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Abstract—Background theory, a reference design, and demon-
stration results are given for a Global Navigation Satellite
System (GNSS) interference localization system comprising a
distributed radio-frequency sensor network that simultaneously
locates multiple interference sources by measuring their signals’
time difference of arrival (TDOA) between pairs of nodes in
the network. The end-to-end solution offered here draws from
previous work in single-emitter group delay estimation, very long
baseline interferometry, subspace-based estimation, radar, and
passive geolocation. Synchronization and automatic localization
of sensor nodes is achieved through a tightly-coupled receiver
architecture that enables phase-coherent and synchronous sam-
pling of the interference signals and so-called reference signals
which carry timing and positioning information. Signal and cross-
correlation models are developed and implemented in a simulator.
Multiple-emitter subspace-based TDOA estimation techniques
are developed as well as emitter identification and localization
algorithms. Simulator performance is compared to the Cramér-
Rao lower bound for single-emitter TDOA precision. Results are
given for a test exercise in which the system accurately locates
emitters broadcasting in the amateur radio band in Austin, TX.

I. INTRODUCTION

Despite its marvelous success over the last three decades,
the Global Positioning System (GPS) has an Achilles’ heel:
its weak signals are an easy target for jamming. The National
Space-Based Positioning, Navigation, and Timing Advisory
Board in a recent white paper has concluded that the “United
States is now critically dependent on GPS” [1]. The paper
notes an alarming increase in the incidence rate of deliberate
and unintentional GPS interference, which in some cases
renders GPS inoperable for critical infrastructure operations.
The white paper also notes the increasing availability of small
and cheap GPS jammers known as personal privacy devices
(PPDs). Although the advertised jamming coverage radius for
these devices is small, typically 10 to 20 meters, their actual
range may extend to tens of kilometers [2].

In one recent case of interest, a test version of the GPS
ground-based augmentation system (GBAS) at Newark Inter-
national Airport suffered from periodic interference due to
a PPD aboard a truck traveling on a nearby highway [3].
The authorities took four months to track down the jammer.
Continued monitoring in the Newark airport area after this
incident indicates that during rush hours, there occur 4 to
5 interference events per hour, presumably due to PPDs [4].
GPS-synchronized cellular communications networks also re-
port an increasing rate of periodic GPS outages, most likely
due to passing PPDs. Although these networks are designed
to fall back to a hold-over mode that is capable of maintaining

adequate synchronization for several days, such interference is
nonetheless an annoyance for network operators.

Despite a recent effort by the Federal Communications
Commission to discourage sale, purchase, and use of PPDs [5],
there is reason to believe that they will only become more
widespread in the future. The miniaturization and proliferation
of GPS trackers will likely lead to an increased use of PPDs,
despite their being illegal, as people seek to protect their
privacy from invasive tracking [6]. To aid in enforcing laws
against PPDs and jamming devices, there is a need for a
persistent system capable of detecting and locating sources
of jamming.

There is extensive literature on passive geolocation and
time difference of arrival (TDOA) estimation. This paper
develops an interference localization solution that is based
on maximum likelihood TDOA estimation techniques which
can be traced back to the 1970s [7–9]. These techniques
are based on analysis of the cross-power spectral density
(CPSD) of an emitter signal received at two sensors with
some differential delay. The very long baseline interferometry
(VLBI) community uses similar techniques to estimate the
group delay between the received signals at separate reference
stations [10].

For single-emitter TDOA estimation, it is often sufficient
to choose the delay that maximizes the time-domain cross-
correlation function [11–14]. However, for multiple emitters,
analysis of the CPSD offers better resolution because pow-
erful subspace methods such as multiple signal classification
(MUSIC) can be applied to distinguish the frequency-domain
components due to the various emitters [15].

In so-called passive geolocation, where the structure of
the interference signals is not known a priori, the estimated
TDOAs must be associated with emitters. In other words, one
must decide from which emitter, if any, a TDOA measure-
ment originated. Previous solutions to the data association
problem, which require solving a computationally-demanding
high-dimensional assignment problem, are reviewed in [16],
and a computationally-efficient “tracking” extension of the
problem is introduced. The effect of non-line-of-sight TDOA
measurements due to multipath reflections and ways to detect
those measurements through consistency checks are consid-
ered in [14].

More particularly related to the problem of locating GPS
interference sources, the work by Scott (J911) [17], Brown
(JLOC) [18], and Chronos Technology (GAARDIAN) [19]
focus on building cheap, low-network-throughput jamming-to-
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noise ratio sensors based on monitoring GPS carrier-to-noise
ratio and automatic gain control (AGC) values, making them
suited only for triggering and coarse localization. The work
by Akos considers a network of sensor nodes using a low-
cost Global Navigation Satellite System (GNSS) front end
with AGC monitoring capability. Single-emitter interference
localization is implemented using AGC values coupled with
power-law path loss models for strong sources and cross-
correlation-based TDOA estimation coupled with hyperbolic
positioning for weak sources [11, 12].

The current paper offers a thorough overview of the emitter
localization problem and describes the design and implementa-
tion of an operational prototype system targeted to GNSS inter-
ference source detection and localization. Theoretical models
for received signals from multiple emitters are developed
with appropriate assumptions for typical terrestrial emitter
localization applications. For improved location precision, the
prototype system is implemented with a spatially-distributed
array of sensor nodes. The technique of synchronizing sensor
nodes by clock-sharing via coaxial cable, as in [13], cannot
be applied to this system because the sensors are separated by
km-length baselines. Instead, the sensors make use of ambient
radio frequency (RF) timing signals such as GPS or cellular
code division multiple access (CDMA) to provide timing
synchronization [11, 20]. For sensors on moving platforms, a
position, velocity, and time solution (commonly obtained from
GNSS signals) is required to synchronize the correlator’s time
and frequency offset.

The current work extends the previous work on TDOA-
based GNSS interference source localization in [11, 13] by
emphasizing simultaneous localization of multiple emitters.
The multiple-emitter problem is addressed under reasonable
assumptions about the emitter signal spectral shape, allowing
the TDOAs to be detected and estimated in a straightforward
subspace and least-squares fitting framework. The problem
of TDOA data association is addressed through a simple but
effective phase closure consistency check which assumes that
the TDOA measurements are not significantly affected by
multipath. A simulator developed to provide a testbed for
validating theory and refining algorithms is described and both
simulated and field-test results for the localization algorithms
are provided.

II. SIGNAL MODELS

The models developed in this section form the basis of the
TDOA estimation algorithms. The development is guided by
derivations given in the radar literature [21], but adapted for
passive geolocation.

A. Received Signal Model

Consider the following model for the signal transmitted by
an interference source (hereafter emitter):

s (t) = As (t) cos (2πfct+ φs (t)) . (1)

Here, As (t) is the instantaneous amplitude, fc is the cen-
ter frequency, and φs (t) is the transmitted beat carrier

phase. For convenience, consider the complex envelope
s̃ (t) = As (t) exp (jφs (t)) and analytic representation ŝ (t) =
s̃ (t) exp (2πfct) of the transmitted signal s (t). Note that
analytic signals are a valid approximation when the complex
envelope is slowly varying with respect to the center frequency
(i.e. bandpass signals) [21]. Assume that the radio propagation
channel induces a non-dispersive delay τρ (t), an attenuation
A (ρ̄) that is a function of the average range ρ̄ over the time-of-
flight interval, and additive white Gaussian noise n′ (t). Then
the received signal r′ (t) at the sensor can be modeled as

r′ (t) = A (ρ̄) s (t− τρ (t)) + n′ (t) , (2)

or with an analytic representation as

r̂′ (t) = A (ρ̄) ŝ (t− τρ (t)) + n̂′ (t) , (3)

where n̂′ (t), the analytic representation of n′ (t), is a complex
white Gaussian noise process with single-sided power spectral
density N0 in W/Hz. Other propagation effects like multipath
and shadowing are not considered in this model.

For electromagnetic waves traveling in a vacuum, the prop-
agation delay τρ (t) satisfies the implicit relationship

cτρ (t) =

√
(re (t− τρ)− rs (t))

T
(re (t− τρ)− rs (t)),

(4)
where c is the speed of light, rs (t) is the sensor position
vector, and re (t) is the emitter position vector [22]. For short
propagation distances and electromagnetic wave velocities, (4)
can be approximated as

cτρ (t) = ρ (t) =

√
r (t)

T
r (t), (5)

where r (t) = re (t) − rs (t) is the relative position vector
and ρ (t) is the instantaneous range. The range rate is given
by ρ̇ (t) = r (t)

T
ṙ (t) /ρ (t). In a further approximation

that applies to emitters and sensors with moderate standoff
distances and terrestrial velocities, the delay can be modeled
linearly as

cτρ (t) = ρ (0) + ρ̇ (0) t (6)

over a small interval of time about t = 0.
Let the relationship between the time tr at the sensor and

true time t be given by

t = tr − τr (tr) , (7)

where τr (tr) is the sensor’s clock offset from true time. The
clock is parametrized by a sensor clock offset bias af0 and
clock offset drift or fractional frequency error af1 so that the
sensor’s clock offset time history τr (tr) is given by

τr (tr) = af0 + af1tr. (8)

The linear model is valid for the clocks used in this application
over a small interval of time about tr = 0 where small is
defined as less than 100 ms for a temperature-compensated
crystal oscillator or 10 s for an oven-controlled crystal oscil-
lator.
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Suppose that a mixing signal with nominal center frequency
fc is generated with the sensor’s clock. The mixing signal’s
phase φr (tr) is related to tr by

φr (tr) = 2πfctr + φr,0, (9)

where φr,0 is the initial phase of the oscillator. Let the mixing
operation be modeled such that the resulting baseband signal
r̃′ (t) is given by

r̃′ (t) = r̂′ (t) exp (−jφr (tr))

= A (ρ̄) s̃ (t− τρ (t)) exp (−jφ′ (t, tr)) + ñ′ (t) , (10)

where

φ′ (t, tr) = 2π (tr − t+ τρ (t)) fc + φr,0 (11)

and ñ′ (t) = n̂′ (t) exp (−jφr (tr)) is a zero-mean baseband
complex Gaussian process. The sensor clock model in (7) is
used in (10) to express r̃′ (t) in the sensor’s time base, denoted
r̃ (tr). The noise-free baseband received signal s̃r (tr) is given
by

s̃r (tr) = A (ρ̄) s̃ (tr − τm (tr)) exp (−jφm (tr)) , (12)

with the apparent delay τm (tr) defined as

τm (tr) = τr (tr) + τρ (tr − τr (tr)) (13)

and the received beat carrier phase φm (tr) given by

φm (tr) = 2πfcτm (tr) + φr,0. (14)

The full expression for the baseband received signal r̃ (tr) is
given by

r̃ (tr) = s̃r (tr) + ñ (tr) , (15)

where ñ (tr) = ñ′ (tr − τr (tr)) is still a zero-mean baseband
complex Gaussian process. Given the aforementioned linear
approximations for the clock and range delays, the apparent
delay can be approximated by linear parameters τm,0 and τ̇m
as

τm (tr) ≈ τm,0 + τ̇mtr. (16)

Assuming a nominal sampling rate Ts, the digital represen-
tation of the signal r̃ (tr) is given by r̃[k] = r̃ (kTs). The noise
ñ (tr) is generated at each sensor based on the noise power
density N0 in W/Hz over the single-sided noise-equivalent
bandwidth Bn in Hz. Therefore, the noise power σ2

n in Watts
is given by

σ2
n = N0Bn. (17)

The complex noise time series ñ[k] is a scaled and filtered
version of a sequence of random samples whose real and imag-
inary components are independent and normally distributed.
The noise samples are scaled so that

E [ñ[k]ñ?[k]] = 2σ2
n. (18)

The emitter has an average transmitted power density Ps in
W/Hz over the single-sided noise-equivalent bandwidth. The
spreading loss L (ρ̄) is given by

L (ρ̄) =
λ2
c

4π2ρ̄2
, (19)

where λc = c/fc is the nominal wavelength of the signal.
Isotropic transmit and receive antennas and no cable loss are
assumed. The received signal power σ2

s in Watts is given by

σ2
s = L (ρ̄)PsBn. (20)

The signal component of the received signal s̃r[k] = s̃r (kTs)
is scaled so that

E [s̃r[k]s̃?r [k]] = 2σ2
s , (21)

which constrains A (ρ̄) in (2) appropriately.
Finally, the received signal r̃i (tr) at sensor i from M

emitters can be modeled as a sum of components of the form
in (15):

r̃i (tr) =

M∑
l=1

A
(
ρ̄li
)
s̃l
(
tr − τ lmi

(tr)
)

(22)

× exp
(
−j
[
2πfcτ

l
mi

(tr) + φri,0
])

+ ñi (tr) ,

where the apparent delay for emitter l and sensor i is defined
as a specialization of (13):

τ lmi
(tr) = τri (tr) + τ lρi (tr − τri (tr)) . (23)

B. The Cross-Ambiguity Function

Consider the following narrowband cross-ambiguity func-
tion Sz̃iz̃k (τ, fD), which has been adapted from the radar
literature [21], for a pair of complex baseband signals z̃i (t)
and z̃k (t):

Sz̃iz̃k (τ, fD) ,
1

T

ˆ T/2

−T/2
z̃i (t) z̃?k (t+ τ) e−j2πfDtdt, (24)

where T is the length of the integration interval, τ is the
delay, and fD is the Doppler frequency. The forthcoming
equations will be simplified by using the difference operator
∆ik (·) = (·)k − (·)i, that is, the placement of a ∆ik in front
of a quantity indicates a difference of that quantity between
sensors i and k. The cross-ambiguity function Sr̃ir̃k (τ, fD)
for a pair of signals r̃i (t) and r̃k (t) from receivers i and
k, respectively, using the single-emitter propagation model
in (15) and linearized apparent delay is approximately given
by

Sr̃ir̃k (τ, fD) ≈ αikSs̃s̃ (τ −∆ikτm,0, fD −∆ik τ̇mfc)

+Nik (τ, fD) , (25)

where the complex attenuation factor αik is defined as

αik = A (ρ̄i)A (ρ̄k) ej[2π∆ikτm,0fc+∆ikφr,0] (26)

and Nik (τ, fD) is the noise function, which includes all
correlation terms involving the noise signal ñ (t). In (25),
it is assumed that the apparent range rate τ̇m, which is
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related to the velocity of the emitter and oscillator clock drift
rate, is small and has negligible impact on the correlation
over the integration interval. The impact is negligible if the
bandwidth of the baseband signal s̃ (t) is small with respect
to the carrier frequency fc. This is known as the narrowband
approximation [21]. The delay and Doppler that maximize
the magnitude of the ambiguity function, denoted respectively
as τ̂ik and f̂D,ik, are the corresponding time and frequency
difference of arrival (T/FDOA) measurements between sensors
i and k for a single emitter [21].

Again, invoking the narrowband approximation, the cross-
ambiguity function Sr̃ir̃k (τ, fD) can be written for M emitters
in terms of the auto-ambiguity terms Aik (τ, fD), the cross-
ambiguity terms Cik (τ, fD), and the noise terms Nik (τ, fD),
as

Sr̃ir̃k (τ, fD) ≈ Aik (τ, fD)+Cik (τ, fD)+Nik (τ, fD) . (27)

The auto-ambiguity terms are of most interest and can be
written as

Aik (τ, fD) =

M∑
l=1

αlikSs̃ls̃l
(
τ −∆ikτ

l
m,0, fD −∆ik τ̇

l
mfc

)
,

(28)
where the complex attenuation factor αlik is defined as

αlik = A
(
ρ̄li
)
A
(
ρ̄lk
)
ej[2π∆ikτ

l
m,0fc+∆ikφr,0]. (29)

The cross-ambiguity terms are generally small in the delay-
Doppler range of interest provided that there is no strict
coordination between emitters.

III. SYNCHRONIZATION AND SIGNAL EXCISION

A. Tightly-Coupled Sensor Architecture

“Tightly-coupled” refers to an RF receiver architecture
in which emitter signals and reference signals are down-
converted with the same oscillator and sampled in such a
way that a nanosecond-accurate correspondence can be made
between the two sampled signal streams (coherent signal
conditioning and sampling). Fig. 1 shows one straightforward
tightly-coupled sensor architecture. Tight coupling between
the emitter and reference data enables the data streams from
two separate sensors to be synchronized to within nanoseconds
and for clock variations over the cross-correlation interval to
be estimated and compensated at the carrier-phase level. The
tightly-coupled sensor architecture draws from the success of
ongoing work in opportunistic navigation at the University of
Texas at Austin [20, 23, 24]. Experience with GNSS signals,
terrestrial signals of opportunity such as cellular CDMA, and
Iridium signals suggests that an emitter localization system
could exploit any instance of these three signal types as a
reference.

The simplest approach to a tightly-coupled sensor archi-
tecture is to use GNSS signals as the reference signals. This
approach allows one to exploit the well-known, clean, and
stable signal characteristics of GNSS signals. GNSS signal
processing can be done within the sensor to minimize network
throughput requirements. For example, consider using GNSS

Signals

Signals Reference

Single Driving Clock

Signal

Conditioning

Reference Signals

Joint Processing

of Emitter and

Emitter

A/D

Figure 1: Basic tightly-coupled sensor architecture.

timing to synchronize stationary sensors in known locations.
A typical GNSS navigation solution will provide estimates
of the receiver clock offset τr,0 and offset rate τ̇r. For some
sufficiently small time window, a linear model can be applied
to the clock offset τr (tr) = τr,0 + τ̇rtr. Then, (7) can be
solved for receiver time in terms of true time as

tr (t) =
t+ τr,0
1− τ̇r

= α+ (1 + β) t, (30)

where α =
τr,0

1−τ̇r and β = τ̇r
1−τ̇r . Invoking the narrowband

signal assumption, the baseband synchronized signal r̃s (t) is
given by

r̃s (t) ≈ r̃ (t+ α) exp (j2πβfct) . (31)

Therefore, for small clock offset rates, the operations required
for synchronization are simply a delay and complex mixing
operation.

One might naturally question the wisdom of using GNSS
signals as reference signals by pointing out that the emitter
to be located may be broadcasting a strong interfering signal
within GNSS frequency bands. In this case, the received GNSS
carrier-to-noise ratios might be too low to support making
reliable timing estimates. This paper addresses this concern
in several ways.

First, significant frequency diversity is offered by the com-
bined spectrum assets of modern GNSS systems like GPS,
Galileo, GLONASS, and Compass. If any one of the many
signal bands within these separate systems is free of interfer-
ence, then signals from this band can be taken as reference
signals. An in-house software-defined radionavigation process-
ing engine, named “GRID,” can be embedded for execution on
the sensors themselves and is currently capable of acquiring
and tracking GPS L1 C/A and GPS L2C signals [20, 25–28].
With some fairly straightforward extensions, the GRID engine
is capable of acquiring and tracking all CDMA-based GNSS
signals, including GPS L5, GPS L1C, Galileo, Compass, and
future CDMA versions of GLONASS signals.

Another approach to mitigating the effects of interference
on reference signals drawn from GNSS bands is to draw the
reference signals in via a directional antenna. For stationary
sensors, a single GNSS signal is all that is required to provide
the benefits of a tightly-coupled sensor architecture. Hence,
if each sensor is equipped with a directional antenna that

4



can recover sufficient signal power from just one GNSS
satellite (not necessarily the same satellite at each sensor),
then the requisite synchronization between the two sensors’
data streams can be established. For example, an inexpensive
helical antenna pointed toward zenith would have a good
chance of capturing the requisite GNSS signal and suppressing
a surface-based interference signal.

