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ABSTRACT

This article describes a variational framework for assimilating the SSM/I-derived surface rain rate and total
precipitable water (TPW) and examines their impact on the analysis produced by the Goddard Earth Observing
System (GEOS) Data Assimilation System (DAS). The SSM/I observations consist of tropical rain rates retrieved
using the Goddard Profiling Algorithm and tropical TPW estimates produced by Wentz.

In a series of assimilation experiments for December 1992, results show that the SSM/I-derived rain rate,
despite current uncertainty in its intensity, is better than the model-generated precipitation. Assimilating rainfall
data improves cloud distributions and the cloudy-sky radiation, while assimilating TPW data reduces a moisture
bias in the lower troposphere to improve the clear-sky radiation. Together, the two data types reduce the monthly
mean spatial bias by 46% and the error standard deviation by 26% in the outgoing longwave radiation (OLR)
averaged over the Tropics, as compared with the NOAA OLR observation product. The improved cloud distri-
bution, in turn, improves the solar radiation at the surface. There is also evidence that the latent heating change
associated with the improved precipitation improves the large-scale circulation in the Tropics. This is inferred
from a comparison of the clear-sky brightness temperatures for TIROS Operational Vertical Sounder channel
12 computed from the GEOS analyses with the observed values, suggesting that rainfall assimilation reduces a
prevailing moist bias in the upper-tropospheric humidity in the GEOS system through enhanced subsidence
between the major convective centers.

This work shows that assimilation of satellite-derived precipitation and TPW can reduce state-dependent
systematic errors in the OLR, clouds, surface radiation, and the large-scale circulation in the assimilated dataset.
The improved analysis also leads to better short-range forecasts, but the impact is modest compared with
improvements in the time-averaged signals in the analysis. The study shows that, in the presence of biases and
other errors of the forecast model, it is possible to improve the time-averaged ‘‘climate content’’ in the data
without comparable improvements in forecast. The full impact of these data types on the analysis cannot be
measured solely in terms of forecast skills.

1. Introduction

This study explores the use of satellite-derived rain-
fall and total precipitable water (TPW) estimates in four-
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dimensional (4D) data assimilation to improve global
analyses for climate research. Traditionally, NWP cen-
ters have used forecast performance as a measure of the
quality of the analysis. The notion that a better analysis
is prerequisite for a better forecast implicitly assumes
that the forecast model is perfect and that forecast errors
arise solely from imperfect initial or boundary condi-
tions. In reality, a poor forecast may result from defi-
ciencies in model physics as well as errors in initial and
boundary conditions. Initialization procedures can gen-
erally yield a better forecast but may not improve the
analysis. Conversely, improvements in the analysis do
not always lead to significant forecast improvements.

The estimation theory on which modern data assim-
ilation systems are based (e.g., Cohn 1997) provides a
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framework for considering model and observation un-
certainties. An optimal data assimilation algorithm pro-
vides an estimate of the atmospheric state by taking
proper account of these uncertainties. But in the pres-
ence of biases in the forecast model, the possibility ex-
ists that improving the time-averaged climate signals in
an analysis does not necessarily improve, or may even
degrade, the short-term forecast. The quality of a climate
dataset ultimately rests upon its ability to identify or
resolve specific climate issues. While errors in the anal-
ysis can affect the forecast accuracy, they might render
the analysis altogether inadequate for addressing certain
climate problems. Deficiencies of this type cannot be
gauged in terms of forecast performance. But if assim-
ilation of a data type improves the ‘‘climate content’’
in the analysis but degrades the forecast at the same
time, it would imply some internal inconsistency in the
assimilation system. One issue we will investigate in
this study is whether improving climate signals in an
analysis necessarily mean comparable improvements in
the 6-h forecast.

The region of the globe where rainfall assimilation
may be expected to have the largest impact is the Trop-
ics, where moist convection plays a prominent role and
links directly to latent heating, cloud cover, humidity,
and the divergent component of the large-scale circu-
lation. The Tropics is also where the analyses by dif-
ferent assimilation systems show significant discrep-
ancies (WCRP 1997). Given the sparse conventional
observational network in the Tropics, tropical analysis
is understandably sensitive to the first guess, which is,
in turn, sensitive to physical parameterization schemes
(e.g., Trenberth and Olson 1988) and can suffer from
spinup problems (Illari 1987). Previous studies have
shown that forecast models have little skill in precipi-
tation forecast in the Tropics (Caplan et al. 1993; Fiorino
et al. 1993). While monthly mean precipitation analyses
appear to be ‘‘reasonable’’ compared with satellite es-
timates (Janowiak 1992; White et al. 1993), quantitative
discrepancies between analyses and observations are
still large (see Adler et al. 1996). Misrepresentations in
tropical precipitation in the analysis would mean that
fields directly linked to rainfall such as moisture, cloud,
radiation, vertical motion, and the associated horizon-
tally divergent flow likely have significant errors. Un-
certainty in the tropical analysis thus becomes a fun-
damental issue when applying a multiyear dataset to
climate variability studies.

While improving the quality of tropical analyses is
crucial to the utility of global analyses in climate ap-
plications, the lack of rainfall observations in the Trop-
ics has made it difficult to quantify errors in precipitation
and their impact on the analysis. In the past decade the
use of satellite-borne microwave instruments has im-
proved the quality and coverage of physically retrieved
rainfall estimates. The recent launch of the U.S.–Japan
Tropical Rainfall Measuring Mission (TRMM) is ex-
pected to further improve observations of tropical rain-

fall in the coming years. Assimilation of satellite-de-
rived rainfall and related data types offers a way to
compensate for model deficiencies and tightens esti-
mates of tropical atmospheric parameters given by dif-
ferent assimilation systems.

Studies have shown that use of satellite-derived rain
rate in diabatic or physical initialization can reduce
model spinup and improve the short-range forecast,
which, in turn, can improve the first guess for the anal-
ysis (Krishnamurti et al. 1984, 1991, 1993; Donner
1988; Turpeinen et al. 1990; Puri and Miller 1990;
Heckley et al. 1990; Mathur et al. 1992; Kasahara et al.
1994; Manobianco et al. 1994; van Tuyl 1996; Peng and
Chang 1996; Treadon 1996, 1997). Despite the positive
impact on forecast, this approach has certain drawbacks.
Precipitation estimates based on short-term forecasts
contain spinup effects, and the model retains little of
the improvement beyond 24 h. Moreover, the impact of
physical initialization on forecast can be sensitive to the
rainfall retrieval algorithm (Krishnamurti et al. 1994)
and the methodology does not consider model or ob-
servation errors.

Alternatively, rainfall data may be used to directly
constrain precipitation in 4D data assimilation. Zupanski
and Mesinger (1995) and Tsuyuki (1996a,b, 1997) have
shown that 4D-Var rainfall assimilation can improve
both forecasts and analyses. Typically a 4D-Var scheme
seeks a maximum likelihood estimate assuming a per-
fect model and a normally distributed observation error,
although it is possible to take the model error into ac-
count (Derber 1989; Zupanski 1997). The 4D-Var
scheme is computationally expensive. Its implementa-
tion requires suppression of gravity waves and usually
employs a tangent linear model to improve efficiency.
The tangent linear approximation may be acceptable for
dynamics but might be less valid for rapid nonlinear
processes such as moist convection and cloud–solar ra-
diation interaction (Vukicevic and Errico 1993; Errico
and Raeder 1999). In some cases it also requires a care-
ful treatment of discontinuities in model physics (D.
Zupanski 1993).

In this paper we describe a procedure for assimilating
6-h average surface rainfall and TPW estimates derived
from the Special Sensor Microwave/Imager (SSM/I) in-
struments and examine the impact of these data types
on the analysis produced by the Goddard Earth Ob-
serving System (GEOS) Data Assimilation System
(DAS). A unique feature of the GEOS DAS is that it
uses the ‘‘incremental analysis update’’ (IAU) procedure
of Bloom et al. (1996), which virtually eliminates the
spinup problem. The GEOS assimilation is essentially
a time-continuous model integration with a gradual in-
sertion of IAU tendencies on prognostic variables up-
dated from observations every 6 h, which is the width
of the analysis window. The advantage of this procedure
is that it allows fields such as precipitation and evap-
oration being computed from a continuous model in-
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tegration, rather than from short-term forecasts as in
other systems.

