217 research outputs found

    All along the line of sight: a closer look at opening angles and absorption regions in the atmospheres of transiting exoplanets

    Get PDF
    Transmission spectra contain a wealth of information about the atmospheres of transiting exoplanets. However, large thermal and chemical gradients along the line of sight can lead to biased inferences in atmospheric retrievals. In order to determine how far from the limb plane the atmosphere still impacts the transmission spectrum, we derive a new formula to estimate the opening angle of a planet. This is the angle subtended by the atmospheric region that contributes to the observation along the line of sight, as seen from the planet centre. We benchmark our formula with a 3D Monte Carlo radiative transfer code and we define an opening angle suitable for the interpretation of JWST observations, assuming a 10-ppm noise floor. We find that the opening angle is only a few degrees for planets cooler than ca. 500 Kelvins, while it can be as large as 25 degrees for (ultra-)hot Jupiters and 50 degrees for hot Neptunes. Compared to previous works, our more robust approach leads to smaller estimates for the opening angle across a wide range scale heights and planetary radii. Finally, we show that ultra-hot Jupiters have an opening angle that is smaller than the angle over which the planet rotates during the transit. This allows for time-resolved transmission spectroscopy observations that probe independent parts of the planetary limb during the first and second half of the transit

    Modelling the effect of 3D temperature and chemistry on the cross-correlation signal of transiting ultra-hot Jupiters: A study of 5 chemical species on WASP-76b

    Full text link
    Ultra-hot Jupiters are perfect targets for transmission spectroscopy. However, their atmospheres feature strong spatial variations in temperature, chemistry, dynamics, cloud coverage, and scale height. This makes transit observations at high spectral resolution challenging to interpret. In this work, we model the cross-correlation signal of five chemical species (Fe, CO, H2_\text{2}O, OH, and TiO) on WASP-76b, a benchmark ultra-hot Jupiter. We compute phase-dependent high-resolution transmission spectra of 3D SPARC/MITgcm models. The spectra are obtained with gCMCRT, a 3D Monte-Carlo radiative-transfer code. We find that, on top of atmospheric dynamics, the phase-dependent Doppler shift of the absorption lines in the planetary rest frame is shaped by the combined effect of planetary rotation and the unique 3D spatial distribution of chemical species. For species probing the dayside (e.g., refractories or molecules like CO and OH), the two effects act in tandem, leading to increasing blueshifts with orbital phase. For species that are depleted on the dayside (e.g., H2_\text{2}O and TiO), the two effects act in an opposite manner, and could lead to increasing redshifts during the transit. This behaviour yields species-dependent offsets from a planet's expected KpK_\text{p} value that can be much larger than planetary wind speeds. The offsets are usually negative for refractory species. We provide an analytical formula to estimate the size of a planet's KpK_\text{p} offsets, which can serve as a prior for atmospheric retrievals. We conclude that observing the phase-resolved absorption signal of multiple species is key to constraining the 3D thermochemical structure and dynamics of ultra-hot Jupiters.Comment: 21 pages, 14 figures, resubmitted to MNRAS after minor revision

    Decomposing the Iron Cross-Correlation Signal of the Ultra-Hot Jupiter WASP-76b in Transmission using 3D Monte-Carlo Radiative Transfer

    Get PDF
    Ultra-hot Jupiters are tidally locked gas giants with dayside temperatures high enough to dissociate hydrogen and other molecules. Their atmospheres are vastly non-uniform in terms of chemistry, temperature and dynamics, and this makes their high-resolution transmission spectra and cross-correlation signal difficult to interpret. In this work, we use the SPARC/MITgcm global circulation model to simulate the atmosphere of the ultra-hot Jupiter WASP-76b under different conditions, such as atmospheric drag and the absence of TiO and VO. We then employ a 3D Monte-Carlo radiative transfer code, HIRES-MCRT, to self-consistently model high-resolution transmission spectra with iron (Fe I) lines at different phases during the transit. To untangle the structure of the resulting cross-correlation map, we decompose the limb of the planet into four sectors, and we analyse each of their contributions separately. Our experiments demonstrate that the cross-correlation signal of an ultra-hot Jupiter is primarily driven by its temperature structure, rotation and dynamics, while being less sensitive to the precise distribution of iron across the atmosphere. We also show that the previously published iron signal of WASP-76b can be reproduced by a model featuring iron condensation on the leading limb. Alternatively, the signal may be explained by a substantial temperature asymmetry between the trailing and leading limb, where iron condensation is not strictly required to match the data. Finally, we compute the Kp−VsysK_{p}-V_{sys} maps of the simulated WASP-76b atmospheres, and we show that rotation and dynamics can lead to multiple peaks that are displaced from zero in the planetary rest frame.Comment: Accepted for publication in MNRAS, 25 pages, 24 figure

    Understanding and Mitigating Biases when Studying Inhomogeneous Emission Spectra with JWST

