B) T1/2 and generalized sensitivity functions (GSFs) of (C) FCR with respect to model

parameters.

all concentrations, such that the variance terms cancel out in the
definition of GSF (see Equations 26, 27).

Figure 8A shows the TSFs of the FCR with respect to the
parameters k31, Vmax, and KM, evaluated for the parameter
estimates in Table 4. The plot shows that, for the parameter
vector used, the FCR is sensitive to all three parameters over the
range of plasma endogenous IgG concentrations measured, with
greater sensitivity to KM and Vmax at smaller concentrations. The
similarity between the TSFs of the FCR with respect to KM and
Vmax, respectively, may cause high correlation between these two
parameters.

Figure 8C shows the GSFs of the FCR with respect to
k31, Vmax, and KM. The GSFs show a similar pattern to
those of the timecourse observations shown in Figure 6,
however the larger magnitude of oscillation indicates a strong
correlation between the parameters. The GSFs indicate that,
for the parameter vector used, measurements at very small
quantities of plasma endogenous IgG, below around 100 µmol,
have the greatest influence on the estimate of KM, then
the region between around 100 and 1.000 µmol has the

greatest influence over the estimate of Vmax, with, finally,
the information on k31 available at the remaining larger
quantities. This interpretation is consistent with the TSFs
given in Figure 8A: the sensitivity to KM decreases rapidly at
small quantities, followed by the sensitivity to Vmax, with the
sensitivity to k31 constant, that is insensitive to the quantity x1,E
itself.

Figure 8B shows the TSFs of T1/2 with respect to the
parameters k12, k21, k31,Vmax, and KM. The plot shows that T1/2 is
much more sensitive to all of the parameters at smaller quantities
of endogenous IgG. The similarity between the trajectories of the
TSFs with respect to all parameters suggests that they are highly
correlated. It was not possible to calculate the GSFs of T1/2 due to
the Fisher informationmatrix being ill-conditioned, such that the
inverse could not be computed. If we attempt to estimate all five
parameters from the T1/2 data alone, we obtain standard errors of
the order of 10× 106 and higher, and correlation coefficients of 1
or−1 between the parameters.

When the parameters are estimated from FCR vs. x1,E and
T1/2 vs. x1,E simultaneously, we find high correlation coefficients
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between the parameters, with the correlation matrix given by:

k31 Vmax KM k12 k21




















k31 1 0.928 0.839 −0.290 −0.300
Vmax 0.928 1 0.976 −0.228 −0.253
KM 0.839 0.976 1 −0.0890 −0.115
k12 −0.290 −0.228 −0.0890 1 0.996
k21 −0.300 −0.253 −0.115 0.996 1

.

Parameters k31, Vmax, and KM are highly correlated pairwise,
with the strongest correlation between KM and Vmax. k12 and k21
are highly correlated with one another (correlation coefficient of
0.996) and not with the other parameters, explaining why they
cannot be estimated with a reasonable level of precision from
these data.

3.4. Simulations of IgG Responses in IgG
Multiple Myeloma
In order to simulate monoclonal IgG responses in IgG multiple
myeloma, the model of endogenous IgG metabolism given by
Equation (1) needs to explicitly account for monoclonal IgG
produced by the malignant plasma cells, and polyclonal IgG
produced by healthy plasma cells, since both types of IgG
undergo the same processes of recycling and elimination and
therefore one is influenced by the other. The dynamics of
monoclonal and polyclonal IgG in an IgG myeloma patient may
be described by:

ẋ1,m(t) = −

(

k21 + k31 −
Vmax

KM + x1,m(t)+ x1,p(t)

)

x1,m(t)

+ k12x2,m(t)+ Im(t)

ẋ2,m(t) = k21x1,m(t)− k12x2,m(t) (28)

ẋ1,p(t) = −

(

k21 + k31 −
Vmax

KM + x1,m(t)+ x1,p(t)

)

x1,p(t)

+ k12x2,p(t)+ Ip(t)

ẋ2,p(t) = k21x1,p(t)− k12x2,p(t),

where x1,m(t) and x2,m(t) are the quantities of monoclonal IgG
in plasma and in the peripheral space, respectively, x1,p(t) and
x2,p(t) are the quantities of polyclonal IgG in plasma and in the
extravascular space, respectively, Im(t) is the production rate of
monoclonal IgG in µmol day−1, Ip(t) is the production rate of
polyclonal IgG in µmol day−1, and all other parameters are as
previously defined.