The general formulation of the procedure we use is
based on a 6-h time integration of a column version of
the GEOS GCM with full model physics, with the ad-
vective terms as ‘‘model forcing’’ terms along with the
conventional IAU tendencies prescribed from a prelim-
inary 6-h assimilation. We shall refer to this as a pro-
cedure in 111D, to differentiate it from one involving
two spatial dimensions. The control variables are anal-
ysis increments of moisture and temperature within the
IAU framework. The procedure minimizes the least
squares differences between the SSM/I observations and
the corresponding values generated by the column mod-
el averaged over the 6-h analysis window. The mini-
mization procedure is one-dimensional but the evalua-
tion of the cost function involves a 6-h time integration.
Unlike the standard 4D-Var algorithms, which uses the
model as a strong constraint, our formulation does not
make the ‘‘perfect model’’ assumption. Instead, we es-
timate the model forcing terms as in the continuous
variational assimilation (Derber 1989; M. Zupanski
1993). Such a 111D assimilation procedure may be
viewed as an interactive ‘‘convective retrieval,’’ which
may be consistently assimilated in the Physical-space
Statistical Analysis System (PSAS) framework of the
GEOS DAS (Cohn et al. 1998) using the information-
content-based algorithms discussed in Joiner and da Sil-
va (1998). The observation and model forcing error co-
variances may be modeled statistically using observa-
tion minus 6-h forecast residuals (Dee and da Silva
1999; Dee et al. 1999).

As a first step in developing the general procedure,
in this paper we consider the limiting case of small
observation errors relative to model physics errors to
obtain a baseline for gauging improvements through er-
ror covariance modeling. In this ‘‘perfect observation’’
limit, we will use SSM/I rainfall and TPW as strong
constraints, as in the physical initialization scheme of
Krishnamurti et al. (1984, 1991). Given the positive
impact of physical initialization on precipitation fore-
cast, we seek to establish that assimilating these data
without knowing their error characteristics can, in fact,
improve the analysis. Error covariance information
could then be used to optimize the data impact. As in
physical initialization, we modify the moisture but not
the temperature to match the observed rain rate by per-
forming a minimization with respect to moisture anal-
ysis increments of a particular form. This is a reasonable
starting point since the uncertainty in the moisture anal-
ysis is typically larger than that in temperature. In prac-
tice, this simplification reduces a multivariate minimi-
zation problem (as in Fillion and Errico 1997) to a uni-
variate, two-parameter minimization for matching the
observed precipitation and TPW. In this perfect-obser-
vation moisture-adjustment study we focus on two key
questions: First, is there useful information in SSM/I
rainfall and TPW retrievals without error specifications?

Second, are the physical parameterizations in the GEOS
DAS good enough to capitalize on this information?

As discussed earlier, an improved estimate of tropical
precipitation should improve latent heating, clouds, ver-
tical velocity, and the outgoing longwave radiation
(OLR) in the tropical analysis. Among these, OLR ob-
servations have by far the best sampling frequency, cov-
erage, and accuracy. Since OLR observations are cur-
rently not assimilated in the GEOS DAS, we can use
them as verification data to evaluate the impact of rain-
fall and TPW assimilation on the overall quality of the
assimilation. In addition, we will compare results with
cloud observations from the International Satellite
Cloud Climatology Project (ISCCP) and satellite–model
estimates of surface solar radiation. We will also com-
pute brightness temperatures for spectral channels of
TIROS Operational Vertical Sounder (TOVS) instru-
ments using temperatures and moisture from the GEOS
analyses and compare them with cloud-cleared TOVS
measurements to investigate the impact of rainfall and
TPW assimilation on the analyses.

Section 2 describes the SSM/I precipitation and TPW
datasets. Section 3 describes the 111D rainfall and
TPW assimilation scheme. Section 4 examines the im-
pact of rainfall and TPW assimilation on time-averaged
fields. Section 5 examines the impact on model fore-
casts. Section 6 discusses comparisons with TOVS ra-
diances. Section 7 investigates the sensitivity of our
results to the observed rainfall intensity, and section 8
summarizes our main results.

2. SSM/I precipitation and TPW estimates

The SSM/I surface rain rate used in this study is
produced at the National Aeronautics and Space Ad-
ministration/Goddard Space Flight Center (NASA/
GSFC) using the Goddard Profiling (GPROF) Algo-
rithm version 3.3. The GPROF algorithm is a physically
based retrieval of vertical hydrometeor profiles that best
fits the brightness temperatures in the available passive
radiometer channels. The matching uses a library of
hydrometeor profiles generated by a numerical cloud
model, with each profile associated with a surface pre-
cipitation rate. The algorithm retrieves all parameters
using the Bayesian method that relies on the estimated
expected value, as described in Kummerow et al. (1996)
and Olson et al. (1996). The rain rates are obtained from
the seven channels of data from the SSM/I instruments
aboard the polar-orbiting Defense Meteorological Sat-
ellite Program (DMSP) F10 and F11 satellites. For ap-
plications to the GEOS DAS, the instantaneous SSM/I
surface rain rates are horizontally averaged to 28 lat 3
2.58 long grid boxes and time averaged over 6 h centered
at analysis times (0000, 0600, 1200, 1800 UTC). Al-
though the GPROF algorithm provides global estimates
of several parameters, including fractional convective
and stratiform rain rates, as well as precipitating and
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nonprecipitating liquid and ice, we assimilate only the
surface rain rate between 308S and 308N in this study.

The instantaneous gridded rain rates have relatively
low random error due to sampling, since the pixels com-
pletely cover the area within each 28 3 2.58 grid box
on a full-view overpass. However, algorithmic error, in-
cluding viewing geometry effects, can be important. Ex-
perience shows that individual GPROF pixel rain-rate
estimates have a random error of about 50% (Kum-
merow et al. 1996) at moderate rain rates in the Tropics.
Following the analysis of Bell et al. (1990), averaging
these estimates from a single full overpass over a 28 3
2.58 grid box reduces the random error to about 10%.
Additional uncertainty is introduced because each grid
box is observed only once or twice (if at all) in a 6-h
accumulation period. This sparse sampling results from
the limited swaths typical of polar-orbit instruments (cf.
TRMM 1996). In an unpublished work Kummerow
sampled Tropical Ocean Global Atmosphere Coupled
Ocean–Atmosphere Response Experiment radar rain
rates at SSM/I observing times and estimated random
errors due to sampling in time to be 30% for 6-h ac-
cumulations on a 2.58 3 2.58 grid. One complication in
this discussion is that the relative (percent) random error
varies roughly as the inverse square root of the rain rate,
so that relative random errors are significantly worse in
light rain areas, but somewhat better in heavy rain areas
(Huffman 1997).

The global bias field is not yet established for GPROF
estimates, since most regions lack the necessary vali-
dation data and no statistical model has been developed
to estimate bias from other parameters. On the monthly
timescale, the two-satellite GPROF estimates showed a
correlation of 0.69 and a bias of 19% against a thin
scattering of gauge-based validation grid boxes around
the globe (mostly on land) for all of 1992 (Adler et al.
1996). In the same study comparisons of two-satellite
GPROF estimates and tropical Pacific atoll rain gauges
yielded a correlation of 0.72 and a bias of 23%. Syn-
thetic retrieval studies show that the bias in GPROF
estimates over land is roughly twice that over ocean (W.
S. Olson 1998, personal communication). Studies that
validate satellite estimates with radar frequently find
larger biases, but the comparability of satellite and radar
results remains open to debate (Smith et al. 1998).

For TPW estimates, we use the physically retrieved
SSM/I-2 product over oceans derived from the SSM/I
instruments aboard the F10 and F11 DMSP satellites
(Wentz 1994). The SSM/I-2 water vapor is improved
over the SSM/I-1 retrieval with a better specification
for the effective air temperature. The SSM/I-2 algorithm
is fine-tuned to 35 000 radiosonde water vapor contents.
The physical parameters in the model such as water
vapor absorption etc. are adjusted to minimize the dif-
ference between SSM/I retrievals and the in situ mea-
surements. For a spatial resolution of 50 km over ocean
scenes free of rain, the rms accuracy for the retrieved
columnar water vapor is estimated to be about 0.1 cm.

The analysis by Wentz (1997) using data from 1987–
90 suggests a systematic error that is less than the rms
error—around 0.06 cm. As with rain rates, we assimilate
only TPW estimates between 308S and 308N in this
study.

