24 research outputs found

    Cognition, emotion and action: persistent sources of parent–offspring paradoxes in the family business

    Get PDF
    Purpose: The purpose of the study is to explore inductively the unique paradoxical tensions central to family business (FB) and to analyze how FB's members face these tensions and their implications in the personal and professional realms. Design/methodology/approach: A multiple-case study with 11 parent–offspring dyads from Portuguese FBs was conducted putting the focus on the micro-level interactions. Findings: The slopes of roles and relationality in FBs produces three persistent sets of tensions around cognition, emotion and action. These tensions exist in a paradoxical state, containing potentiality for synergy or trade-off. Originality/value: Our study is the first to empirically demonstrate that paradoxical tensions between parent and offspring are interrelated, by emphasizing the uniqueness of FB as a paradoxical setting and offering insights to negotiating of these singular paradoxes.info:eu-repo/semantics/acceptedVersio

    Visions of the Labyrinth at the Classical Age and in Comoenius

    Get PDF
    O presente ensaio propõe uma específica definição do conceito de “labirinto” enquanto possível modelo para uma nova forma de conhecimento que recupere a dimensão unitiva do saber, perdida ao longo da História. Assim, apresenta-se um percurso retrospetivo, partindo da criação do labirinto clássico e do papel do Minotauro e avançando para o exemplo de Comenius, através do seu caminho em direção ao “paraíso do coração”. Como ponto conclusivo, pretende-se apresentar a proposta de uma utopia para o conhecimento que permita a junção da “emoção” à “razão”, numa unidade capaz de estabelecer uma colaboração efetiva entre diversas áreas do saber.info:eu-repo/semantics/publishedVersio

    Classification of schizophrenic traits in transcriptions of audio spectra from patient literature: artificial intelligence models enhanced by geometric properties

    Get PDF
    Schizophrenia is a severe mental illness that affects approximately 1% of the global population and presents significant challenges for patients, families, and healthcare professionals. Characterized by symptoms such as delusions, hallucinations, disorganized speech or behavior, and cognitive impairment, this condition has an early onset and chronic trajectory, making it a debilitating challenge. Schizophrenia also imposes a substantial burden on society, exacerbated by the stigma associated with mental disorders. Technological advancements, such as computerized semantic, linguistic, and acoustic analyses, are revolutionizing the understanding and assessment of communication alterations, a significant aspect in various severe mental illnesses. Early and accurate diagnosis is crucial for improving prognosis and implementing appropriate treatments. In this context, the advancement of Artificial Intelligence (AI) has provided new perspectives for the treatment of schizophrenia, with machine learning techniques and natural language processing allowing a more detailed analysis of clinical, neurological, and behavioral data sets. The present article aims to present a proposal for computational models for the identification of schizophrenic traits in texts.  The database used in this article was created with 139 excerpts of patients' speeches reported in the book “Memories of My Nervous Disease” by German judge Daniel Paul Schreber, classifying them into three categories: 1 - schizophrenic, 2 - with schizophrenic traits and 3 - without any relation to the disorder. Of these speeches, 104 were used for training the models and the others 35 for validation.Three classification models were implemented using features based on geometric properties of graphs (number of vertices, number of cycles, girth, vertex of maximum degree, maximum clique size) and text entropy. Promising results were observed in the classification, with the Decision Tree-based model [1] achieving 100% accuracy, the KNN- k-Nearest Neighbor model observed with 62.8% accuracy, and the 'centrality-based' model with 59% precision. The high precision rates, observed when geometric properties are incorporated into Artificial Intelligence Models, suggest that the models can be improved to the point of capturing the language deviation traits that are indicative of schizophrenic disorders. In summary, this study paves the way for significant advances in the use of geometric properties in the field of psychiatry, offering a new data-based approach to the understanding and therapy of schizophrenia

    The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.

    Get PDF
    ABSTRACT: A global genome database of all of Earth’s species diversity could be a treasure trove of scientific discoveries. However, regardless of the major advances in genome sequencing technologies, only a tiny fraction of species have genomic information available. To contribute to a more complete planetary genomic database, scientists and institutions across the world have united under the Earth BioGenome Project (EBP), which plans to sequence and assemble high-quality reference genomes for all ∼1.5 million recognized eukaryotic species through a stepwise phased approach. As the initiative transitions into Phase II, where 150,000 species are to be sequenced in just four years, worldwide participation in the project will be fundamental to success. As the European node of the EBP, the European Reference Genome Atlas (ERGA) seeks to implement a new decentralised, accessible, equitable and inclusive model for producing high-quality reference genomes, which will inform EBP as it scales. To embark on this mission, ERGA launched a Pilot Project to establish a network across Europe to develop and test the first infrastructure of its kind for the coordinated and distributed reference genome production on 98 European eukaryotic species from sample providers across 33 European countries. Here we outline the process and challenges faced during the development of a pilot infrastructure for the production of reference genome resources, and explore the effectiveness of this approach in terms of high-quality reference genome production, considering also equity and inclusion. The outcomes and lessons learned during this pilot provide a solid foundation for ERGA while offering key learnings to other transnational and national genomic resource projects.info:eu-repo/semantics/publishedVersio

    Enobrecimento, trajetórias sociais e remuneração de serviços no império português: a carreira de Gaspar de Sousa, governador geral do Estado do Brasil

    Full text link

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore