38 research outputs found

    Establishing a Learning Model for Correct Hand Hygiene Technique in a NICU

    Full text link
    The ability of healthcare workers to learn proper hand hygiene has been an understudied area of research. Generally, hand hygiene skills are regarded as a key contributor to reduce critical infections and healthcare-associated infections. In a clinical setup, at a Neonatal Intensive Care Unit (NICU), the outcome of a multi-modal training initiative was recorded, where objective feedback was provided to the staff. It was hypothesized that staff at the NICU are more sensitive towards applying increased patient safety measures. Outcomes were recorded as the ability to cover all hand surfaces with Alcohol-Based Handrub (ABHR), modelled as a time-series of measurements. The learning ability to rub in with 1.5 mL and with 3 mL was also assessed. As a secondary outcome, handrub consumption and infection numbers were recorded. It has been observed that some staff members were able to quickly learn the proper hand hygiene, even with the limited 1.5 mL, while others were not capable of acquiring the technique even with 3 mL. When analyzing the 1.5 mL group, it was deemed an insufficient ABHR amount, while with 3 mL, the critical necessity of skill training to achieve complete coverage was documented. Identifying these individuals helps the infection control staff to better focus their training efforts. The training led to a 157% increase in handrub consumption. The setting of the study did not allow to show a measurable reduction in the number of hospital infections. It has been concluded that the training method chosen by the staff greatly affects the quality of the outcomes

    KortĂĄrs egĂ©szsĂ©gfejlesztĂ©si programok közvetlen hatĂĄsa alsĂł tagozatos gyermekek kĂ©zhigiĂ©nĂ©s tudĂĄsĂĄra Ă©s megfelelƑ kĂ©zmosĂĄsi technikĂĄjĂĄra

    Get PDF
    INTRODUCTION AND AIM: In the case of primary school children in Budapest (n = 165), data on their social status and their previous knowledge on hand hygiene were elicited with the help of pre-knowledge questionnaires issued by students of higher education. The aim of the research was introducing a novel pedagogical procedure - application and optimization of peer education in the development of proper hand hygiene among primary school students. METHOD: The knowledge-based survey was conducted after four (n = 85) and eight hours of teaching (n = 36). In addition, the effectiveness of hand washing was tested immediately before (n = 166) and after the four (n = 74) and eight hours of teaching (n = 35) with Semmelweis Scanner after rubbing the hand with fluorescent cream. RESULTS: Prior knowledge of hand hygiene significantly increased after the four-hour and eight-hour trainings. In the case of smaller children, the effect of the eight-hour training was more pronounced. Similar results were obtained with regards to the changes in the number of areas missed while rubbing the surface of the hand as a result of the teaching. CONCLUSION: Sociological surveys on hand hygiene knowledge and direct physical measurements indicate that training with appropriate pedagogical procedures is effective and contributes to the environmentally conscious hygiene culture of children aged 6 to 10. Orv Hetil. 2018; 159(12): 485-490

    Ca2+-Mg2+-dependent ATP-ase activity in hemodialyzed children. Effect of a hemodialysis session

    Get PDF
    In the course of chronic kidney disease (CKD) the intracellular erythrocyte calcium (Cai2+) level increases along with the progression of the disease. The decreased activity of Ca2+-Mg2+-dependent ATP-ase (PMCA) and its endogenous modulators calmodulin (CALM), calpain (CANP), and calpastatin (CAST) are all responsible for disturbed calcium metabolism. The aim of the study was to analyze the activity of PMCA, CALM, and the CANP-CAST system in the red blood cells (RBCs) of hemodialyzed (HD) children and to estimate the impact of a single HD session on the aforementioned disturbances. Eighteen patients on maintenance HD and 30 healthy subjects were included in the study. CALM, Cai2+ levels and basal PMCA (bPMCA), PMCA, CANP, and CAST activities were determined in RBCs before HD, after HD, and before the next HD session. Prior to the HD session, the level of Cai2+ and the CAST activity were significantly higher, whereas bPMCA, PMCA, and CANP activities and the CALM level were significantly lower than in controls. After the HD session, the Cai2+ concentration and the CAST activity significantly decreased compared with the basal values, whereas the other parameters significantly increased, although they did not reach the levels of healthy children. The values observed prior to both HD sessions were similar. Cai2+ homeostasis is severely disturbed in HD children, which may be caused by the reduction in the PMCA activity, CALM deficiency, and CANP-CAST system disturbances. A single HD session improved these disturbances but the effect is transient

    Modeling and Analysis of the Molecular Basis of Pain in Sensory Neurons

    Get PDF
    Intracellular calcium dynamics are critical to cellular functions like pain transmission. Extracellular ATP plays an important role in modulating intracellular calcium levels by interacting with the P2 family of surface receptors. In this study, we developed a mechanistic mathematical model of ATP-induced P2 mediated calcium signaling in archetype sensory neurons. The model architecture, which described 90 species connected by 162 interactions, was formulated by aggregating disparate molecular modules from literature. Unlike previous models, only mass action kinetics were used to describe the rate of molecular interactions. Thus, the majority of the 252 unknown model parameters were either association, dissociation or catalytic rate constants. Model parameters were estimated from nine independent data sets taken from multiple laboratories. The training data consisted of both dynamic and steady-state measurements. However, because of the complexity of the calcium network, we were unable to estimate unique model parameters. Instead, we estimated a family or ensemble of probable parameter sets using a multi-objective thermal ensemble method. Each member of the ensemble met an error criterion and was located along or near the optimal trade-off surface between the individual training data sets. The model quantitatively reproduced experimental measurements from dorsal root ganglion neurons as a function of extracellular ATP forcing. Hypothesized architecture linking phosphoinositide regulation with P2X receptor activity explained the inhibition of P2X-mediated current flow by activated metabotropic P2Y receptors. Sensitivity analysis using individual and the whole system outputs suggested which molecular subsystems were most important following P2 activation. Taken together, modeling and analysis of ATP-induced P2 mediated calcium signaling generated qualitative insight into the critical interactions controlling ATP induced calcium dynamics. Understanding these critical interactions may prove useful for the design of the next generation of molecular pain management strategies

    Adaptive preconditioning in neurological diseases -­ therapeutic insights from proteostatic perturbations

    Get PDF
    International audienceIn neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including ParkinsonÂŽs disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gai
    corecore