29 research outputs found

    Wasting in chronic kidney disease

    Get PDF
    Wasting/cachexia is prevalent among patients with chronic kidney disease (CKD). It is to be distinguished from malnutrition, which is defined as the consequence of insufficient food intake or an improper diet. Malnutrition is characterized by hunger, which is an adaptive response, whereas anorexia is prevalent in patients with wasting/cachexia. Energy expenditure decreases as a protective mechanism in malnutrition whereas it remains inappropriately high in cachexia/wasting. In malnutrition, fat mass is preferentially lost and lean body mass and muscle mass is preserved. In cachexia/wasting, muscle is wasted and fat is relatively underutilized. Restoring adequate food intake or altering the composition of the diet reverses malnutrition. Nutrition supplementation does not totally reverse cachexia/wasting. The diagnostic criteria of cachexia/protein–energy wasting in CKD are considered. The association of wasting surrogates, such as serum albumin and prealbumin, with mortality is strong making them robust outcome predictors. At the patient level, longevity has consistently been observed in patients with CKD who have more muscle and/or fat, who report better appetite and who eat more. Although inadequate nutritional intake may contribute to wasting or cachexia, recent evidence indicates that other factors, including systemic inflammation, perturbations of appetite-controlling hormones from reduced renal clearance, aberrant neuropeptide signaling, insulin and insulin-like growth factor resistance, and metabolic acidosis, may be important in the pathogenesis of CKD-associated wasting. A number of novel therapeutic approaches, such as ghrelin agonists and melanocortin receptor antagonists are currently at the experimental level and await confirmation by randomized controlled clinical trials in patients with CKD-associated cachexia/wasting syndrome

    Components of a Flipped Classroom Influencing Student Success in an Undergraduate Business Statistics Course

    No full text
    An instructor transformed an undergraduate business statistics course over 10 semesters from a traditional lecture course to a flipped classroom course. The researcher used a linear mixed model to explore the effectiveness of the evolution on student success as measured by exam performance. The results provide guidance to successfully implement a flipped classroom course. The largest improvements were achieved by replacing face-to-face lecture with active learning exercises and using quizzes to verify student engagement with offline materials. Using conditional release of course materials to encourage homework completion also provided a significant benefit to students who missed class often

    Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature.

    Get PDF
    BackgroundHigher muscle mass is associated with better outcomes and longevity in patients with chronic disease states. Imaging studies such as dual-energy X-ray absorptiometry (DEXA) are among the gold standard methods for assessing body fat and lean body mass (LBM), approximately half of which is comprised of skeletal muscle mass. Elaborate imaging devices, however, are not commonly available in routine clinical practice and therefore easily accessible and cost-effective, but reliable muscle mass biomarkers are needed. One such marker is serum creatinine, derived from muscle-based creatine, which is inexpensive and ubiquitously available, and it can serve as a biomarker of skeletal muscle mass in human subjects.Methods and resultsIn 118 hemodialysis patients, we found that the 3-month averaged serum creatinine concentration correlated well with DEXA-measured LBM. The recent literature regarding serum creatinine as a surrogate of muscle mass is summarized, as is the literature concerning the use of other measures of muscle mass, such as plasma gelsolin and actin, and urinary creatinine excretion. We have also reviewed the role of dietary meat intake in serum creatinine variability along with several biomarkers of dietary meat intake (creatine, carnitine, carnosine, ophidine, anserine, 3-methyl-L-histidine and 1-methylhistidine).ConclusionIn summary, none of these biomarkers was studied in CKD patients. We advance the hypothesis that in both health and disease, under steady state, serum creatinine can serve as a reliable muscle mass biomarker if appropriate adjustment for full or residual kidney function and dietary meat intake is undertaken
    corecore