It is assumed that the production rate of monoclonal IgG,
Im(t), is determined by the number of myeloma cells, or tumor
burden. Modeling the response of the myeloma cell population
under therapy is in itself a significant problem. Here we assume
a highly simplified, phenomenological model which nevertheless
shows good qualitative agreement with responses seen in real
patients. In the following simulations the production rate of
monoclonal IgG, Im(t), is given by:

Im(t) =
(

Im,0 − Im,∞
)

exp
(

−kkillt
)

+ Im,∞, (29)

where Im(0) = Im,0 µmol day−1, Im(t) tends to Im,∞ µmol day−1

for large t, and kkill day−1 is the rate constant of tumor kill.
In Figure 9 we present simulations of monoclonal IgG

responses in IgG myeloma patients during treatment.
Simulations of the plasma concentration of monoclonal
IgG are shown alongside plasma IgG concentrations from six
IgG myeloma patients, taken from the Intergroupe Francophone
du Myélome (IFM) 2009-02 clinical trial (Leleu et al., 2013). The
plasma concentration ofmonoclonal IgGwasmeasured by serum
protein electrophoresis at regular intervals during treatment.
The simulated quantities of monoclonal and polyclonal IgG are
defined by Equation (28), with the monoclonal IgG production
rate Im(t) given by Equation (29). The polyclonal IgG production
rate Ip(t) is assumed to remain constant at Ip,0 = 15 µmol day−1,
as in normal individuals (Waldmann and Strober, 1969). At time
t = 0 the system is assumed to be in steady state, such that the
initial conditions of monoclonal and polyclonal IgG are given by:

x1,m(0) =
Im,0

I0

−k31KM + I0 + Vmax

+
√

4k31KMI0 + (−k31KM + I0 + Vmax)2

2k31

x2,m(0) =
k21

k12
x1,m(0) (30)

x1,p(0) =
Ip,0

I0

−k31KM + I0 + Vmax

+
√

4k31KMI0 + (−k31KM + I0 + Vmax)2

2k31

x2,p(0) =
k21

k12
x1,p(0)

where I0 = Im,0 + Ip,0.
In order to convert the quantity of plasma monoclonal IgG

in µmol into concentration in g l−1 the simulated quantity was
multiplied by the molecular weight of IgG, 0.15 g µmol−1, and
divided by an average plasma volume of 3 l. For the parameters
k12 and k21 the mean values of the respective parameter estimates
from the individual fits in Section 3.2 are used; for the parameters
k31, Vmax, and KM the values estimated from FCR and T1/2 vs. x1,E
in Section 3.3 are used. The parameters of the model describing
the monoclonal IgG production rate, given by Equation (29),
namely Im,0, Im,∞ and kkill, were manually adjusted in order to
produce simulations that approximately replicate the responses
seen in patients. The parameter values used are provided in
Table 5.

The purpose of these simulations is to demonstrate how the
model analyzed in this paper may be used in the future to
investigate monoclonal IgG responses in IgG myeloma. Patient
data are presented alongside the simulations to show that they
provide good qualitative agreement with in vivo responses,
supporting the suitability of the model for future investigations.
In these simulations, the initial and final monoclonal IgG
production rates, Im,0 and Im,∞, and the rate at which the
monoclonal IgG production rate falls during treatment, kkill, have
been varied, whilst the parameters of the metabolic model have
been fixed. In reality there will be inter-patient variability in both
the parameters of the tumor response model and the metabolic
model. Here we have not explicitly modeled the response in
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FIGURE 9 | Simulations of plasma monoclonal IgG responses in IgG myeloma alongside data from six IgG myeloma patients (A–F).

the myeloma cell population itself—only the production rate of
monoclonal IgG. Additional assumptions are required in order
to investigate the relationship between the tumor response and
the serummonoclonal IgG response. The simplest approach is to
assume that the rate of synthesis per myeloma cell is constant and
as such the total body synthesis rate Im(t) is directly proportional
to the total myeloma cell population. It is possible that the cellular
synthesis rate may vary over the course of treatment; however
studies of in vitro IgG synthesis in plasma cells taken from IgG
myeloma patients have shown that, whilst the cellular synthesis
rate varies between patients, for an individual patient it remains
constant over a period of months (Salmon and Smith, 1970).
In the present study we have also assumed constant polyclonal
IgG production, however it is known that normal plasma cells
in the bone marrow are frequently suppressed by the clonal cell
presence. If we assume that the cellular rate of IgG synthesis
remains constant in normal plasma cells then suppression of
these cells likely contributes to a decrease in overall polyclonal
IgG synthesis. There are several complex mechanisms involved,
but fundamentally the suppression of polyclonal cells is believed
to be due to competition between monoclonal and polyclonal
cells for survival niches in the bone marrow microenvironment
(Paiva et al., 2011). Mathematically modeling normal plasma
cell suppression could be the subject of future research. It has
also been assumed that the system is in steady state at the
commencement of treatment. Future studies will be required
to validate this assumption or employ alternative models in
which the tumor is growing initially, and to assess the impact
of the chosen assumptions on any conclusions drawn from the
simulations.