    Full text link
    Exoplanet emission spectra are often modelled assuming that the hemisphere observed is well represented by a horizontally homogenised atmosphere. However this approximation will likely fail for planets with a large temperature contrast in the James Webb Space Telescope (JWST) era, potentially leading to erroneous interpretations of spectra. We first develop an analytic formulation to quantify the signal-to-noise ratio and wavelength coverage necessary to disentangle temperature inhomogeneities from a hemispherically averaged spectrum. We find that for a given signal-to-noise ratio, observations at shorter wavelengths are better at detecting the presence of inhomogeneities. We then determine why the presence of an inhomogeneous thermal structure can lead to spurious molecular detections when assuming a fully homogenised planet in the retrieval process. Finally, we quantify more precisely the potential biases by modelling a suite of hot Jupiter spectra, varying the spatial contributions of a hot and a cold region, as would be observed by the different instruments of JWST/NIRSpec. We then retrieve the abundances and temperature profiles from the synthetic observations. We find that in most cases, assuming a homogeneous thermal structure when retrieving the atmospheric chemistry leads to biased results, and spurious molecular detection. Explicitly modelling the data using two profiles avoids these biases, and is statistically supported provided the wavelength coverage is wide enough, and crucially also spanning shorter wavelengths. For the high contrast used here, a single profile with a dilution factor performs as well as the two-profile case, with only one additional parameter compared to the 1-D approach.Comment: Accepted for publication by MNRA

    How Does Thermal Scattering Shape the Infrared Spectra of Cloudy Exoplanets? A Theoretical Framework and Consequences for Atmospheric Retrievals in the JWST era

    Get PDF
    Observational studies of exoplanets are suggestive of a ubiquitous presence of clouds. The current modelling techniques used in emission to account for the clouds tend to require prior knowledge of the cloud condensing species and often do not consider the scattering effects of the cloud. We explore the effects that thermal scattering has on the emission spectra by modelling a suite of hot Jupiter atmospheres with varying cloud single-scattering albedos (SSAs) and temperature profiles. We examine cases ranging from simple isothermal conditions to more complex structures and physically driven cloud modelling. We show that scattering from nightside clouds would lead to brightness temperatures that are cooler than the real atmospheric temperature if scattering is unaccounted for. We show that scattering can produce spectral signatures in the emission spectrum even for isothermal atmospheres. We identify the retrieval degeneracies and biases that arise in the context of simulated JWST spectra when the scattering from the clouds dominates the spectral shape. Finally, we propose a novel method of fitting the SSA spectrum of the cloud in emission retrievals, using a technique that does not require any prior knowledge of the cloud chemical or physical properties.Comment: Accepted to MNRA

    Simulating gas giant exoplanet atmospheres with Exo-FMS: Comparing semi-grey, picket fence and correlated-k radiative-transfer schemes

    Get PDF
    Radiative-transfer (RT) is a fundamental part of modelling exoplanet atmospheres with general circulation models (GCMs). An accurate RT scheme is required for estimates of the atmospheric energy transport and for gaining physical insight from model spectra. We implement three RT schemes for Exo-FMS: semi-grey, non-grey `picket fence', and real gas with correlated-k. We benchmark the Exo-FMS GCM using these RT schemes to hot Jupiter simulation results from the literature. We perform a HD 209458b-like simulation with the three schemes and compare their results. These simulations are then post-processed to compare their observable differences. The semi-grey scheme results show qualitative agreement with previous studies in line with variations seen between GCM models. The real gas model reproduces well the temperature and dynamical structures from other studies. After post-processing our non-grey picket fence scheme compares very favourably with the real gas model, producing similar transmission spectra, emission spectra and phase curve behaviours. Exo-FMS is able to reliably reproduce the essential features of contemporary GCM models in the hot gas giant regime. Our results suggest the picket fence approach offers a simple way to improve upon RT realism beyond semi-grey schemes.Comment: MNRAS accepted 22 June 2021 - V2, typos fixe

    Theoretical studies of the historical development of the accounting discipline: a review and evidence

    Get PDF
    Many existing studies of the development of accounting thought have either been atheoretical or have adopted Kuhn's model of scientific growth. The limitations of this 35-year-old model are discussed. Four different general neo-Kuhnian models of scholarly knowledge development are reviewed and compared with reference to an analytical matrix. The models are found to be mutually consistent, with each focusing on a different aspect of development. A composite model is proposed. Based on a hand-crafted database, author co-citation analysis is used to map empirically the entire literature structure of the accounting discipline during two consecutive time periods, 1972–81 and 1982–90. The changing structure of the accounting literature is interpreted using the proposed composite model of scholarly knowledge development

    The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars

    Get PDF
    We present the four-year survey results of monthly submillimeter monitoring of eight nearby (<500 pc) star-forming regions by the JCMT Transient Survey. We apply the Lomb–Scargle Periodogram technique to search for and characterize variability on 295 submillimeter peaks brighter than 0.14 Jy beam−1, including 22 disk sources (Class II), 83 protostars (Class 0/I), and 190 starless sources. We uncover 18 secular variables, all of them protostars. No single-epoch burst or drop events and no inherently stochastic sources are observed. We classify the secular variables by their timescales into three groups: Periodic, Curved, and Linear. For the Curved and Periodic cases, the detectable fractional amplitude, with respect to mean peak brightness, is ∌4% for sources brighter than ∌0.5 Jy beam−1. Limiting our sample to only these bright sources, the observed variable fraction is 37% (16 out of 43). Considering source evolution, we find a similar fraction of bright variables for both Class 0 and Class I. Using an empirically motivated conversion from submillimeter variability to variation in mass accretion rate, six sources (7% of our full sample) are predicted to have years-long accretion events during which the excess mass accreted reaches more than 40% above the total quiescently accreted mass: two previously known eruptive Class I sources, V1647 Ori and EC 53 (V371 Ser), and four Class 0 sources, HOPS 356, HOPS 373, HOPS 383, and West 40. Considering the full protostellar ensemble, the importance of episodic accretion on few years timescale is negligible—only a few percent of the assembled mass. However, given that this accretion is dominated by events on the order of the observing time window, it remains uncertain as to whether the importance of episodic events will continue to rise with decades-long monitoring

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore