505 research outputs found

    Surgical approach to limiting skin contracture following protractor myectomy for essential blepharospasm

    Get PDF
    Purpose: To report our experience with protractor myectomy in patients with benign essential blepharospasm who did not respond to serial botulinum toxin injection, and to describe intra- and postoperative techniques that limited skin contracture while also providing excellent functional and cosmetic results. Methods: The medical records of patients with isolated, benign, essential blepharospasm who underwent protractor myectomy from 2005 to 2008 by a single surgeon were reviewed retrospectively. The technique entailed operating on a single eyelid during each procedure, using a complete en bloc resection of all orbicularis tissue, leaving all eyelid skin intact at the time of surgery, and placing the lid under stretch with Frost suture and applying a pressure dressing for 5-7 days. Results: Data from 28 eyelids in 7 patients were included. Average follow-up was 21.5 months (range, 4-76 months). Of the 28 eyelids, 20 (71.4%) showed postoperative resolution of spasm, with no further need for botulinum toxin injections. In the 8 eyelids requiring further injections, the average time to injection after surgery was 194 days (range, 78-323 days), and the average number of injections was 12 (range, 2-23 injections). All but one eyelid had excellent cosmetic results, without signs of contracture; one eyelid developed postoperative skin contracture following premature removal of the Frost suture and pressure dressing because of concerns over increased intraocular pressure. Conclusions: In our patient cohort, this modified technique resulted in excellent cosmetic and functional results and limited postoperative skin contracture

    Extra-ocular movement restriction and diplopia following orbital fracture repair

    Get PDF
    Purpose To report a series of patients with extra-ocular movement restriction and diplopia after orbital fracture repair, and determine the effect of timing of repair and the type of implant used. Methods A chart review was conducted identifying all patients > 18 years of age at our institution between June 2005 and June 2008 who underwent orbital fracture repair, and presented with clinically significant diplopia and extra-ocular movement restriction persisting longer than one month after repair. Data collected included timing of repair, implant used within the orbit, and need for revision. Results Ten patients were identified with a mean time to primary orbital fracture repair at 9 days (range 1–48). Seven patients underwent revision of their orbital fracture repair with removal of the previously placed implant and replacement with non-porous 0.4 mm Supramid Foil, whereas one patient underwent lateral and inferior rectus recessions without revision of primary fracture repair. Titanium mesh was the intra-orbital implant found in all patients requiring revision of orbital fracture repair. All revisions resulted in resolution of clinically significant diplopia. Conclusions Clinically significant diplopia and extra-ocular movement restriction is not an uncommon complication after orbital fracture repair. In our series, there was a strong association between these complications and the use of porous titanium mesh implants. Revision of fractures significantly improved diplopia in all but one patient. This suggests that meticulous fracture repair and the use of non-porous implants primarily or secondarily may preclude the need for strabismus surgery after orbital trauma

    Genetic Predisposition of Donors Affects the Allograft Outcome in Kidney Transplantation; Polymorphisms of Stromal-Derived Factor-1 and CXC Receptor 4

    Get PDF
    Genetic interaction between donor and recipient may dictate the impending responses after transplantation. In this study, we evaluated the role of the genetic predispositions of stromal-derived factor-1 (SDF1) [rs1801157 (G>A)] and CXC receptor 4 (CXCR4) [rs2228014 (C>T)] on renal allograft outcomes. A total of 335 pairs of recipients and donors were enrolled. Biopsy-proven acute rejection (BPAR) and long-term graft survival were traced. Despite similar allele frequencies between donors and recipients, minor allele of SDF1 rs1801157 (GA+AA) from donor, not from recipients, has a protective effect on the development of BPAR compared to wild type donor (GG) (P = 0.005). Adjustment for multiple covariates did not affect this result (odds ratio 0.39, 95% C.I 0.20–0.76, P = 0.006). CXCR4 rs2228014 polymorphisms from donor or recipient did not affect the incidence of acute rejection. SDF1 was differentially expressed in renal tubular epithelium with acute rejection according to genetic variations of donor rs1801157 showing higher expressions in the grafts from GG donors. Contrary to the development of BPAR, the presence of minor allele rs1801157 A, especially homozygocity, predisposed poor graft survival (P = 0.001). This association was significant after adjusting for several risk factors (hazard ratio 3.01; 95% C.I = 1.19–7.60; P = 0.020). The allelic variation of recipients, however, was not associated with graft loss. A donor-derived genetic polymorphism of SDF1 has influenced the graft outcome. Thus, the genetic predisposition of donor should be carefully considered in transplantation

    Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility

    Get PDF
    Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10-8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10-7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10-7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10-4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE

    The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Get PDF
    BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place

    Role of DNA methylation in head and neck cancer

    Get PDF
    Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC

    Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3

    Get PDF
    We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9-1.8+1.7 for z≲1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,Θ<(0.0137.6)×108ergcm2s1Hz1,F_{\alpha, \Theta} < {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}}, and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ωα,Θ<(0.579.3)×109sr1\Omega_{\alpha, \Theta} < {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}, depending on direction (Θ\Theta) and spectral index (α\alpha). These limits improve upon previous limits by factors of 2.93.52.9 - 3.5. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h0<(1.72.1)×1025,h_0 < {\rm (1.7-2.1)} \times 10^{-25}, a factor of 2.0\geq 2.0 improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure
    corecore