203 research outputs found

    Abnormally persistent fMRI activation during antisaccades in schizophrenia: a neural correlate of perseveration

    Get PDF
    Objective: Impaired antisaccade performance is a consistent cognitive finding in schizophrenia. Antisaccades require both response inhibition and volitional motor programming, functions that are essential to flexible responding. We investigated whether abnormal timing of hemodynamic responses (HDRs) to antisaccades might contribute to perseveration of ocular motor responses in schizophrenia. We focused on the frontal eye field (FEF), which has been implicated in the persistent effects of antisaccades on subsequent responses in healthy individuals. Method: Eighteen chronic, medicated schizophrenia outpatients and 15 healthy controls performed antisaccades and prosaccades during functional MRI. Finite impulse response models provided unbiased estimates of event-related HDRs. We compared groups on the peak amplitude, time-to-peak, and full-width half-max of the HDRs. Results: In patients, HDRs in bilateral FEF were delayed and prolonged but ultimately of similar amplitude to that of controls. These abnormalities were present for antisaccades, but not prosaccades, and were not seen in a control region. More prolonged HDRs predicted slower responses in trials that followed an antisaccade. This suggests that persistent FEF activity following an antisaccade contributes to inter-trial effects on latency. Conclusions: Delayed and prolonged HDRs for antisaccades in schizophrenia suggest that the functions necessary for successful antisaccade performance take longer to implement and are more persistent. If abnormally persistent neural responses on cognitively demanding tasks are a more general feature of schizophrenia, they may contribute to response perseveration, a classic behavioral abnormality. These findings also underscore the importance of evaluating the temporal dynamics of neural activity to understand cognitive dysfunction in schizophrenia

    Multiple Cancer/Testis Antigens Are Preferentially Expressed in Hormone-Receptor Negative and High-Grade Breast Cancers

    Get PDF
    BACKGROUND: Cancer/testis (CT) antigens are protein antigens normally expressed only in germ cells of testis, and yet are expressed in a proportion of a wide variety of human cancers. CT antigens can elicit spontaneous immune responses in cancer patients with CT-positive cancers, and CT antigen-based therapeutic cancer vaccine trials are ongoing for "CT-rich" tumors. Although some previous studies found breast cancer to be "CT-poor", our recent analysis identified increased CT mRNA transcripts in the ER-negative subset of breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive immunohistochemical study to investigate the protein expression of eight CT genes in 454 invasive ductal carcinomas, including 225 ER/PR/HER2-negative (triple-negative) carcinomas. We found significantly more frequent expression of all eight CT antigens in ER-negative cancers, and five of them--MAGEA, CT7, NY-ESO-1, CT10 and CT45, were expressed in 12-24% of ER-negative cancers, versus 2-6% of ER-positive cancers (p<0.001 to 0.003). In comparison, GAGE, SAGE1 and NXF2 were only expressed in 3-5% of ER-negative and 0-2% of ER-positive cancers. ER-negative cancers were also more likely to simultaneously co-express multiple CT antigens, with 27% (34/125) of ER-negative, CT-positive tumors expressing three or more CT antigens. HER2 status had no consistent effect on CT expression, and triple-negative carcinomas showed similar frequencies of MAGEA and NY-ESO-1 expression as ER-negative/HER2-positive carcinomas. More frequent CT expression was also found in tumors with higher nuclear grade (p<0.001 to p = 0.01) and larger in size (>2 cm). CONCLUSIONS/SIGNIFICANCE: CT antigens are preferentially expressed in hormone receptor-negative and high-grade breast cancer. Considering the limited treatment options for ER/PR/HER2 triple-negative breast cancer, the potential of CT-based immunotherapy should be explored

    Targeting Epigenetic Regulation of miR-34a for Treatment of Pancreatic Cancer by Inhibition of Pancreatic Cancer Stem Cells