A third option for dealing with the in-GNSS-bands inter-
ference scenario is to capture non-GNSS signals that could be
exploited in the same way as GNSS signals to synchronize and
stabilize the recorded emitter data. Research at the University
of Texas at Austin has shown that forward-link CDMA cellular
pilot signals are an excellent reference for tightly-coupled
receivers [20, 23, 24]. Typical CDMA cellular base stations
transmit signals that arrive with 40 dB greater power than
GPS signals, are synchronized to GPS time to within a few
microseconds, and offer coherence times at L-band in excess
of 100 s [20]. Periodic calibration of forward-link signals
during times of GNSS availability can reduce CDMA signals’
timing uncertainty to nanoseconds. Thus, for applications
where CDMA cellular signals are available—for example,
within the US—they represent an excellent backup to GNSS
signals for tightly-coupled emitter localization. The GRID
software-defined radionavigation processing engine is capable
of acquiring and tracking forward-link CDMA cellular pilot
signals (see Fig. 2). As with GNSS signals, this processing
can be executed onboard the sensors.

============ GRID: General Radionavigation Interfusion Device =============
Receiver time: 0 weeks 160.0 seconds Build ID: 1379
GPS time: 1614 weeks 420784.0 seconds

---------------------------------------------------------------------------
CH TXID Doppler BCP PR C/N0 Az El Status

(Hz) (cycles) (meters) (dB-Hz) (deg) (deg)
-------------------------GPS_L1_CA Channels--------------------------------
1 1u 430.75 -76149.17 20972555.14 46.3 301.7 12.9 6
2 2 -2337.63 372213.50 20793027.57 44.1 93.0 10.8 6
3 5 -2814.11 449035.30 19188750.37 52.3 42.0 32.0 6
4 15 2229.20 -362763.30 17919804.83 53.6 149.9 48.9 6
5 18 2228.97 -360186.88 19526452.99 48.6 243.3 29.8 6
6 21 2027.74 -324302.89 19403848.18 51.0 306.8 34.8 6
7 25 -2734.77 436530.00 20267387.49 47.7 218.6 19.7 6
8 26 410.60 -75412.16 17644648.06 54.0 88.4 47.0 6
9 29 398.14 -71226.59 16810240.92 52.1 287.2 79.5 6

10 30 -731.36 110014.30 20121635.88 46.5 282.3 18.5 6
11 -- --------- ------------ ----------- ---- ------ ----- -
12 -- --------- ------------ ----------- ---- ------ ----- -
-------------------------CDMA_UHF_PILOT Channels---------------------------
1 1 -0.59 91.58 7622658.88 62.0 0.0 0.0 5

------------------------------Navigation Data------------------------------
X: -745467.86 Y: -5462657.31 Z: 3196401.16 deltRx: -3464962.30
Xvel: 0.03 Yvel: -0.04 Zvel: 0.01 deltRxDot: 0.12

===========================================================================

Figure 2: Screen output of the GRID software-defined radion-
avigation engine showing simultaneous tracking of 10 GPS L1
C/A signals and 1 CDMA cellular forward-link pilot signal.

B. Reference Signal Excision

If the emitter and reference signal band are the same,
then the ambient reference signals will cross-correlate in
the same way as the emitter signals. Therefore, to improve
sensitivity to the emitters of interest, it is advantageous to
track and remove the ambient reference signals if they have
high enough carrier-to-noise ratios before cross-correlation. In
CDMA systems, the loss of sensitivity to weak emitters in the
presence of strong emitters is known as the near-far effect,
and interference cancellation is a commonly-used technique

to solve this problem [29, 30]. In addition, the technique was
used in [31] to crack the Galileo test codes using the L1-
band signals received from a patch antenna, where a software
GPS receiver was used to acquire, track, and remove the
nuisance GPS/SBAS signals. Ref. [12] considers the same
issue when trying to locate weak emitters in the GPS band
and solves the problem by using a notch filter to remove
the ambient GPS signals before cross-correlation. However,
the notch filtering technique is suboptimal and reduces the
available emitter signal power that could be used in cross-
correlation.

IV. TDOA ESTIMATION

Many parallels can be drawn between VLBI, active radar,
and passive geolocation. In the 1970s, high resolution time
delay estimation techniques were developed [7, 8] using delay-
parameterized models of the phase of the cross-power spec-
trum (e.g. a linear model for non-dispersive delays). Similarly,
in the VLBI community, the group delay estimate is typically
couched in terms of a least-squares fit to the slope of the phase
of the cross-power spectrum (see Appendix 12.1 of [10]). It
has been shown in [32] that this least-squares approach is
equivalent to the maximum likelihood estimator developed
in [7, 8].

Traditional radar techniques use matched filtering (MF) to
determine the delay and Doppler of targets, which is analogous
to examining the cross-ambiguity function in passive geoloca-
tion as in [12–14]. However, MF is limited by the support of
the ambiguity function of the transmitted waveform. As a re-
sult, its delay resolution tends to be on the order of the inverse
of the bandwidth of the transmitted waveform, and its Doppler
resolution tends to be on the order of the temporal support
of the transmitted waveform [21, 33]. Therefore, the ability
of MF-based methods to distinguish between two closely-
spaced targets is severely limited in the delay-Doppler space.
In addition, the output of the matched filter leads to peaks
that are not centered at the true targets for a majority of the
targets due to the superposition of interfering ambiguity func-
tions. Ref. [33] provides a framework for “super-resolution”
radar that bypasses the aforementioned limitations for MF by
parametrization of the response with a finite set of delays
and Doppler-shifts and application of parametric estimation
techniques like subspace methods. Non-parametric estimation
techniques discretize the delay and Doppler space into a
grid and determine if a target is present at each grid point.
Given the limitations of non-parametric estimation especially
under multiple targets, a parametric approach to estimating the
TDOA of emitters is developed in the subsequent subsection.