3. Methodology

a. The GEOS Data Assimilation System

The data assimilation system used in this study is an
intermediate system between the GEOS-1 DAS
(Pfaendtner et al. 1995) used to produce the first NASA
reanalysis and the GEOS-2 DAS with the PSAS (Cohn
et al. 1998). The system employs the second generation
of the GEOS GCM (GEOS-2 GCM, version 5.9) and
version 1.5 of the optimal interpolation (OI) analysis
scheme (DAO 1996). The prognostic variables are po-
tential temperature, specific humidity, surface pressure,
and winds in the zonal and meridional directions, com-
puted at the resolution of 28 latitude, 2.58 longitude, and
46 s levels from the surface to 0.4 hPa, using a Matsuno
time step of 2.5 min. The moist physics are parameter-
ized using the relaxed Arakawa–Schubert scheme for
penetrative convection (Moorthi and Suarez 1992) cou-
pled to a Kessler-type of reevaporation of falling rain
and large-scale precipitation due to supersaturation (see
DAO 1996 for details). The physics tendencies are up-
dated every 10 min for moist processes, 30 min for
turbulence, and 3 h for radiation.

The OI analysis scheme and statistics are described
in Pfaendtner et al. (1995). The upper-air height and
wind analyses and the sea level surface wind analyses
are performed every 6 h using multivariate statistical
interpolation algorithms on 18 pressure levels. The
moisture analysis is done using a univariate statistical al-
gorithm between 300 hPa and the surface. The conven-
tional observations are from rawinsondes, dropsondes,
rocketsondes, aircraft winds, cloud-tracked winds, and
thicknesses from historical TOVS soundings from the
National Environmental Satellite, Data and Information
Service.

The GEOS DAS employs no explicit initialization but
relies on the IAU procedure of Bloom et al. (1996) to
reduce any imbalance that might occur due to data in-
gestion. The procedure first computes for each prog-
nostic variable a total analysis increment using 6-h av-
eraged observations centered at the analysis times.
These total analysis increments are then divided by the
number of time steps over the 6 h to produce IAU ten-
dencies to be added at each time step as additional forc-
ing terms in the prognostic equations during the assim-
ilation. An advantage of this procedure is that there is
no obvious spinup in the precipitation and evaporation
fields in what is essentially a continuous model inte-
gration with a gradual insertion of data constraints
(Schubert et al. 1993; Bloom et al 1996).
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b. The general 111D estimation procedure for
assimilating nonstate variables

In global GCMs the convective processes are typi-
cally modeled in a vertical column of the atmosphere.
In radiative transfer models the reduced dimensionality
to a single column allows the development of efficient
1D retrieval algorithms of temperature and moisture in-
formation from radiance measurements. Similarly, one
could use ‘‘convective observations’’ such as surface
rain rate to obtain information about the thermodynamic
structure of the atmosphere. But surface precipitation
observations alone do not contain sufficient information
for determining vertical profiles of temperature and
moisture, as it contains exactly one piece of information.
The profiles ‘‘retrieved’’ from these data types must
therefore be constrained and consequently strongly in-
fluenced by the first guess. Such retrievals can be mod-
ified to extract the actual information content from the
radiance measurement for consistent assimilation, as
proposed by Joiner and da Silva (1998). But in this study
we will eschew such refinement in the initial imple-
mentation of the general procedure. Instead, we reduce
the dimensionality of the problem by adopting a par-
ticular form of analysis increments with two free pa-
rameters to accommodate the two pieces of information
provided by precipitation and TPW observations (cf.
section 3c).

Assimilating a given data type stipulates that a re-
lationship exists between the model variables and the
quantity being assimilated. Convective parameteriza-
tions in global GCMs are generally not cloud resolving,
with clouds and precipitation represented as ensemble
means in a grid box over a convective timescale of a
few hours. It is therefore not physically consistent to
assimilate instantaneous rain rate in a non-cloud-re-
solving model. In this study we will assimilate the 6-h
averaged SSM/I rain rate and TPW over a grid box into
the GEOS DAS. We describe in this section a general
procedure for estimating the vertical thermodynamic
structure of the atmosphere using convective observa-
tions that involves a time integration of a simplified
column version of the GCM. To distinguish this from
a procedure in two spatial dimensions, we shall refer to
this as an estimation problem in 1 1 1 dimensions. Let
w 5 [u q]T be the thermodynamic state vector for an
atmospheric column, consisting of profiles of potential
temperature, u, and specific humidity, q. The prognostic
equation for w in the GEOS DAS is

]w Dw
5 F 1 F 1 F 1 F 1 , (1)adv moist rad turb]t t

where Fadv, Fmoist , Frad, and Fturb are the tendency terms
due to advection, moist processes, radiation, and tur-
bulence, respectively. The last term, Dw/t , is an IAU
forcing consisting of the analysis increment, Dw (the
difference between the analysis and the first guess up-
dated every assimilation cycle), normalized by the width

of the analysis window, t (Bloom et al. 1996). If the
advective tendency, Fadv, can be prescribed, then (1)
becomes a 1D prognostic equation of processes in an
atmospheric column. This one-dimensional prognostic
equation will be the basis for our 111D assimilation
scheme.

To assimilate a specific type of observations available
from t 5 2t /2 to t 5 1t /2 (where t is typically 6 h)
in an assimilation cycle centered at t 5 0, we seek the
‘‘IAU parameter estimate,’’ Dw, that yields assimilation
fields that best match observations based on the relative
uncertainties of the observations and a prior parameter
estimate, Dw2 5 0. Formally, we minimize the follow-
ing functional, J(Dw):

T 21J(Dw) 5 Dw Q Dw
o T 21 o1 [w 2 h (Dw)] R [w 2 h (Dw)], (2)O k k k k k

k

where Q is the error covariance matrix of the prior es-
timate Dw2, is the instantaneous or time-mean ob-owk

servation vector at t 5 tk, and hk(Dw) is the observation
operator that provides a model estimate of the observ-
able at t 5 tk for a given value of Dw. For applications
to time-averaged data, we can omit the subscript k and
take h(Dw) to be the time-averaged observable. For pre-
cipitation assimilation in the GEOS DAS, we take
h(Dw) to be the natural log of the 6-h, gridbox-averaged
surface precipitation obtained by integrating (1), for a
given Dw, from t 5 2t /2 to t 5 1t /2 with Fadv, Frad,
and Fturb prescribed from a 3D first-guess assimilation
without precipitation data (see sections 3c and 3d). Dur-
ing this assimilation cycle, surface precipitation is ob-
tained by computing Fmoist explicitly using the same
moist physics as in the GEOS GCM. The ‘‘observation’’
error covariance R in (2) includes both errors in the
observations wo as well as errors in the forward model,
h(Dw). The implicit assumption here is that observations
and IAU parameter estimates are unbiased, with nor-
mally distributed random errors that are uncorrelated in
time. The IAU forcing Dw/t may be interpreted as a
correction that compensates for the net model deficien-
cy, acting as a synoptically varying bias correction term.

The 111D scheme described above is closely related
to the 4D-Var formulation. The estimation problem de-
fined by (2) may be generalized to 4D by replacing the
column model (1) with the full GEOS GCM and ex-
tending the control variable Dw to include increments
of all state variables in three dimensions. The resulting
4D formulation differs from the standard 4D-Var al-
gorithm in its choice of control variable: instead of es-
timating the initial condition at the beginning of the
assimilation cycle, we estimate the IAU forcing to be
applied throughout the assimilation cycle and, in doing
so, impose the forecast model as a weak constraint in
a manner similar to the variational continuous assimi-
lation technique proposed by Derber (1989), although
Derber did not explicitly include parameter and obser-
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vation error covariances. M. Zupanski (1993) extended
Derber’s scheme in the 4D-Var context to simultaneous-
ly estimate a constant, IAU-like forcing term and the
initial condition at the beginning of the assimilation
cycle, but found the impact of this extra degree of free-
dom was modest, despite the increased computational
expense. Zupanski (1997) proposed for operational 4D-
Var systems a more general weak constraint that allows
the estimated forcing term to vary in time. Although
this approach may also be used in our 111D context,
we have not adopted it since applying a constant forcing
over a 6-h interval is more consistent with the IAU
formulation used in the GEOS DAS and is easier to
implement.

c. A 111D moisture-adjustment procedure in the
perfect observation limit

The minimization of the functional (2) requires the
specification of the error covariances Q and R, which
may, in principle, be modeled statistically from inno-
vation time series (Dee and da Silva 1999; Dee et al.
1999). As a first step in developing a statistical approach
to rainfall and TPW assimilation, here we consider the
limiting case of small observation errors relative to er-
rors in the IAU parameter estimate. Such a perfect ob-
servation study provides a baseline for evaluating error
covariance models for optimal use of these data types.
The perfect observation assumption was also used to
good advantage in physical initialization studies (Krish-
namurti et al. 1991, 1993, 1994). As in physical ini-
tialization, we will adjust only the moisture profile. Spe-
cifically, we make the following assumptions.