4. DISCUSSION

The aim of this study was to analyse a previously publishedmodel
of endogenous IgG metabolism and available measurements in
humans with respect to parameter identifiability. The model was
linearized to replicate experimental conditions in which small
doses of administered IgG exhibit linear timecourse responses.
The linearized model was then analyzed in terms of parameter
structural identifiability and parameter sensitivity. The analyses
show that certain important parameters are not structurally
identifiable from an individual’s timecourse response; however
they are structurally identifiable using the relationships between
the FCR and T1/2, respectively, and the quantity of endogenous
IgG in plasma, which is assumed to remain in steady state.

A limitation of the linear model of an individual’s timecourse
response, given by Equations (8–10), is that the parameters k31,
Vmax, and KM are structurally unidentifiable. It is not known
whether these parameters are structurally identifiable in the
nonlinear model of coupled radiolabeled and endogenous IgG
responses given by Equations (5–7). There are two reasons this
approach was not pursued here: firstly, structural identifiability
analysis of a four-state nonlinear model with rational terms
presents a more challenging problem; secondly, if the nonlinear
model were found to be structurally identifiable, the responses
available nonetheless do not demonstrate nonlinear behavior
due to the small doses of radiolabeled IgG administered
(see Figure 3)—therefore the parameters representing nonlinear
behavior may not be practically identifiable by fitting the
nonlinear model, and there is an increased risk of fitting the noise
in the data with the increased model complexity.
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TABLE 5 | Parameter values used to produce the simulations in Figure 9.

Parameter Units Panel

A B C D E F

Im,0 µmol day−1 61 152 116 68 105 53

Im,∞ µmol day−1 11.5 5 2.5 0 24 5

kkill day−1 0.055 0.03 0.07 0.007 0.0065 0.01

Ip,0 µmol day−1 15 15 15 15 15 15

k12 day−1 0.38 0.38 0.38 0.38 0.38 0.38

k21 day−1 0.42 0.42 0.42 0.42 0.42 0.42

k31 day−1 0.16 0.16 0.16 0.16 0.16 0.16

Vmax µmol day−1 40 40 40 40 40 40

KM µmol 270 270 270 270 270 270

Structural identifiability analysis alone does not imply that
parameters can necessarily be estimated in practice. In this
paper two sensitivity functions were investigated: the traditional
sensitivity function (TSF) and generalized sensitivity function
(GSF). TSFs and GSFs were computed and plotted for the
timecourse outputs y1(t) and y2(t), using the parameter values
estimated from the timecourse data of seven individuals. The
TSFs show that the measured timecourse outputs are sensitive
to the model parameters over the duration of the experiment,
which is different for each individual. In addition, the GSFs show
the influence of the duration of observation taking into account
correlation between the parameters; for example, subject A is
observed over a relatively short time period compared to subjects
B and C, considering its slower dynamics. The GSF curves of y1(t)
for subject A show a larger magnitude of oscillation than those of
subjects B and C; however when the duration of observation is
increased for subject A, the GSFs of y1(t) are remarkably similar
for the three subjects. This would suggest that the estimation of
the parameters for subject Awould benefit from a longer duration
of observation. If the tracer experiments were to be repeated, the
insights obtained from the GSFs in particular could be used to
inform the sampling grid of measurements. With the data that
are currently available, k12, k21, and the FCR are estimated with a
good level of precision for all subjects.

TSFs and GSFs were also calculated for the relationship
between the FCR and x1,E. The TSFs indicate that the FCR ismost
sensitive to the parameters Vmax and KM at small concentrations
of plasma endogenous IgG; this is also indicated in the GSFs,
which show that the information on KM is concentrated very
close to zero, followed by Vmax and finally k31. The TSFs for
the T1/2 imply high correlation between all the parameters. From
the simultaneous estimation of the parameters from both FCR
and T1/2 data, the parameters k31, Vmax, and KM are estimated
with a reasonable level of precision. We notice that the estimated
values of k12 and k21 are quite different from the averages of the
estimates of the same parameters obtained from fitting individual
timecourses. From the FCR and T1/2 data, the 95% confidence
interval estimates of k12 and k21 are given by (−0.150, 0.467) and
(−0.273, 0.647), respectively. These large intervals containing
zero imply that the parameters k12 and k21 are not well estimated