A. A Parametric Approach to TDOA Estimation

Consider the following model for the CPSD between a pair
of sensors,

Yr̃ir̃k (f) =

M∑
l=1

αlikYs̃ls̃l (f) e−j2πfτ
l
ik +Nr̃ir̃k(f), (32)
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where αlik and τ lik are respectively the complex scale factor
and the TDOA between sensors i and k of emitter l, Ys̃ls̃l (f)
is the normalized power spectral density of emitter l, and
Nr̃ir̃k(f) contains terms due to noise and cross-correlation
between the emitter waveforms. Note that the CPSD could
be estimated by the discrete Fourier transform of a Doppler
cut at some fD of an estimate of the ambiguity function
Rr̃ir̃k (τ) = Sr̃ir̃k (τ, fD). Note that in the case of synchro-
nized sensors and stationary emitters and sensors, fD = 0.
The ambiguity function should be windowed appropriately so
that only delays of interest, which are driven by the sensor
pair’s baseline or known emitter waveform repetition rate,
are considered. Assuming that the emitter waveforms have
normalized, wide, flat frequency spectra (Ys̃ls̃l (f) = 1) and
are uncorrelated (E [Nr̃ir̃k(f)] = 0), then the measurement
model for the power spectral density is given by

Yr̃ir̃k (f) =

M∑
l=1

αlik exp
(
−j2πfτ lik

)
+Nr̃ir̃k (f) . (33)

The problem is now in terms of parametric estimation of com-
plex exponentials in noise, a well-studied problem [15, 34].
First, guesses for the TDOAs and the number of emitters are
initialized using subspace methods like MUSIC [15]. Then,
estimates of the power and TDOAs are iterated in a least-
squares fitting algorithm until a convergence condition is met.
The complex scale factors are estimated using linear least
squares fitting (note that αlik appears linearly in Yr̃ir̃k (f))
and the TDOAs are updated using an iteration of nonlinear
least squares fitting.

B. Subspace Methods for TDOA Estimation

A brief description of subspace methods is provided. Con-
sider a tapped delay line of length K > M that uniformly
samples Yr̃ir̃k (f) with sampling interval ∆f . The data model
for the tapped delay line is given in (34) on the next page,
where fk = f0 + k∆f , or, in vector form,

Y = EA + N, (35)

where A ∈ CM×1 is a vector of complex scale factors,
E ∈ CK×M is a matrix composed of mode vectors e (τ) ∈
CK×1, and N ∈ CK×1 is a complex noise vector, with
real and imaginary parts distributed normally N

(
0, σ2

nI
)

and
uncorrelated with the parameters. The mode vector e (τ) is
given by

e (τ) =


exp (−j2πf1τ)
exp (−j2πf2τ)

...
exp (−j2πfKτ)

 . (36)

Let the K ×K covariance matrix S be defined as

S = E
[
YYH

]
= EE

[
AAH

]
EH + σ2

nE
[
NNH

]
= EPEH + σ2

nI, (37)

where P is the covariance of the complex scale factors. Given
a single, uniformly sampled observation of Yr̃ir̃k (f) of length
P with sampling interval ∆f , x[k], the covariance matrix
can be estimated using the “forward-backward” averaging
method [35] as

Ŝ = XHX, (38)

where

X =



x[K + 1] · · · x[1]
...

. . .
...

x[P −K] · · · x[K + 1]
...

. . .
...

x[P ] · · · x[P −K]
x?[1] · · · x?[K + 1]
... . .

. ...
x?[K + 1] · · · x?[P −K]

... . .
. ...

x?[P −K] · · · x?[P ]



. (39)

The K eigenvectors vi and eigenvalues λi of S must satisfy
Svi = λivi, for i = 1, 2, . . . ,K. Assuming that all the mode
vectors are linearly independent (i.e. E has full rank), then for
M < K, the matrix EPEH is singular and it can be shown
that S has K−M eigenvalues equal to σ2

n. In fact, an estimate
of M can be computed by subtracting the multiplicity of σ2

n in
the eigenvalues of S from K. Since S = EPEH + σ2

nI, then
EPEHvi =

(
λi − σ2

n

)
vi is true. Note that for each eigenvalue

λi = σ2
n, EHvi = 0, i.e. the “signal” subspace E (spanned by

the mode vectors) is orthogonal to the “noise” subspace EN
(spanned by the eigenvectors associated with λi = σ2

n) [15].
Note that in practice, only estimates of S are available,

and the aforementioned conditions are only approximately
satisfied. Therefore, the eigenvalues associated with the noise
subspace are not exactly σ2

n, and instead are clustered about
σ2
n (and the spread of the cluster decreases with more averag-

ing) [15]. Estimating M can be particularly difficult when the
gap between the eigenvalues associated with the signal and
noise subspace is not clear. Hypothesis tests for estimating
M were developed using matrix perturbation theory in [35].
However, for ease of implementation and prototyping, the
present algorithms require a priori knowledge of M and/or
subjective analysis of the eigenvalues of S (or equivalently
the singular values of X). The MUSIC cost function is given
by

JMU (τ) = eH (τ)ENEH
Ne (τ) , (40)

which for uniformly sampled signals, can be minimized using
Root-Music [36, 37].

The above algorithms are limited in that the data model
assumes flat emitter frequency spectra. The performance of
the algorithms degrade with model mismatch, and in par-
ticular, simulation results indicate MUSIC makes biased or
spurious TDOA estimates when the flat spectra assumption is
relaxed. Also, the resolvability of two closely-spaced TDOAs
decreases as their separation decreases in the presence of noise.
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
Yr̃ir̃k (f1)
Yr̃ir̃k (f2)

...
Yr̃ir̃k (fK)

 =
[
e
(
τ1
ik

)
e
(
τ2
ik

)
· · · e

(
τMik
)]

α1
ik

α2
ik
...
αMik

+


Nr̃ir̃k (f1)
Nr̃ir̃k (f2)

...
Nr̃ir̃k (fK)

 (34)

The mode vectors associated with closely-spaced TDOAs are
nearly linearly dependent, which causes the one of the eigen-
vectors in the signal subspace to have a small eigenvalue. In
the presence of noise, the eigenvector can not be distinguished
from the noise subspace if the associated eigenvalue is too
small, hence the loss of resolution.