1) We assume that uncertainties in the moisture variable
are much larger than those in the temperature field
and that errors in these fields are uncorrelated. More
precisely, if we write Q as

Q Qu,u u,qQ 5 , (3)[ ]Q Qq,u q,q

we assume that \Quu\ k \Qqq\ and \Qqu\ 5 \Quq\ 5
0, which leads to Dw 5 [Du Dq] 5 [0 Dq]. Under
these assumption, (2) reduces to

J(Dq) 5 DqT Dq21Qqq

1 [wo 2 h(Dq)]TR21[wo 2 h(Dq)]. (4a)

2) To further reduce the dimensionality of the problem,
we prescribe the vertical structure of the moisture
increment, Dq. This is equivalent to modeling Qqq

as a reduced rank matrix with the prescribed profile
defining the subspace where the parameter estimate
uncertainty lies.

3) Finally, we restrict consideration to the perfect ob-
servation limit, \Qqq\ k \R\, which allows us to
neglect the first term on the rhs of (4a).

With the above assumptions, the 111D procedure

was implemented in the GEOS DAS as follows: At each
grid box where the difference between the observed 6-h
rain rate, Po, and the model-generated rain rate, Pf ,
exceeds 1 mm day21, we minimize the functional

J(Dq) 5 {ln(Po 1 e) 2 ln[Pf (Dq) 1 e]}2, (4b)

where Dq is the moisture increment over the 6-h analysis
window and e is a small constant used to prevent log-
arithmic singularity at zero rain rate (taken to be 0.01
mm day21). The quantities, wo 5 ln(Po 1 e) and h(Dq)
5 ln[Pf (Dq) 1 e], are assumed to be unbiased and nor-
mally distributed; (4b) is a generalized log-normal dis-
tribution that remains valid for zero values of precipi-
tation. Here, Pf is obtained by integrating (1) for w 5
[u q] from t 5 2t /2 to t 5 1t /2, with Fadv, Frad, and
Fturb prescribed from a first-guess assimilation with all
observations except precipitation (see section 3d for de-
tails); Pf is diagnosed from the moist physics module
used in computing Fmoist(u, q).

In the absence of a ‘‘background’’ term, the mini-
mization of the functional (4b) is ill-posed since a single
piece of information in precipitation discrepancy is not
sufficient to determine the variation of Dq with height.
Consistent with assumption (2) and similar to the meth-
od used by Treadon (1996) and van Tuyl (1996), we
model the moisture increment in terms of a change in
relative humidity, Dr:

Dq 5 qs(T)Dr, (5)

where qs(T) is the saturation specific humidity and

a ln(p) 1 b for p . p*
Dr 5 (6)50 otherwise

with p* set to 100 hPa. Equation (6) contains two pa-
rameters to accommodate the two pieces of information
provided by the precipitation and TPW retrievals, with
a modifying the slope of Dr to match the observed rain
rate and b matching the observed TPW. At locations
with a valid SSM/I TPW observation, the vertically in-
tegrated column moisture increment can be determined
from SSM/I retrieval of TPW, q o, and the model first
guess, q f :

ps dp o fDq [ Dq 5 q 2 q . (7)E g0

If SSM/I TPW data are not used, Dq is set to zero, so
that the moisture increment due to precipitation data
introduces no net moisture source in a vertical column.
(This does not mean that q is conserved during the
assimilation cycle, see section 3e.) Combining (5)–(7),
we obtain Dq in terms of a single parameter, a:

q ln(p) DqsDq(a) 5 q (T ) ln(p) 2 a 1 ,s 5 6[ ]q qs s

for p . p*. (8)

Substituting (8) into (4b) reduces the problem to a 1D
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minimization of J[Dq(a)] w.r.t. a for given values of
Po and q o.

As mentioned earlier, the 111D moisture-adjustment,
perfect observation scheme shares similar assumptions
as those used in physical initialization. But as a data
assimilation scheme, the impact of physical initializa-
tion is fundamentally different from that of the 111D
scheme on the analysis. Physical initialization is used
to improve the first guess used at a given analysis time
by nudging the precipitation forecast from a previous
analysis (Treadon 1996), whereas the 111D scheme im-
plemented in the IAU framework constrains the assim-
ilation system to produce the 6-h average rain rate and
TPW best matching the observations within a given
analysis window.

d. Implementation in the GEOS DAS

As noted in section 3a, the moisture analysis in the
GEOS DAS is univariate, with specific humidity anal-
ysis increments determined independent of the temper-
ature field. Currently only radiosonde observations are
used in the moisture analysis, with analysis increments
concentrated over land and around tropical islands. The
procedure for computing the moisture analysis incre-
ment, Dq, due to precipitation and TPW is as follows.

1) We first compute the IAU increments due to all con-
ventional data types (not including rainfall or TPW
data) as in a standard operational 6-h GEOS DAS
assimilation.

2) At grid boxes with SSM/I TPW retrievals, we com-
pute a TPW-induced moisture IAU increment by
scaling the first-guess moisture profile to match the
observed TPW using a procedure similar to that de-
scribed in Ledvina and Pfaendtner (1995) but with
only one iteration. We then add these TPW-induced
moisture IAU increments to moisture analysis in-
crements due to other data types used in the oper-
ational GEOS DAS (which currently consist of only
rawinsonde observations) and use a Cressman
weighted-mean method with a 500-km radius to
smooth the combined increments over the neigh-
boring grid boxes.

3) We then perform a preliminary 3-h global assimi-
lation without rainfall data using all conventional and
TPW (if available) data to produce 3-h averaged Fadv,
Frad, and Fturb tendencies.

4) At every grid box with precipitation observation, we
use these 3-h averaged Fadv, Frad, and Fturb to integrate
(1) forward in time to obtain the 6-h mean precip-
itation, Pf , for a given value of a to evaluate the
cost function, J(a). The reason for using 3-h aver-
aged Fadv, Frad, and Fturb is purely economical. Di-
agnostics show that these fields are slowly varying.
The cost function calculated using the 3-h mean forc-
ing is within 10% of that computed using the 6-h
time series of these forcing terms.

5) The cost function J(a) is then minimized w.r.t. a
using an iterative procedure starting from a 5 0 and
searching over the interval between 22 and 2 (see
below). The vertical profile of Dq is obtained by
evaluating (8) at the minimization point for a 5 amin.

6) Once we have obtained the Dq increments due to
precipitation and/or TPW for all grid boxes with
SSM/I observations, we combine them with moisture
analysis increments due to conventional data, as de-
scribed in 2 above. The resulting 3D moisture anal-
ysis increments are then divided by 6 h to produce
the total moisture IAU tendency for the final assim-
ilation. The successive correction procedure also has
the advantage of adding a degree of spatial coherence
to the Dq increments due to TPW and precipitation
data.

The minimization algorithm based on a golden sec-
tion search and successive parabolic interpolation (Press
et al. 1992) is quite robust, with the solution obtained
typically in less than 14 iterations (see Fig. 1c). The
search interval is chosen experimentally. Analysis
showed that with 22 # a # 2, J(a) attains a unique
global minimum at roughly 85% of all minimization
locations in the Tropics. In the remaining cases the so-
lution still provides a better match with the observation,
though not a true minimum. Expending the search in-
terval increases the cases of true minimum but can lead
to excessively large moisture changes in the atmospheric
interior (see section 6). We analyzed the variation of the
cost function with a as a parameter for a large selection
of tropical locations and found that on rare occasions
J(a) may have a maximum within 22 # a # 2, so that
the solution is not unique. Identifying such cases would
require an elaborate testing procedure evaluating the
cost function in a space at each minimization location.
Since each J(a) computation requires a 6-h assimilation,
implementing this operationally would be prohibitively
expensive. Given their rare occurrences, we did not test
to remove such cases in the present study.

The degree to which we succeed in matching the 6-h
rain rate in the final assimilation with the observed rain
rate depends on how rapidly Fadv, Frad, and Fturb respond
to changes in convection. We found that the net tendency
of the time-averaged Fadv, Frad, and Fturb differs by about
20% between two 6-h assimilations from the same initial
condition with and without SSM/I rain rates. This ex-
plains why prescribing the time-average Fadv, Frad, and
Fturb in (1) with values taken form an assimilation with-
out rainfall data can provide a good estimate of Pf for
matching Po in this 111D assimilation procedure.

e. Impact on temperature and moisture at the
minimization location

The solution to (4b), Dq(amin), divided by 6 h, yields
moisture IAU tendencies due to precipitation and TPW
observations. The quantity Dq(amin) is therefore the 6-h
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FIG. 1. Temperature and humidity changes (rainfall and TPW assimilation minus control) at two minimization locations.
(a) Enhanced precipitation at 68S, 57.58E. Left panel shows that changes in specific humidity (g kg21) at the analysis time
(solid circle) are generally smaller the 3-h accumulated rainfall-induced moisture IAU forcing (open circle). The open
squares indicate the fractional changes. The legend shows the observed rain rate, Po; the initial guess with a 5 0, PF;
and the minimization solution, Pmin. Right panel shows changes in temperature (K) (solid circle) and the corresponding
percentage changes (open square). The prescribed IAU forcing on temperature due to rainfall/TPW is identically zero by
design (open circle). (b) Same as (a) but for reduced precipitation at 108S, 758E. (c) Variation of the cost function, J, as
a function of the iteration index for the solution shown in (a) (open circle) and that in (b) (solid circle).
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accumulated IAU forcing prescribed in the moisture
equation, which does not equal the net moisture change
over the assimilation cycle due to the action of moist
physics.

Figure 1 shows the impact of the assimilation pro-
cedure on the local moisture and temperature profiles
at two grid boxes: one for Po greater than Pf (Fig. 1a)
and one for Po less than Pf (Fig. 1b). Each case consists
of two parallel assimilations with and without SSM/I
observations starting from the same initial condition.
Since no conventional moisture observations are avail-
able at either of these locations, the net change of mois-
ture at the analysis time (at the midpoint of the 6-h
window) is the sum of the change due to moist physics
and that due to the prescribed rainfall-induced IAU forc-
ing in 3 h, that is, Dq(amin). The left panels are com-1

2

parisons of the actual change in moisture at the analysis
time with the 3-h accumulated IAU forcing. The frac-
tional changes in specific humidity (open squares) are
small except at the upper levels. The figure legend dis-
plays the solution to (4b) with Pmin as the 6-h average
rain rate given by the minimization procedure. In these
examples, Pmin is within 1% of the observed rain rate,
Po. Since the moisture adjustment, Da, is in the form
of a vertical redistribution, enhanced surface precipi-
tation typically leads to drying in the upper troposphere,
while reduced precipitation leads to moistening aloft.
The impact of rainfall assimilation on the upper-level
moisture is further examined in section 6. The right
panels of Figs. 1a and 1b show that the minimization
has only a minor impact on the temperature—typically
less than 0.5 K, or 0.2% throughout the troposphere.
Figure 1c is a plot of the functional, J, against the it-
eration index at these two minimization points.

4. Impact on time-averaged fields

To study the impact of assimilating SSM/-based rain-
fall and TPW retrievals between 308S and 308N on the
GEOS analysis, we performed four parallel 1-month
assimilations for December 1992. The control is the
standard GEOS assimilation described in section 3a,
using only conventional observations. In three more
cases we assimilate—in addition to conventional ob-
servations—either SSM/I rainfall (case A), or SSM/I
rainfall and SSM/I TPW (case B), or SSM/I TPW (case
C).

a. Surface precipitation

An example of the extent to which rainfall assimi-
lation can match the precipitation from the assimilation
with observations in one assimilation cycle is shown in
Fig. 2, which compares the 6-h average precipitation
with SSM/I GPROF rain rates derived from F10 and
F11 satellites at 0600 UTC on 1 December 1992. Com-
paring Fig. 2b with Fig. 2c shows that rainfall assimi-
lation effectively brings the GEOS precipitation closer

to the SSM/I data. Rainfall assimilation increases the
spatial anomaly correlation from 0.32 to 0.74, and re-
duces the tropical mean bias by roughly a factor of 2
and the error std dev by 32%. In general, assimilating
SSM/I rain rates with or without TPW data significantly
improves the anomaly correlation and reduces the error
std dev. The tropical-mean biases are typically less than
0.5 mm day21, within uncertainties of the 6-h SSM/I
estimate.

Figure 3a displays the combined F10 and F11 SSM/I
GPROF rain rate for December, 1992. Fig. 3b shows
the difference between the SSM/I rain rate and that
from the GEOS control sampled at SSM/I observation
locations. Figures 3c and 3d are the corresponding dif-
ferences for case A (with SSM/I rainfall) and case B
(with SSM/I rainfall and TPW), respectively. The spa-
tial error statistics are given in Table 1. Overall, as-
similating tropical SSM/I rain rates with or without
TPW enhances the spatial correlation of the monthly
mean precipitation with observations from 0.53 to over
0.85 and reduces the error std dev by 40%. These re-
ductions are statistically significant with F-test prob-
abilities of less than 1%. The tropical-mean spatial
biases are small residuals of positive and negative time-
mean biases. The apparent increase in the tropical-
mean bias in Fig. 3c reflects that the rainfall assimi-
lation scheme is more effective in reducing the pre-
cipitation intensity than enhancing it in matching the
GEOS DAS with the SSM/I rain rates. This asymmetry
leads to a seemingly larger tropical-averaged monthly
mean bias, although the positive and negative time-
mean biases in the Tropics are significantly smaller in
Fig. 3c than their counterparts in Fig. 3b. The addition
of TPW data further increases this asymmetry. The
predominantly negative biases in cases A and B are
evident in Figs. 3c and 3d, indicating that in certain
situations the convective parameterization used in the
GEOS DAS cannot match the intense GPROF rain rates
within the prescribed adjustment limits. However, a
tropical-mean bias of 0.5 mm day21 is comparable to
the uncertainty in the monthly mean SSM/I retrieval
(cf. section 2), although it is possible that improve-
ments of the convective physics in the GEOS DAS
may lead to a better result. Table 1 also shows that
assimilating tropical SSM/I TPW alone (case C) does
not improve the precipitation, even though it signifi-
cantly improves the moisture analysis, as shown in the
next section.

b. Total precipitable water

Figure 4a shows Wentz’s SSM/I TPW retrieval over
oceans for December 1992. The difference between
the SSM/I TPW and the TPW from the control sam-
pled at SSM/I observation locations is shown in Fig.
4b. Figures 4c and 4d are the corresponding differ-
ences for case C (with SSM/I TPW only) and case B
(with SSM/I rainfall and TPW), respectively. Table 2
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FIG. 2. (a) The 6-h average SSM/I GPROF rain rates based on DMSP satellites F10 and F11 at 0600 UTC on 1 Dec 1992. The satellite
observation tracks are shaded, with the light shade indicating no precipitation. The dark shade shows rain rates above 2 mm day21, with
contours at 2, 4, 6, 8, 16, and 32 mm day21. (b) Difference between SSM/I rainfall estimate and precipitation from the control sampled at
SSM/I observation locations. The contour interval is 3 mm day21. Also shown are the computed spatial anomaly correlation (AC), bias, and
error std dev. (c) Same as (b) but for case A.

shows that assimilation of tropical SSM/I TPW sig-
nificantly reduces an existing tropical dry bias in the
control and cuts the error std dev by 50%. Using
SSM/I rainfall data in conjunction with TPW further
reduces the bias and error std dev. But assimilating
SSM/I rainfall without TPW (case A) does not im-
prove the TPW analysis.

c. Impact on the large-scale circulation and
atmospheric radiation

The chief motivation for assimilating tropical precip-
itation observation is to improve the latent heating in
the assimilation, which, given its dominant role in the
Tropics, would, in turn, improve other assimilation
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FIG. 3. (a) Time-mean SSM/I GPROF precipitation for Dec 1992. The contours are 2, 4, 6, 8, 16, and 32 mm day21. (b)
Difference between SSM/I rainfall estimate and precipitation from the control sampled at SSM/I observation locations. The
contour interval is 3 mm day21. (c) Same as (b) but for case A. (d) Same as (b) but for case B.



520 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

TABLE 1. Spatial statistics of December-mean precipitation minus SSM/I GPROF retrieval 208S–208N and 308S–308N (in parentheses).

Anomaly corr Bias (mm day21)
Error std dev
(mm day21) Std dev change

Control 0.51
(0.53)

20.08
(20.14)

4.33
(3.83)

—
—

Case A (Pcp) 0.87
(0.86)

20.56
(20.44)

2.60
(2.37)

240.0%
(238.1%)

Case B (Pcp 1 TPW) 0.89
(0.89)

20.65
(20.54)

2.51
(2.27)

242.1%
(240.7%)

Case C (TPW) 0.59
(0.59)

1.06
(0.71)

4.38
(3.92)

11.2%
(12.5%)

fields through model physics and dynamics. Figure 5
shows that the improved precipitation in case B directly
affects the omega velocity at 500 hPa and the OLR at
the top of the atmosphere. The spatial anomaly corre-
lation between the monthly mean precipitation and the
500-hPa omega velocity is 20.80, and that between
precipitation and OLR is 20.66. The anomaly corre-
lation between precipitation and the cloudy-sky OLR is
even higher, about 20.71 (see Fig. 7a). We obtained
similar results for case A without TPW observations.
Since the horizontally divergent flow is proportional to
the vertical gradient of the vertical velocity, the changes
shown in Fig. 5b should indicate an improved divergent
component in the large-scale circulation, but this is dif-
ficult to confirm due to the paucity of wind data in the
Tropics. We can, however, verify whether the OLR in
the assimilation is improved through comparisons with
satellite observations of OLR, which may be used for
validation since they were not assimilated in the GEOS
DAS.

d. Comparison with NOAA outgoing longwave
radiation

The OLR data we used are estimates derived from
the Advanced Very High Resolution Radiometer
(AVHRR) instruments on National Oceanic and At-
mospheric Administration board polar-orbiting satellites
(NOAA-11 and -12). The absolute accuracies of these
instruments are difficult to ascertain. Gruber et al.
(1994) have shown that the monthly global bias between
the narrowband AVHRR channels from the NOAA-9 and
the broadband Earth Radiation Budget Experiment
(ERBE) is around 1–2 W m22 in daytime and 4–7 W
m22 in nighttime, with rms differences in the 12–15 W
m22 range. Our own analysis shows that the NOAA OLR
has a low bias up to 10–15 W m22 relative to ERBE
data for OLR values greater than 240 W m22. The
AVHRR instruments on NOAA-11 and -12 may have
similar characteristics relative to broadband instru-
ments. But the OLR from global analyses can often
differ from observations by more than 15 W m22; com-
parison with observations provides a useful measure of
the quality of the OLR product. In this section we will
use the NOAA-12 OLR as the basis for comparison, then

check the robustness of our results using OLR data from
NOAA-11, which had different equatorial crossing
times.

Figure 6a shows the time-mean NOAA-12 OLR for
December 1992. Figure 6b shows the difference be-
tween the NOAA OLR and OLR from the GEOS control
sampled at the NOAA-12 observation times. The cor-
responding differences for case A (with SSM/I rainfall)
and case B (with SSM/I rainfall and TPW) are shown
in Figs. 6c and 6d, respectively. Table 3 shows that
assimilating SSM/I rain rates (case A) reduces the spa-
tial bias in the monthly mean OLR by 6.4% and the
error std dev by 13% between 208S and 208N. Assim-
ilating SSM/I rain rates with TPW (case B) yields great-
er improvements, increasing the spatial anomaly cor-
relation from 0.73 to 0.82 and reducing the bias by 46%
and the error std dev by 26%. Overall, assimilating the
SSM/I TPW without precipitation (case C) reduces most
of the bias but not the error std dev, while assimilating
SSM/I rain rates (case A) reduces the error std dev but
not the bias. Only the simultaneous use of SSM/I rain
rates and TPW gives the best result. The reason becomes
clear when we examine the OLR in clear- and cloudy-
sky regions separately.

When SSM/I rain rates and TPW are both assimilated,
the improved OLR reflects (i) changes in cloud-sky re-
gions as a result of improved precipitation and (ii)
changes in clear-sky regions associated with reduced
moisture biases in the lower troposphere. Figure 7 shows
that a clear correspondence exists between the change
in the monthly mean cloudy-sky OLR (case B minus
control) and the change in precipitation (Fig. 5a), with
a spatial anomaly correlation of 20.71 for the Tropics.
Since the anomaly correlation between the cloudy-sky
OLR change and the total OLR change (Fig. 5c) is 0.97,
the improved OLR pattern in the Tropics reflects mostly
the improved cloudy-sky OLR through rainfall assim-
ilation.

By contrast, the improved clear-sky OLR can be di-
rectly linked to the reduced dry bias through TPW as-
similation. Changes in the clear-sky OLR correspond to
improved OLR in regions of large-scale subsidence over
the eastern Indian Ocean off Australia, the eastern trop-
ical Pacific, and the tropical Atlantic, outside the ITCZ.
Figures 7b and 7c show that the correlation between the
change in the clear-sky OLR and that in TPW is 20.87.
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FIG. 4. (a) Time-mean SSM/I Wentz TPW estimate for Dec 1992. The contours are in increments of 0.5 g cm22 from 1.5 g cm22. (b)
Difference between SSM/I TPW and TPW from the control sampled at SSM/I observation locations. The contour interval is 0.25 g cm22

with an additional contour at 22 g cm22. (c) Same as (b) but for case C. (d) Same as (b) but for case B.
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TABLE 2. Spatial statistics of December-mean TPW minus SSM/I Wentz (version 2) retrieval 208S–208N and 308S–308N (in parentheses).

Anomaly corr Bias (g cm22)
Error std dev

(g cm22)

Control 0.89
(0.92)

20.42
(20.40)

—
—

0.48
(0.46)

—
—

Case C (TPW) 0.97
(0.98)

20.10
(20.09)

276%
(278%)

0.24
(0.23)

250.9%
(250.0%)

Case B (Pcp 1 TPW) 0.98
(0.98)

20.03
(20.03)

293%
(293%)

0.22
(0.21)

254.8%
(253.7%)

Case A (Pcp) 0.88
(0.91)

20.28
(20.31)

233%
(223%)

0.54
(0.51)

111.4%
(110.8%)

The above results are based on comparisons using
daily mean values of OLR from NOAA-12. We repeated
the comparisons using daily mean values from NOAA-
11. The results are essentially the same, with the per-
centage reductions in the error std dev (Table 3) altered
by only 1%. Our conclusions are therefore valid re-
gardless of which NOAA satellite was used.

e. Reduction of state-dependent systematic errors in
OLR

Since the radiative time constant and the overturning
time of the large-scale circulation in the Tropics are on
the order of weeks, it is conceivable that the quality of
the analysis may continue to improve over an initial
adjustment period from the time the SSM/I rainfall and
TPW are first ingested. To investigate this, we examined
the error std dev of the daily OLR for 30 days. Figure
8 shows that the error std dev reduction on day 30 is
not greater than that on day 1, with no indication of
errors decreasing with time. Figure 8 also shows that
the error std dev decreases as the averaging period in-
creases, consistent with reduced smaller random errors
through time averaging. Note, however, that the offset
in the error std dev in watts per square meter between
case B and the control is comparable for all averaging
periods. We interpret this to mean that SSM/I rainfall
and TPW assimilation effectively reduces the systematic
errors in the OLR. Moreover, this systematic error re-
duction is likely a function of the state since errors in
the std dev pertain to spatially varying, state-dependent
fields, with the state-independent error already account-
ed for in the bias. When a longer assimilation becomes
available, it may be possible to identify through EOF
analysis coherent low-frequency spatial patterns asso-
ciated with this error std dev reduction.

