13 research outputs found

    Insights into the pre-initiation events of bacteriophage phi6 RNA-dependent RNA polymerase : towards the assembly of a productive binary complex

    Get PDF
    The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3 terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage 6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the 6 RdRP can be greatly enhanced.The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3 terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage 6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the 6 RdRP can be greatly enhanced.The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3 terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage 6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the 6 RdRP can be greatly enhanced.Peer reviewe

    Insights into the pre-initiation events of bacteriophage Ī¦6 RNA-dependent RNA polymerase: towards the assembly of a productive binary complex

    No full text
    The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3ā€™ terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage Ī¦6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the Ī¦6 RdRP can be greatly enhanced

    Insights into the pre-initiation events of bacteriophage phi 6 RNA-dependent RNA polymerase: towards the assembly of a productive binary complex.

    No full text
    The RNA-dependent RNA polymerase (RdRP) of double-stranded RNA (dsRNA) viruses performs both RNA replication and transcription. In order to initiate RNA polymerization, viral RdRPs must be able to interact with the incoming 3' terminus of the template and position it, so that a productive binary complex is formed. Structural studies have revealed that RdRPs of dsRNA viruses that lack helicases have electrostatically charged areas on the polymerase surface, which might facilitate such interactions. In this study, structure-based mutagenesis, enzymatic assays and molecular mapping of bacteriophage phi 6 RdRP and its RNA were used to elucidate the roles of the negatively charged plough area on the polymerase surface, of the rim of the template tunnel and of the template specificity pocket that is key in the formation of the productive RNA-polymerase binary complex. The positively charged rim of the template tunnel has a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. Hence, we show that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi 6 RdRP can be greatly enhanced

    Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions

    No full text
    During exocytosis of synaptic transmitters, the fusion of highly curved synaptic vesicle membranes with the relatively planar cell membrane requires the coordinated action of several proteins. The role of membrane lipids in the regulation of transmitter release is less well understood. Since it helps to control membrane fluidity, alteration of cholesterol content may alter the fusibility of membranes as well as the function of membrane proteins. We assayed the importance of cholesterol in transmitter release at crayfish neuromuscular junctions where action potentials can be measured in the preterminal axon. Methyl-Ī²-cyclodextrin (MĪ²CD) depleted axons of cholesterol, as shown by reduced filipin labelling, and cholesterol was replenished by cholesterolā€“MĪ²CD complex (Ch-MĪ²CD). MĪ²CD blocked evoked synaptic transmission. The lack of postsynaptic effects of MĪ²CD on the time course and amplitude of spontaneous postsynaptic potentials or on muscle resting potential allowed us to focus on presynaptic mechanisms. Intracellular presynaptic axon recordings and focal extracellular recordings at individual boutons showed that failure of transmitter release was correlated with presynaptic hyperpolarization and failure of action potential propagation. All of these effects were reversed when cholesterol was replenished with Ch-MĪ²CD. However, focal depolarization of presynaptic boutons and administration of a Ca(2+) ionophore both triggered transmitter release after cholesterol depletion. Therefore, both presynaptic Ca(2+) channels and Ca(2+)-dependent exocytosis functioned after cholesterol depletion. The frequency of spontaneous quantal transmitter release was increased by MĪ²CD but recovered when cholesterol was reintroduced. The increase in spontaneous release was not through a calcium-dependent mechanism because it persisted with intense intracellular calcium chelation. In conclusion, cholesterol levels in the presynaptic membrane modulate several key properties of synaptic transmitter release
    corecore