V. EMITTER IDENTIFICATION AND LOCALIZATION

In passive geolocation, the estimated TDOAs between all
possible pairs of sensors must be associated with possible
emitters. Sathyan and others have proposed algorithms to solve
this data association problem inherent in passive geoloca-
tion [16]. However, the currently implemented algorithm uses
the principle of phase closure to verify that a triad of TDOA
measurements can be associated with the same emitter. The
closure-based algorithm is a simple and effective prototype but
more sophisticated methods may be implemented if they prove
to be more effective. Consider three true (noise-free) times of
arrival (TOAs) of an emitter signal τi, τj , and τk to sensors
i, j, and k, respectively. The sensors can be paired in three
ways, forming three true TDOAs: τij = τj−τi, τik = τk−τi,
and τjk = τk − τj . The TDOA measurements

τ̂ij = τij + nij (41)

are assumed to be corrupted by zero-mean noise nij with
covariance given in [13, p. 64]. The TDOA closure metric
is defined as

τc = τ̂ij − τ̂ik + τ̂jk. (42)

Under the hypothesis that the TDOA measurements are as-
sociated with an emitter, then E [τc] = 0 and E

[
τ2
c

]
=

E
[
(nij − nik + njk)

2
]
. A test can be constructed in which

a threshold τc,th is chosen such that τ2
c < τ2

c,th indicates
that the TDOA measurements under test can be associated
with the same emitter for a certain probability of false alarm,
although this paper does not carry out the entire analysis of
the detection statistic. If a triplet of TDOA measurements
“close,” then, geometrically, the three hyperbolas intersect at
a single point on a plane. However, ambiguities arise when
different combinations of TDOA measurements could result
in the same TDOA measurement between a pair of sensors.
Geometrically, the ambiguity can be interpreted as a single
hyperbola being intersected by other pairs of hyperbolas at
more than one point as shown in Fig. 3. Information from
other sensor triads, if available, must be used to resolve the
ambiguity. Also note that additional TDOA measurements
caused by multipath reflections will possibly close, yielding
extraneous position solutions.
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Figure 3: TDOA hyperbola map for a three-emitter scenario in
which there are ambiguous phase closures. Note that there are
five 3-way intersections of hyperbolas, but only three emitters.

Typically a nonlinear least-squares algorithm is used to
locate an emitter given a set of TDOA measurements. Note
that a TDOA measurement constrains the emitter position
to a hyperbola of revolution. Chan and Ho describe a
computationally-efficient estimator for hyperbolic location by
using an intermediate variable to reduce the nonlinearities in
the problem [38]. However, for simplicity, a standard approach
to the problem is implemented. The TDOA measurements that
have been associated with a particular emitter are reduced
to an independent set of TDOA measurements τ̂ ′ik, one for
each of the sensors involved except for a reference sensor
k, using a linear least squares approach [13, p. 63]. This
approach exploits the following linear relationship between
TDOA measurements,

τ̂ij = τik − τjk + nij , (43)

where τkk = 0. Given N TDOA measurements involving M
sensors, N equations of the form in (43) can be stacked so
that

z = Hz′, (44)

where z ∈ RN×1 is the vector of TDOA measurements with
noise covariance matrix R ∈ RN×N , z′ ∈ R(M−1)×1 is the
vector of M − 1 independent TDOA measurements, and H ∈
RN×(M−1) is the sensitivity matrix governed by the model
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(a) “Closed” TDOA hyperbolas.
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(b) “Unclosed” TDOA hyperbolas.

Figure 2: Geometric interpretation of TDOA closure metric.

in (43). A least squares solution for z′ is given by

ẑ′ = R′HTR−1z (45)

where
R′ =

(
HTR−1H

)−1
. (46)

Each of the independent M − 1 TDOA measurements τ̂ ′ik in
ẑ′ can be modeled as a nonlinear function of the unknown
emitter location and the known sensor locations by

cτ̂ ′ik = ρk − ρi + n′ik, (47)

where ρi is the true range between sensor i and the emit-
ter and n′ik is zero-mean noise. The stacked noise vector
[· · · , n′ik, · · · ]

T
, arranged in the order of ẑ′, has covariance

R′. A nonlinear least squares search algorithm can be used to
estimate the unknown emitter location.

VI. IMPLEMENTATION AND RESULTS

A. Theoretical TDOA Estimation Error Bounds

Many derivations of the Cramér-Rao lower bound (CRLB)
for single-emitter TDOA precision exist in the literature [9,
10, 13]. One form of the CRLB is given by

σ2
w,τij ≥ σ̄

2
w,τij =

N0,iN0,j

8π2Tα2
iα

2
j

´∆f/2

−∆f/2
S2
s (f) f2df

, (48)

where σ2
w,τij is the error variance of the TDOA estimate under

a weak received power assumption, σ̄2
w,τij is the minimum

value this variance can attain (the CRLB), T is the integration
time, Ss (f) is the emitter signal power spectral density, ∆f
is the captured bandwidth, αi and αj are the amplitude atten-
uation of the emitter signal, and N0,i and N0,j are the noise
power density, all for the i, jth sensor pair. If, in addition to the
received power being weak, the transmitter signal is spectrally

flat within the captured band (i.e., Si = α2
iSs � N0,i,

Sj = α2
jSs � N0,j), then (48) reduces to

σ2
w,τij ≥

3N0,iN0,j

2π2TSiSj∆f3
=

3

π2SNRp∆f2
, (49)

where SNRp = 2T∆f
(

Si

N0,i

)(
Sj

N0,j

)
is the “passive” cross-

correlation signal-to-noise ratio [10]. Relaxing the weak emit-
ter power assumption yields a slightly modified CRLB [9],

σ2
τij ≥ σ̄

2
w,τij

(
1 +

Si
N0,i

+
Sj
N0,j

)
. (50)

Also, [13, p.64] gives expressions for the noise covariance of
the TDOA measurement model in (43) as

E
[
n2
ij

]
= σ2

τij , (51)

E [nijnjk] =
3N0,j

2π2TSj∆f3
= −E [nijnkj ] , (52)

E [nijnkl] = 0. (53)

Note that for a fixed number of data samples, or equivalently,
constant time-bandwidth product T∆f , TDOA precision im-
proves only by increasing the captured bandwidth or increasing
the emitter power density. In the subsequent subsection, the
simulator performance will be compared to the theoretical
performance according to the CRLB.

B. Simulated TDOA Estimation Performance

A simulator has been developed to provide guidance and
evaluate the performance of the estimation algorithms. The
simulator generates the complex baseband samples that would
be received at the sensors from any number of emitters using
the models and approximations developed in Sec. II. In the
simulator, the emitter waveform is oversampled by some
integer factor of the receiver sampling rate in order to model
the delay with sub-sample resolution using linear interpolation.
Currently, the simulator supports generating three types of
emitter waveforms: white noise, GPS signals, and continuous
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wave signals with linear chirp modulation. The simulated noise
time series and emitter waveforms are filtered by a 10th-
order Butterworth filter with cutoff frequency Bn to model
the sensor front-end filter. The emitter is assumed to be trans-
mitting throughout the duration of the simulation, which lasts
from 1–100 milliseconds so that the linear approximations are
satisfied.