With the error std dev decreasing with the time-av-
eraging length, a constant error std dev reduction for
different averaging periods corresponds to a larger frac-
tional error reduction for longer averaging periods. The
fractional error std dev reduction in the 30-day mean
OLR averaged from 208S to 208N is about 26%, nearly
twice the fractional error reduction in daily mean OLR.
A similar diparity in fractional error reduction between
the monthly mean field and the daily mean fields is to

a lesser extent also evident in precipitation. Based on
this we conclude that while the rainfall and TPW as-
similation improves the 6-h analysis, it is even more
effective in improving the monthly averaged assimila-
tion fields. Clearly, the full benefit of assimilating these
data types cannot be gauged solely in terms of their
impact on the 6-h assimilation cycle.

f. Comparison with ISCCP cloud data

We have shown in section 4d that the reduced error
std dev of OLR is due mainly to changes in the cloudy-
sky OLR. Since the anomaly correlation between the
monthly mean total cloud fraction and the cloudy-sky
OLR (Fig. 7a) is 20.58, the improved cloud-sky OLR
implies improved cloud fraction in the assimilation. For
this period, the ISCCP D1 cloud data are available from
the NASA/Langley Distributed Active Archive Center.
The ISCCP cloud fraction product, despite the lack of
absolute validation, is expected to contain useful spatial
information. Although the definition of cloudy sky in
satellite observation differs from that used for gridded
model data, a comparison with the ISCCP cloud fraction
data may still be meaningful if the differences are large.
The statistics in Table 4 show the effect of rainfall and
TPW assimilation on the total cloud fraction. Given the
uncertainty of the observations, it is questionable wheth-
er spatial biases on the order of 0.1 are meaningful. But
reductions of 5%–10% in the error std dev are statis-
tically significant at the 95% level according to the F
test. These improvements, though modest, are consistent
with the improved OLR in cloudy-sky regions. It is
possible that we may find greater improvements in the
high-cloud fraction, which is more closely linked to the
cloudy-sky OLR; unfortunately, high-cloud fraction was
not generated as a diagnostic in the GEOS DAS.

g. Shortwave radiation at the surface

Another test of possible improvements in clouds is
to see if there is evidence of improved shortwave ra-
diation at the surface. In this section we compare the
net shortwave flux at the surface from the assimilation
with Pinker’s 3-h average combined satellite–model es-
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FIG. 5. (a) Difference in monthly mean precipitation between case B and the control for Dec 1992. The contour interval is 2 mm day21.
(b) The corresponding difference in the omega velocity at 500 hPa. The contour interval is 20 hPa day21. The correlation between this and
the change in the precipitation pattern is 20.80. (c) The corresponding change in OLR. The contour interval is 10 W m22. The correlation
between this and the change in precipitation is 20.66.

timate using ISCCP D1 cloud data (R. T. Pinker 1998,
personal communication). The basic methodology for
computing the shortwave flux using ISCCP cloud data
is given in Pinker and Lazlo (1992). Figure 9 shows the
difference in the net downward shortwave radiative flux
at the surface between Pinker’s estimate and those from
three assimilation runs. The GEOS DAS is known to
underestimate the cloud amount over continents and
overestimate clouds over large areas over oceans. Rain-

fall and TPW assimilation improves the surface short-
wave fluxes over both land and oceans. Table 5 shows
that assimilating SSM/I rain rates with or without the
TPW data reduces both spatial biases and error std dev
in the Tropics. These results provide further evidence
that use of SSM/I rainfall data helps improve clouds in
the assimilation. However, assimilating SSM/I TPW
data without rain rates (case C) seems to degrade the
shortwave flux at the surface.



524 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

FIG. 6. (a) Time-averaged AVHRR OLR from NOAA-12 for Dec 1992. The contour interval is 20 W m22. (b) Difference
between NOAA OLR and OLR from the control with the same sampling. The contour interval is 25 W m22. (c) Same as (b)
but for case A. (d) Same as (b) but for case B.
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TABLE 3. Spatial statistics of December-mean OLR minus NOAA-12 OLR estimate 208S–208N and 308S–308N (in parentheses).

Anomaly corr Bias (W m22)
Error std dev

(W m22)

Control 0.73
(0.74)

8.62
(13.5)

—
—

27.0
(24.8)

—
—

Case A (Pcp) 0.78
(0.78)

8.07
(13.4)

26.4%
(20.7%)

23.5
(22.4)

213.0%
(210.0%)

Case B (Pcp 1 TPW) 0.82
(0.81)

4.66
(9.5)

246%
(230%)

20.0
(19.6)

226.0%
(221.1%)

Case C (TPW) 0.77
(0.76)

1.61
(7.35)

281%
(246%)

26.8
(25.3)

20.90%
(11.8%)

5. Impact on forecast

The view that improvements to the analysis can be
evaluated in terms of the forecast it produces rests on
the assumption that the model is perfect. In reality the
forecast model is not perfect. The analysis scheme must
take into account both observation and model errors to
arrive at an optimal estimate of the climate state. In
previous sections we have shown that rainfall and TPW
assimilation improves the time-averaged fields more
than the 6-h analysis, suggesting that improvements in
the instantaneous fields may have only a small impact
on the model forecast. But internal consistency between
model physics and observations requires that there still
be some improvement, or, at least, no degradation, in
the short-term forecast made from an improved climate
dataset. In this section we examine the impact of rainfall
and TPW assimilation on model forecasts in terms of
the 6-h observation minus forecast (O–F) residuals as
well as 5-day forecasts.

a. Observation minus forecast residual

Table 6 shows 6-h averaged O–F residuals for pre-
cipitation for lead times from 6 to 48 h averaged over
all tropical locations with available SSM/I rain rates.
The forecasts were obtained using initial conditions that
were 1 day apart over a 10-day period. These were
treated as independent samples since convective pre-
cipitation has a lifetime on the order of hours. Bias and
error std dev differences significant at the 99% level are
italicized in Table 6. They show that precipitation fore-
casts in case B have smaller error std dev within the
first 12 h, reflecting reduction of errors in the initial
conditions; but the magnitudes of error reduction are
less than 7% percent, much less than the 32%–40%
reductions in the 6-h assimilation (section 4a). This
shows that assimilating these data types can improve
the analysis as a climate dataset without necessarily
achieving comparable improvements in the first guess
(i.e., the 6-h forecast). Table 6 also shows that even
though biases are much smaller than the error std dev
in precipitation forecasts, rainfall and TPW assimilation
can reduce the bias relative to the SSM/I rain rate by
40% in forecasts beyond 1 day. Although the overall

improvement of the precipitation forecast is modest, it
is significant that assimilating these data types does not
degrade the short-range forecast while improving the
time-mean analysis, as expected of a physically consis-
tent assimilation system.

Figure 10 compares the monthly mean biases and
standard deviations of the 6-h O–F residuals for winds,
geopotential height, and specific humidity averaged over
tropical rawinsonde locations for case B and the control.
Statistical tests show that only changes in the O–Fs for
moisture are significant. Probabilities from Student’s
t-test indicate larger moisture biases (at the 1% level)
in case B between 400 and 700 hPa. However, the stan-
dard deviations in the two assimilations are different
between 400 and 500 hPa according to the F test, casting
doubt on the soundness of the t-test at these levels (see
Table 7). But, the overall indication is that rainfall and
TPW assimilation may have moistened the upper-level
humidity in the Tropics. This issue is further investi-
gated in section 6. We obtained similar results for case
A with no TPW observations.

b. Ensemble 5-day forecast

We examined the impact of SSM/I rainfall and TPW
assimilation on an ensemble of 5-day forecasts with
initial conditions 5 days apart. With 1 month of assim-
ilation, the ensemble size of the 5-day forecast is limited
to six cases. The uncertainty associated with such a
small sample can be large, we relied on Student’s t-test
to detect differences in the ensemble means under con-
ditions where the standard deviations of the ensembles
being compared are the same according to the F test.

Figure 11 compares the ensemble forecasts of the
tropical geopotential height at 500 hPa with initial con-
ditions taken from the GEOS control and case B assim-
ilations. For forecast verification, we use two analyses:
the operational analysis from the European Centre for
Medium-Range Weather Forecasts (ECMWF) and the
GEOS analysis from case B, which has smaller errors
compared with satellite observations in the Tropics, as
shown in section 4. Figure 11 shows ensemble-mean
forecast rms error and error std dev for the first 5 days.
Assimilation of SSM/I rainfall and TPW data yields
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FIG. 7. (a) Difference in the cloudy-sky OLR between case B and the control for Dec 1992. The contour interval is 20 W m22. The
correlation between this and the change in precipitation (Fig. 5a) is 20.71. (b) Difference between the clear-sky OLR in case B and the
control for the same period. The contour interval is 5 W m22. (c) The corresponding change in TPW. The contour interval is 0.3 g cm22.
The correlation between this and the change in the clear-sky OLR is 20.87.

smaller rms errors in the tropical height forecast re-
gardless of whether the ECMWF or the GEOS analysis
is used for verification. Results of F tests show that the
two forecast ensembles (with the same verification anal-
ysis) have standard deviations that are statistically in-
distinguishable, thus permitting Student’s t-test despite
the small sample size. Results show significant rms error
reductions at the 95% level between 1.5 and 3 days with
the ECMWF analysis as the verification, compared with

significant improvements between 0.5 and 4 days with
the GEOS analysis as the verification.

Rainfall and TPW assimilation does not improve nor
degrade the 5-day forecast in the extratropics. The en-
semble-mean forecast anomaly correlations shown in
Fig. 12 are not statistically different. This again dem-
onstrates that the improved time-averaged assimilation
fields shown in section 4 were not achieved at the ex-
pense of forecast skills.
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FIG. 8. Error std dev in tropical OLR in case B as a function of
averaging periods of 1, 5, 10, and 30 days. Results are for the first
30 days in Dec 1992, with data points at the middle of their averaging
periods.