    Get PDF
    MicroRNA-34a (miR-34a) is a transcriptional target of p53 and is down-regulated in pancreatic cancer. This study aimed to investigate the functional significance of miR-34a in pancreatic cancer progression through its epigenetic restoration with chromatin modulators, demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) and HDAC inhibitor Vorinostat (SAHA).Re-expression of miR-34a in human pancreatic cancer stem cells (CSCs) and in human pancreatic cancer cell lines upon treatment with 5-Aza-dC and SAHA strongly inhibited the cell proliferation, cell cycle progression, self-renewal, epithelial to mesenchymal transition (EMT) and invasion. In pancreatic CSCs, modulation of miR-34a induced apoptosis by activating caspase-3/7. Treatment of pancreatic CSCs with the chromatin-modulating agents resulted in the inhibition of Bcl-2, CDK6 and SIRT1, which are the putative targets of miR-34a. MiR-34a upregulation by these agents also induced acetylated p53, p21(WAF1), p27(KIP1) and PUMA in pancreatic CSCs. Inhibition of miR-34a by antagomiR abrogates the effects of 5-Aza-dC and SAHA, suggesting that 5-Aza-dC and SAHA regulate stem cell characteristics through miR-34a. In CSCs, SAHA inhibited Notch pathway, suggesting its suppression may contribute to inhibition of the self-renewal capacity and induction of apoptosis. Interestingly, treatment of pancreatic CSCs with SAHA resulted in the inhibition of EMT with the transcriptional up-regulation of E-Cadherin and down-regulation of N-Cadherin. Expression of EMT inducers (Zeb-1, Snail and Slug) was inhibited in CSCs upon treatment with SAHA. 5-Aza-dC and SAHA also retard in vitro migration and invasion of CSCs.The present study thus demonstrates the role of miR-34a as a critical regulator of pancreatic cancer progression by the regulating CSC characteristics. The restoration of its expression by 5-Aza-dC and SAHA in CSCs will not only provide mechanistic insight and therapeutic targets for pancreatic cancer but also promising reagents to boost patient response to existing chemotherapies or as a standalone cancer drug by eliminating the CSC characteristics

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Providing High-Quality Care for Limited English Proficient Patients: The Importance of Language Concordance and Interpreter Use

    Get PDF
    Background: Provider–patient language discordance is related to worse quality care for limited English proficient (LEP) patients who speak Spanish. However, little is known about language barriers among LEP Asian-American patients. Objective: We examined the effects of language discordance on the degree of health education and the quality of interpersonal care that patients received, and examined its effect on patient satisfaction. We also evaluated how the presence/absence of a clinic interpreter affected these outcomes. Design: Cross-sectional survey, response rate 74%. Participants: A total of 2,746 Chinese and Vietnamese patients receiving care at 11 health centers in 8 cities. Measurements: Provider–patient language concordance, health education received, quality of interpersonal care, patient ratings of providers, and the presence/absence of a clinic interpreter. Regression analyses were used to adjust for potential confounding. Results: Patients with language-discordant providers reported receiving less health education (β = 0.17, p &lt; 0.05) compared to those with language-concordant providers. This effect was mitigated with the use of a clinic interpreter. Patients with language-discordant providers also reported worse interpersonal care (β = 0.28, p &lt; 0.05), and were more likely to give low ratings to their providers (odds ratio [OR] = 1.61; CI = 0.97–2.67). Using a clinic interpreter did not mitigate these effects and in fact exacerbated disparities in patients’ perceptions of their providers. Conclusion: Language barriers are associated with less health education, worse interpersonal care, and lower patient satisfaction. Having access to a clinic interpreter can facilitate the transmission of health education. However, in terms of patients’ ratings of their providers and the quality of interpersonal care, having an interpreter present does not serve as a substitute for language concordance between patient and provider

    Population genomics of Drosophila suzukii reveal longitudinal population structure and signals of migrations in and out of the continental United States

    Get PDF
    Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States (U.S.) a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental U.S., as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern U.S. populations, but no evidence of any population structure between different latitudes within the continental U.S., suggesting there is no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western U.S. and from the Eastern U.S. to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western U.S. back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pes

    Current commands for high-efficiency torque control of DC shunt motor

    Get PDF
    The current commands for a high-efficiency torque control of a DC shunt motor are described. In the proposed control method, the effect of a magnetic saturation and an armature reaction are taken into account by representing the coefficients of an electromotive force and a torque as a function of the field current, the armature current and the revolving speed. The current commands at which the loss of the motor drive system becomes a minimum are calculated as an optimal problem. The proposed control technique of a motor is implemented on the microprocessor-based control system. The effect of the consideration of the magnetic saturation and the armature reaction on the produced torque and the minimisation of the loss are discussed analytically and experimentally </p

    Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images

    Get PDF
    A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been quantifying three-dimensional (3D) spine shapes with sufficient precision to distinguish morphologic types, and sufficient throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic spines from laser scanning microscopy (LSM) images that directly addresses these limitations. The system is more accurate, and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines that are undetectable with standard two-dimensional (2D) tools. Adaptive local thresholding, voxel clustering and Rayburst Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function
    corecore