The TDOA estimation algorithms developed in Sec. IV are
verified in a simulation study. The raw samples generated by
the simulator are cross-correlated for each sensor pair and the
resulting CPSDs are used as inputs to the TDOA estimator.
Monte Carlo runs of this configuration yield TDOA estimates
whose error variance approaches the theoretical CRLB in
(50) for a representative single-emitter scenario. The baseline
configuration of the simulator includes one 1 mW white noise
emitter that is equidistant from two perfectly synchronized
sensors with a 20 km baseline, an integration time of 10 ms,
and a captured bandwidth of 500 kHz. The CRLB of the
baseline configuration is 10 m. Figs. 4, 5, and 6 show this
comparison while varying the parameters T (integration time),
∆f (captured bandwidth), and Ss (emitter power density)
around the baseline configuration. The red vertical line in the
figures indicates when the parameters are equivalent to the
baseline scenario. Clearly, the implemented TDOA estimator
under single-emitter conditions approaches the CRLB; how-
ever, the estimator becomes unreliable for small integration
times and weak emitters since SNRp is below the estimator’s
detection threshold.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Integration Time (s)

T
D
O
A
 
e
r
r
o
r
 
s
t
d
−
d
e
v
 
(
m
)

 

 

Simulation

Theory

Baseline

Figure 4: TDOA precision comparison while varying integra-
tion time T , holding all other parameters constant.

Now consider an extension of the baseline scenario in
which the single emitter is replaced by two emitters with
some separation distance having geometry as shown in Fig. 7.
Figs. 8 and 9 highlight the predicted breakdown of the esti-
mator when TDOA separation decreases for several different
values of emitter power. The two emitters were assumed to
transmit at equal power. Note that to improve the estimator
performance slightly, only 80% of the captured bandwidth was
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Figure 5: TDOA precision comparison while varying the
captured bandwidth ∆f , holding the time-bandwidth product
and other parameters constant. The time-bandwidth product
is held constant to reduce execution times of the simulator
and estimation algorithms. Note that it is acceptable to hold
the transmitted emitter power density constant because it is
assumed that transmitted emitter bandwidth is larger than
the captured bandwidth, which is usually the case for GPS
jammers [2].
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Figure 6: TDOA precision comparison while varying the emit-
ter power density Ss, holding all other parameters constant.

considered so that the spectrum contributing to the CPSD did
not contain the edges of the simulated front-end filter. For
this simulation, the emitters are considered resolved when the
estimated TDOAs are within 50% TDOA separation of the true
TDOAs. The gradual increase in error as the TDOA separation
decreases is due to the mode vectors becoming correlated
(i.e. E in (37) is nearly singular). The spikes in error at
certain TDOA separations are due to the complex attenuation
factors of the two signals being almost 180 degrees apart in
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phase, causing destructive interference. Note that constructive
interference occurs when the TDOA separation is an integer
multiple of the transmitted wavelength, which, for GPS L1,
is approximately 19 cm. The TDOA resolution offered by the
proposed multiple-emitter algorithm is better than matched-
filtering (MF) techniques, whose resolution is typically limited
by ∆f−1 [21, 33]. For the baseline scenario, MF resolution
is 600 m, which is when the main lobes of the ambiguity
functions associated with each emitter begin interfering.

S E SE

Figure 7: Sensor geometry for multiple-emitter baseline sce-
nario. The sensors and emitters are collinear and symmetric
about the dashed line.
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Figure 8: TDOA precision while varying the TDOA separation
and emitter power, holding all other parameters constant.
The emitters were placed in such a way to keep SNRp
approximately constant for all TDOA separations.

C. Prototype System Performance

1) Prototype Sensor: To support live testing, a small emitter
localization network has been implemented in Austin, TX.
The network comprises one mobile sensor and two fixed RF
sensors. The fixed sensors, located at the University of Texas
Center for Space Research and Applied Research Laboratory,
straddle a major highway. The fixed sensors are denoted CSR
and ARL and the mobile sensor is denoted MBL. A pictorial
overview of the network is given in Fig. 10.

Each of the sensors in the network is composed of
• Two Ettus Research Universal Software Radio Peripheral

(USRP) N200s.
• One Dell Precision T3500 workstation (fixed sensors) or

one Panasonic Toughbook laptop (mobile sensor).
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Figure 9: TDOA resolution performance under the same
conditions as Fig. 8

Figure 10: The University of Texas at Austin Prototype Emitter
Localization Network.

• One oven-controlled crystal oscillator (OCXO) serving as
a local frequency reference.

• Required antennas, amplifiers, and cabling.
The USRP N200 with the DBSRX2 daughterboard, shown
in Fig. 10, down-converts and digitizes RF signals between
800 MHz and 2.4 GHz. The USRP N200s are connected
together with a MIMO cable so that their clocks are syn-
chronized to within 1 ns. In the fixed stations, the raw
complex samples generated by the pair of N200s are sent to
the Dell workstation via Gigabit Ethernet. The USRP N200
supports complex sampling rates up to 25 MHz for 16-bit
samples and up to 50 MHz for 8-bit samples with experimental
firmware. The antenna used for receiving emitter signals is
broadband (750–3000 MHz) and directional, with a peak gain
of 7 dBi. One USRP is dedicated to sensing the emitter to
be tracked and the other is used for receiving timing signals
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from GPS or CDMA to synchronize the sensor network.
Fig. 10 shows the antenna configuration on the rooftop of
the CSR station. GPS signals are received from a separate
hemispherical GPS antennas, rather than from the broadband
emitter antenna, because the hemispherical antenna has better
multipath mitigation properties and more signals in view. The
ARL station has a similar configuration.

The MBL station, shown in Fig. 11, is identical to the CSR
and ARL stations except that (1) data are collected on a laptop,
(2) a narrowband 2300 MHz antenna is used for receiving the
emitter signal, and (3) the narrowband antenna gain pattern
is azimuthally homogeneous whereas the broadband antenna
used at CSR and ARL has a 3-dB beamwidth of approximately
70 degrees.

The network includes a non-real-time MATLAB-based pro-
cessing center. A web interface has been developed to auto-
mate data capture from each of the stationary sensors (CSR
and ARL) as shown in Fig. 12. High-resolution data (16-
bit quantization) are streamed over the campus network to
a central processing computer for after-the-fact processing.
Data from the mobile sensor are recorded locally to hard disk
and brought back to campus for processing. When all data
for a particular capture window have been loaded onto the
central processor, an automated sequence of processing steps
is executed, with some manual supervision.

Figure 12: Web recording interface for stationary sensors
shown on cell phone browser with laptop controlling USRP
E100 emitter in background.

