156 research outputs found

    Real-time software receiver

    Get PDF
    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism

    Tn-Seq reveals hidden complexity in the utilization of host-derived glutathione in \u3cem\u3eFrancisella tularensis\u3c/em\u3e

    Get PDF
    Host-derived glutathione (GSH) is an essential source of cysteine for the intracellular pathogen Francisella tularensis. In a comprehensive transposon insertion sequencing screen, we identified several F. tularensis genes that play central and previously unappreciated roles in the utilization of GSH during the growth of the bacterium in macrophages. We show that one of these, a gene we named dptA, encodes a proton-dependent oligopeptide transporter that enables growth of the organism on the dipeptide Cys-Gly, a key breakdown product of GSH generated by the enzyme Îł-glutamyltranspeptidase (GGT). Although GGT was thought to be the principal enzyme involved in GSH breakdown in F. tularensis, our screen identified a second enzyme, referred to as ChaC, that is also involved in the utilization of exogenous GSH. However, unlike GGT and DptA, we show that the importance of ChaC in supporting intramacrophage growth extends beyond cysteine acquisition. Taken together, our findings provide a compendium of F. tularensis genes required for intracellular growth and identify new players in the metabolism of GSH that could be attractive targets for therapeutic intervention

    Observations of quiet-time moderate midlatitude L-band scintillation in association with plasma bubbles

    Get PDF
    Observations of moderate night time amplitude scintillation on the GPS L1C/A signal were recorded at the midlatitude station of Nicosia, corresponding geographic latitude and longitude of 35.18˚N and 33.38˚E respectively, on a geomagnetically quiet day. The variations of slant total electron content (STEC) and amplitude scintillation index (S4) on the night of June 12, 2014, indicate the presence of electron density depletions accompanying scintillation occurrence. The estimated apparent horizontal drift velocity and propagation direction of the plasma depletions are consistent with those observed for the equatorial plasma bubbles, thus suggesting that the moderate amplitude L-band scintillation observed over Nicosia may be associated with the extension of such plasma bubbles. The L-band scintillation occurrence was concurrent with the observations of range spread F on the ionograms recorded by the digisonde at Nicosia. The height–time–intensity plot generated using the ionogram data also showed features which can be attributed to off-angle reflections from electron density depletions, thus corroborating the STEC observations. This observation suggests that the midlatitude ionosphere is more active even during geomagnetically quiet days than previously thought and that further studies are necessary. This is particularly relevant for the GNSS user community and related applications

    Dynamical and magnetic field time constants for Titan's ionosphere: Empirical estimates and comparisons with Venus

    Get PDF
    Plasma in Titan´s ionosphere flows in response to forcing from thermal pressure gradients, magnetic forces, gravity, and ion-neutral collisions. This paper takes an empirical approach to the ionospheric dynamics by using data from Cassini instruments to estimate pressures, flow speeds, and time constants on the dayside and nightside. The plasma flow speed relative to the neutral gas speed is approximately 1 m s‑1 near an altitude of 1000 km and 200 m s‑1 at 1500 km. For comparison, the thermospheric neutral wind speed is about 100 m s‑1. The ionospheric plasma is strongly coupled to the neutrals below an altitude of about 1300 km. Transport, vertical or horizontal, becomes more important than chemistry in controlling ionospheric densities above about 1200-1500 km, depending on the ion species. Empirical estimates are used to demonstrate that the structure of the ionospheric magnetic field is determined by plasma transport (including neutral wind effects) for altitudes above about 1000 km and by magnetic diffusion at lower altitudes. The paper suggests that a velocity shear layer near 1300 km could exist at some locations and could affect the structure of the magnetic field. Both Hall and polarization electric field terms in the magnetic induction equation are shown to be locally important in controlling the structure of Titan´s ionospheric magnetic field. Comparisons are made between the ionospheric dynamics at Titan and at Venus.Fil: Cravens, T. E.. University of Kansas; Estados UnidosFil: Richard, M.. University of Kansas; Estados UnidosFil: Ma, Y. J.. University of California; Estados UnidosFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Luhmann, J. G.. University of California; Estados UnidosFil: Ledvina, S.. University of California; Estados UnidosFil: Robertson, I. P.. University of Kansas; Estados UnidosFil: Wahlund, J. E.. Swedish Institute of Space Physics; SueciaFil: Ågren, K.. Swedish Institute of Space Physics; SueciaFil: Cui, J.. Imperial College London; Reino UnidoFil: Muller Wodarg, I.. Imperial College London; Reino UnidoFil: Waite, J. H.. Southwest Research Institute; Estados UnidosFil: Dougherty, M.. Imperial College London; Reino UnidoFil: Bell, J.. Southwest Research Institute; Estados UnidosFil: Ulusen, D.. University of California; Estados Unido

    Access of energetic particles to Titan's exobase: a study of Cassini's T9 flyby

    Get PDF
    We study how the local electromagnetic disturbances introduced by Titan affect the ionization rates of the atmosphere. For this, we model the precipitation of energetic particles, specifically hydrogen and oxygen ions with energies between 1 keV and 1 MeV, into Titan's exobase for the specific magnetospheric configuration of the T9 flyby. For the study, a particle tracing software package is used which consists of an integration of the single particle Lorentz force equation using a 4th order Runge-Kutta numerical method. For the electromagnetic disturbances, the output of the A.I.K.E.F. hybrid code (kinetic ions, fluid electrons) is used, allowing the possibility of analyzing the disturbances and asymmetries in the access of energetic particles originated by their large gyroradii. By combining these methods, 2D maps showing the access of each set of particles were produced. We show that the access of different particles is largely dominated by their gyroradii, with the complexity of the maps increasing with decreasing gyroradius, due to the larger effect that local disturbances introduced by the presence of the moon have in the trajectory of the particles with lower energies. We also show that for particles with gyroradii much larger than the moon's radius, simpler descriptions of the electromagnetic environment can reproduce similar results to those obtained when using the full hybrid simulation description, with simple north-south fields being sufficient to reproduce the hybrid code results for O+ ions with energies larger than 10 keV but not enough to reproduce those for H+H+ ions at any of the energies covered in the present study. Finally, by combining the maps created with upstream plasma flow measurements by the MIMI/CHEMS instrument, we are able to estimate normalized fluxes arriving at different selected positions of the moon's exobase. We then use these fluxes to calculate energy deposition and non-dissociative N2 ionization rates for precipitating O+O+ and H+H+ ions and find differences in the ion production rates of up to almost 80% at the selected positions. All these results combined show that the electromagnetic field disturbances present in the vicinity of Titan significantly affect the contribution of energetic ions to local ionization profiles
    • …
    corecore