from these data. The estimates of k12 and k21 from the FCR and
T1/2 data are very highly correlated with one another, but not with
the remaining three parameters; this offers an explanation for
why they are not well estimated from these data. Nevertheless,
the 95% confidence intervals for k12 and k21 contain the averages
of the individual estimates from timecourse data, 0.38 and
0.42, respectively. If we fix k12 to 0.38 and k21 to 0.42 in the
estimation from the FCR and T1/2 data, the newly obtained
parameter estimates of k31,Vmax, andKM are 0.161, 45.6, and 307,
respectively. These values fall well within the confidence intervals
of the previous estimation where k12 and k21 are unconstrained.

Table 6 compares previously published parameter values
alongside the parameter values estimated in this paper. For the
parameters k12 and k21 the mean value of the parameter among
the seven subjects is chosen to represent the average; for the
parameters k31,Vmax, andKM the values estimated from FCR and
T1/2 vs. x1,E data from many subjects are taken to represent the
population average. At first glance the newly estimated parameter
values are not wildly dissimilar to the previously published values.
Waldmann and Strober (1969) give the values of k31 = 0.18
day−1 and Vmax/w = 147 mg day−1 kg−1, where w is body
weight in kg. Assuming a 70 kg human, this is equivalent to
Vmax = 68.6 µmol day−1. The value of k31 was obtained ‘from
the asymptotic value of the plot of the IgG fractional catabolic
rate versus its concentration’. These are the same data that were
utilized in this paper as described in Section 2.1. The authors
subtracted the value of the FCR for each individual from 0.18
to find the fractional recycling rate. The fractional recycling rate
(FRR) is thus given by:

FRR = k31 − FCR = k31 −

(

k31 −
Vmax

KM + x1,E

)

=
Vmax

KM + x1,E
.

(31)
They then multiplied the plasma concentration of endogenous
IgG by the plasma volume per kg of body weight for each
individual to get the quantity of endogenous IgG in plasma per
kg of body weight, x1,E/w. Finally the authors multiplied the FRR
by x1,E/w to obtain the absolute recycling rate per kg of body
weight, which we will call ARR. They then plotted the reciprocal
of the ARR against the reciprocal of x1,E/w to obtain a straight
line relationship, given by:

1

ARR
=

KM

Vmax

w

x1,E
+

w

Vmax
. (32)

From the intercept the authors obtained the value of Vmax/w =

147 mg kg−1 day−1.
Kim et al. (2007) provide values for all model parameters.

Again using the FCR vs. endogenous IgG concentration data
first published by Waldmann and Strober (1969) and described
here in Section 2.1, Kim et al. (2007) estimate KM/w using a
least-squares fitting. The equation fitted to the data is

FCR = k31 −
Vmax/w

v1
w

(

KM
v1

+
x1,E
v1

) , (33)

where v1 is the plasma volume. The authors fit Equation (33)
to FCR vs. x1,E/v1 to obtain KM/v1 whilst fixing the remaining
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TABLE 6 | Comparison with published parameter values.

Parameter Units Previously published values This paper

Waldmann and Strober (1969) Kim et al. (2007) Hattersley et al. (2013)

k12 day−1 – 0.158 0.41 0.38

k21 day−1 – 0.156 0.51 0.42

k31 day−1 0.18 0.18† 0.13 0.16

Vmax µmol day−1 68.6* 68.6*† 103 40

KM µmol – 420** 530 270

*Assuming 70 kg human. **Assuming 3 l plasma volume. †Taken from Waldmann and Strober (1969).

parameters as follows: k31 = 0.18 day−1 (Waldmann and Strober,
1969), Vmax/w = 0.98 µmol kg−1 (Waldmann and Strober,
1969), and v1/w = 0.042 l kg−1 (Waldmann and Terry, 1990).
By this approach the authors obtain a value of KM/v1 = 140
µmol l−1. Assuming a plasma volume of 3 l this is equates to
KM = 420 µmol. The authors also estimate the parameters
k12 and k21 by curve fitting to tracer experiment data from
Waldmann and Terry (1990).

The parameter values provided by Hattersley et al. (2013) were
obtained by methods described in Hattersley (2009). Hattersley
(2009) estimates parameters k12 and k21 by fitting the model to
tracer experiment data in Waldmann and Strober (1969). For
the remaining model parameters, k31, Vmax, and KM, the author
takes a completely different approach, fitting the model directly
to serum IgG data from an IgG myeloma patient, assuming a
delayed logistic function to describe the production of tumor-
produced IgG. For this approach, the parameters k12, k21, and v1
were fixed.