2) Localization: To illustrate the operation of the prototype
network, results are offered from a test exercise attempting to
locate two emitters placed in the parking lot of a shopping
center near the centroid of the sensor network. Two USRP
E100s served as emitters. These were programmed to transmit
either the GPS L1 C/A chipping sequences for PRN1 or PRN2
at 1 Mcps with carrier frequency of 2.305 GHz, which falls
in the US amateur radio band. The emitters transmitted ap-
proximately 10 mW of power and were operated under a valid
amateur radio license. The sensor’s complex sampling rate was
set to 2 Msps for the emitter and reference channels. The test
exercise’s emitter-sensor geometry is shown in Fig. 13.
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Figure 13: Location of sensors and emitters for test exercise.

Before proceeding with standard cross-correlation tech-
niques for locating the E100 emitters, the emitter data from
each sensor were processed in a so-called active tracking
mode. In this mode, knowledge of the signal structure is
assumed; thus, correlation against a noise-free local signal
replica is possible. In typical emitter localization scenarios,
active tracking is not possible because one does not know the
exact emitter signal structure. Passive tracking based on cross-
correlation of data from multiple sensors is used instead. In
the test exercise, active tracking was used at first only to get
information about the multipath environment and the emitters’
relative signal strengths. Active tracking revealed that each
sensor received the two emitter signals with comparable signal
strength, although the signal from PRN2 was stronger in all
cases (Fig. 14), and the ARL station data showed significant
multipath distortion in the PRN1 code (Fig. 15).

Emitter data from the three sensor pairs were cross-
correlated and estimates of the CPSD are formed. Multiple
emitters were manifest in the CPSD as a sum of complex
exponentials in the frequency domain. The quasi-sinusoidal
patterns in the real and imaginary traces in Fig. 16 are the
result of a complex superposition of components from the two
emitters sensed by the ARL-MBL sensor pair.

MUSIC separates the signal from the noise subspaces, yield-
ing estimates of the TDOAs. One can either assume knowledge
of the number of emitters present or attempt to estimate this
number based on the MUSIC singular values. The CSR-ARL
pair whose MUSIC singular values are plotted in Fig. 17 shows
evidence of three possible emitters of comparable strength due
to the multipath corruption that was noted in connection with
Fig. 15. Fig. 17 highlights the fact that MUSIC can be used
to estimate the number of emitters (or, in reality, the number
of strong RF propagation paths) present. For the test exercise,
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(a) The GPS and 2300 MHz antenna are placed on top of the vehicle. (b) The USRP N200 RF recording equipment, power supply, and
OCXO are placed inside the vehicle.

Figure 11: The MBL station is parked on top of a tall, nearby parking garage to ensure line-of-sight view of the emitters.
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Figure 14: Active tracking of GPS L1 C/A PRN codes in CSR
data reveals the presence of the two emitter signals.

it was assumed that the CSR-ARL and ARL-MBL sensor pair
detected three emitters and the CSR-MBL pair detected only
one emitter, which seemed to best fit the data. Note that in the
CSR-MBL pair, the TDOAs associated with the two emitters
were too closely spaced to be resolved given the SNRp in this
test exercise.

The estimated TDOAs must each be associated with a par-
ticular emitter. This is done by examining the TDOA closure
metric which should be small when emitters are correctly
associated. For the exercise, the closure threshold was sub-
jectively chosen to be 100 m. Once a TDOA 3-tuple has been
associated, emitters can then be precisely located at 3-way
hyperbolic intersection points. Hyperbolic trace estimates from
five independent data segments are overlaid in Fig. 18 with
1 s integration time. Fig. 19 shows the corresponding emitter
location estimates, but because of the multipath corruption,
three possible emitter locations are shown. Note that the
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Figure 15: Active tracking of GPS L1 C/A codes in ARL data
shows significant multipath distortion of the PRN1 code. The
peak of the PRN2 code is outside the code phase window.

TDOA measurement resulting from the CSR-MBL sensor pair
closes more than one 3-tuple of TDOAs, so it was assumed
that there could be an emitter at each of those intersections.

The location precision is about 20 m and the mean of one
cluster of position estimates is within 10 m of a true emitter
(PRN2). It is not known whether the other position clusters
are associated with the other emitter (PRN1) or multipath.
The absolute location accuracy is limited by not accounting
for the antenna heights of the sensors and emitters and the
differential delay between the reference and emitter channel
due to 100s of feet of coaxial cable at the fixed sensors and
frequency-dependent biases in the USRP front end.

Note that if only one emitter is assumed to be present in
the received data, then the TDOA estimates become biased
and jump between different emitters as their strength varies
as shown in Figs. 20 and 21. Clearly, multiple-emitter TDOA
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Figure 16: Cross power spectral density estimate for ARL-
MBL pair based on 1 s of coherent averaging. Multiple
emitters are manifest as a sum of complex exponentials in
the frequency domain. The light blue line indicates the boxcar
frequency weighting applied when estimating TDOAs for each
emitter.
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Figure 17: Singular values produced by the MUSIC algorithm
for the CSR-ARL pair. Assuming three emitters, the green
lines indicate the boundary of the signal subspace and the red
lines indicate the boundary of the noise subspace. Note that
there is a clear separation between the strongest noise singular
value and the weakest signal singular value.
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Figure 18: TDOA hyperbola map for the amateur band test
exercise with an effective captured bandwidth of 1.5 MHz and
integration time of 1 s.
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Figure 19: Estimated emitter locations for five independent
runs with 1 s coherent integration.

estimation techniques are required for accurate emitter local-
ization.

VII. CONCLUSIONS

A full picture, from theory to hardware implementation with
field experiments, of a multiple-emitter localization system
is offered. A novel multi-reference synchronization strategy
based on a tightly-coupled sensor architecture is adopted. A
focus on multiple emitters (as opposed to the single-emitter
focus of prior work on interference localization) leads to a
TDOA estimation strategy based on parametric estimation
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Figure 20: Hyperbolas generated by estimated TDOAs with
the single-emitter assumption and an integration time of 1 s.
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Figure 21: Estimated emitter locations with the single-emitter
assumption and 1 s coherent integration.

techniques. The precision of the proposed TDOA estimator
approaches the CRLB in a simulated representative scenario.
Although the estimator becomes unreliable at low SNRp or
for closely-spaced emitters, it outperforms non-parametric
matched-filtering-based techniques. Field tests show 20 m
localization precision for five independent runs. Multipath is a
significant challenge because it introduces false TDOA mea-
surements that are consistent, leading to false emitter location
estimates. Future work will configure the prototype system to
detect and localize emitters in the GNSS bands, explore UAV-
based platforms to mitigate multipath and allow feedback-
based, adaptive sensor network geometries, and modify the

processing algorithms to jointly estimate TDOA and FDOA
in order to localize moving emitters.
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