In this paper data from a number of subjects have been used
for parameter estimation: parameters k12 and k21 were estimated
individually for seven subjects and parameters k31, Vmax, and
KM were estimated from the pooled data of around 40 subjects.
In order to make predictions of IgG responses in IgG multiple
myeloma that can be generalized across patients, a model which
characterizes average, or expected, behavior is advantageous. One
of the limitations of this study is that a full population approach
has not been taken. Fitting the timecourse data individually and
summarizing the parameter estimates by the sample mean or
median can be seen as a two-stage approach, and fitting the
FCR and T1/2 data as though they arose from an individual is
essentially a naive pooled approach; these approaches have been
shown to be inferior to a full population approach (Wright,
1998). A population approach has not been taken here due to
the limited data that are available in the literature. In future
studies it may be possible with further experiments to apply a full
population approach and gain information on the distribution
of all parameters within the population. Furthermore, the work
presented here could be enhanced with a simulation study in
which parameters are estimated from synthetic data, in order to
provide additional understanding of the identification problem
and inform the design of future experiments.

In Section 3.4 we have shown how the model can be extended
to simulate monoclonal IgG responses in IgG myeloma. The

assumptions behind these simulations are discussed in detail in
that section. In IgG myeloma patients the serum monoclonal
IgG response is used as a surrogate for the tumor response to
treatment; however the relationship between the tumor response
and the monoclonal IgG response is inevitably influenced by the
natural elimination of IgG from the body, which is known to
have a non-constant relationship with serum IgG concentration.
It is our intention that the model analyzed in this paper can be
used in the future as the basis of more detailed investigations
into the dynamics of IgG responses in IgG multiple myeloma; for
example, is the prediction of long-term outcomes by monoclonal
IgG responses influenced by the concentration-dependent and
comparatively long half-life of the protein? Such future studies
could impact upon how responses to treatment are assessed in
patients.

In addition, the concentration-dependent elimination of IgG
may be implicated in the pharmacokinetics of monoclonal
antibody (mAb) agents for multiple myeloma, for example
daratumumab, which is currently undergoing evaluation in
patients with relapsed or refractory disease (Costello, 2017).
Due to FcRn-mediated recycling, the longevity of daratumumab
is predicted to be shorter in patients with high monoclonal
IgG loads whereas low monoclonal IgG concentrations may
favorably affect the pharmacokinetic profile of the agent, such
that doses could be administered at less frequent intervals.
The pharmacokinetics of various mAbs have been well studied;
however the use of mAbs in multiple myeloma is recent and
the dynamic response of the tumor-produced IgG in IgG
myeloma patients adds an additional level of complexity. With
the appropriate data it would be highly interesting from a
pharmacological point of view to couple mathematical models
of the mAb disposition and the tumor-produced IgG response,
which is in turn directly affected by the efficacy of the
agent.

IgG metabolism is implicated in other medical applications
beyond patient monitoring in multiple myeloma, including
antibody mediated rejection of transplants, infection and
intravenous IgG (IVIG) therapy. In medical applications,
mathematical models can be used to investigate biomedical
systems in silico, allowing many scenarios and interventions to
be simulated whilst avoiding the costs associated with human
and animal experimentation. For biomedical applications, the
parameter values used are of high importance as they can
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greatly affect conclusions drawn from simulations. In this
paper structural identifiability analysis and sensitivity analysis
are presented as a first stage in the model validation process,
showing which model parameters are identifiable from which
measured outputs. Together structural identifiability analysis and
sensitivity analysis can be used to inform parameter estimation
and improve confidence in the methodology used. In order for
the model to applied in other biomedical scenarios, validation
against patient data would be necessary. A limitation of themodel
analyzed here is that it may not contain a sufficient level of detail
for all applications. Future work may involve comparing this
simple model with more complex models that are based closely
on the biological mechanisms, such as the model presented by
Ferl et al. (2005).

5. CONCLUSIONS

In this research a previously published model of endogenous
IgG metabolism in humans has been analyzed and parameter
values estimated using limited data from the literature. The
analyses herein provide an understanding of how parameter
estimates have been obtained and sources of uncertainty; for
future applications in which the parameter values themselves are
of key importance, an understanding of how they were obtained
and why is crucial. The parameterized model can have a wide-
ranging impact in studies of endogenous IgG metabolism in
biomedical applications, not limited to investigations of IgG

as a response marker in IgG multiple myeloma, supporting
therapeutic interventions and patient monitoring.
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