TABLE 4. Spatial statistics of December-mean total cloud fraction minus ISCCP D1 estimate 208S–208N and 308S–308N (in parentheses).

Anomaly corr Bias Error std dev Std dev change

Control 0.46
(0.45)

0.112
(0.060)

0.217
(0.231)

—
—

Case A (Pcp) 0.41
(0.41)

0.129
(0.075)

0.203
(0.226)

22.0%
(22.3%)*

Case B (Pcp 1 TPW) 0.47
(0.44)

0.163
(0.117)

0.186
(0.212)

210.1%
(28.2%)

Case C (TPW) 0.51
(0.47)

0.140
(0.087)

0.197
(0.226)

24.8%
(22.2%)*

* The change is not statistically significant (with a probability exceeding 0.05 by the F test).

6. Comparison of synthetic radiances with TOVS
measurements

In this section we use TOVS brightness temperature
observations to examine the impact of the rainfall as-
similation on upper-tropospheric humidity and tropo-
spheric temperature. We first compute brightness tem-
peratures using temperature and humidity fields from
the control and precipitation assimilations (referred to
as synthetic brightness temperatures). We then compare
the synthetic brightness temperatures with observed
brightness temperatures. We will refer to the difference

between observed and synthetic brightness temperatures
as residuals.

The observations consist of clear and cloud-cleared
infrared radiances from the TOVS High-Resolution In-
frared Radiation Sounder 2 (HIRS2) and brightness tem-
peratures from the TOVS Microwave Sounding Unit
(MSU). Most of the HIRS2 radiance observations have
been processed to remove the effect of cloud (a process
referred to as cloud clearing). The HIRS2 clear and
cloud-cleared radiances are then converted to equivalent
blackbody (brightness) temperatures. The HIRS cloud-
cleared brightness temperatures were produced as part
of the Pathfinder Path A dataset (Susskind et al. 1997).
The cloud-clearing approach is based on Susskind et al.
(1984). The only adjustment to the HIRS2 clear-scene
brightness temperature is averaging of two or more ad-
jacent pixels. The MSU brightness temperatures are not
adjusted in any way (e.g., no adjustment to nadir view,
etc.). Brightness temperatures are computed at the ob-
served satellite zenith angle.

The radiative transfer algorithm used to compute
brightness temperatures is a fast transmittance model
based on Susskind et al. (1983) with the interface of
Sienkiewicz (1996). The inputs are temperature and hu-
midity profiles from the surface to 0.4 hPa, the surface
skin temperature, and microwave emissivity (the infra-
red surface emissivity is fixed at the values used in the
Pathfinder processing). In the brightness temperature
calculation, we use the surface skin temperature and
microwave emissivity from the Pathfinder dataset. The
temperature and humidity profiles are from the different
assimilation runs and are interpolated linearly in space
(not in time) to observation locations for a given 6-h
assimilation cycle.

Both the observations and radiative transfer calcu-
lation contain biases. We estimate the absolute uncer-
tainty of the synthetic minus observed brightness tem-
peratures to be approximately 2 K. We have not made
any attempt to remove these biases. Instead, we con-
centrate on the spatial structure of the residuals, cases
where the overall bias between observations and syn-
thetic brightness temperatures exceeds 2 K, and the rel-
ative differences between the control and precipitation
assimilations.
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FIG. 9. (a) Difference in the net downward shortwave radiation at the surface between the control and Pinker’s satellite–model estimate
for Dec 1992. The comparison is based on 3-h sampling of ISCCP clouds. The contour interval is 50 W m22. (b) Same as (a) but for case
A. (c) Same as (a) but for case B.

We examine in particular two channels from the
TOVS instruments, namely, HIRS2 12 (6.7 mm), which
is sensitive to upper-tropospheric humidity (UTH) and
MSU 2, which is sensitive to tropospheric temperature.
HIRS2 12 has a peak sensitivity to UTH between about
300 and 500 hPa depending on local conditions. MSU
2 has a relatively broad sensitivity to tropospheric tem-
perature that peaks near 600 hPa. It reaches half its
peak sensitivity at approximately 300 hPa and has a

small sensitivity to surface emission. The effect of non-
precipitating cloud on MSU 2 is negligible in most
cases and therefore is not accounted for. Precipitating
situations are screened out by checking for inconsis-
tencies between microwave and infrared observation
and checking high values of the microwave emissivity
over ocean.

Figure 13 compares the monthly mean synthetic
HIRS2 12 brightness temperature of the control and that
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TABLE 5. Spatial statistics of December-mean surface shortwave flux minus Pinker’s satellite–model estimate 208S–208N and 308S–308N
(in parentheses).

Anomaly corr Bias (W m22) Error std dev (W m22)

Control 0.58
(0.71)

230.3
(222.5)

—
—

75.2
(73.0)

—
—

Case A (Pcp) 0.66
(0.76)

226.4
(219.0)

213%
(216%)

67.1
(67.1)

210.8%
(28.1%)

Case B (Pcp 1 TPW) 0.68
(0.77)

227.7
(221.9)

28.5%
(22.7%)

63.8
(65.5)

215.1%
(210.3%)

Case C (TPW) 0.60
(0.71)

244.5
(234.6)

147%
(153%)

72.6
(72.8)

23.5%
(20.4%)*

* The change is not statistically significant (with a probability exceeding 0.05 by the F test).

TABLE 6. Observation minus forecast statistics for precipitation in the Tropics.

Forecast
time 6 h 12 h 18 h 24 h 30 h 36 h 42 h 48 h

Sample size 25 043 24 233 26 339 26 267 2690 27 250 27 786 26 898

Bias
Control
Case B
% change
T-test prob

20.21
20.31
47.6%

0.4

20.33
20.38
15.5%

0.6

20.48
20.36

225.0%
0.3

21.12
20.88

221.4%
0.07

20.68
20.41

239.7%
0.01

20.75
20.44

241.3%
0.006

20.89
20.53

240.4%
0.001

21.27
20.84

233.8%
0.0008

Error std dev
Control
Case B
% change
F-test prob

15.05
14.08

26.4%
0.0

14.25
13.78

23.3%
1 3 1027

14.03
14.00

20.2%
0.7

15.98
15.96

20.1%
0.8

12.50
12.45

20.4%
0.5

13.39
13.38

20.07%
0.9

13.25
13.29

0.3%
0.6

15.23
15.26

0.1%
0.7

in case A with observation. We obtained similar results
for HIRS2 11 (7.3 mm), which is also sensitive to hu-
midity but peaks at a lower altitude than HIRS2 12.
Figure 13a shows that the brightness temperature of the
control has a cold bias, implying a moist bias in UTH.
Figure 13b shows that the UTH averaged over the Trop-
ics in case A has a stronger bias and a slightly larger
error std dev. The rainfall assimilation scheme in its
current implementation thus has an overall negative im-
pact on UTH. However, a difference plot of the synthetic
radiances (Fig. 13c) shows that the brightness temper-
ature in case A is warmer over much of the Tropics,
typically away from areas of precipitation changes (Fig.
13d). This suggests that precipitation assimilation has
improved the large-scale vertical motion field in the
surrounding regions. The warmer brightness tempera-
tures likely reflect a drying of the upper troposphere
through a stronger subsidence. But this improvement is
offset by excessive local moistening in areas of reduced
precipitation when averaged over the Tropics (see the
error statistics in Figs. 13a and 13b). This is consistent
with that the rms error of the brightness temperature
averaged over the Tropics excluding areas of reduced
rain rates is 3.24 K in case A compared with 3.28 K in
the control.

The negative impact on UTH at locations of reduced

precipitation is a direct consequence of the 1D linear
slope adjustment of relative humidity, as shown in Fig.
1b. The scheme may be modified to concentrate the
adjustment near the surface to alter the conditional in-
stability, or incorporate additional vertical structure in-
formation if available. We are currently testing an al-
ternative a profile based on the Jacobian of the cost
function J(Dq) that effectively confines the Dq to near
the surface. The results will be reported in a subsequent
paper.

The impact of rainfall assimilation on the tropospher-
ic temperature may be inferred from Fig. 14, which
shows the monthly mean synthetic MSU 2 brightness
temperatures in the control and case A are both higher
than the observed MSU 2 values (Fig. 14a), suggesting
that analyzed temperatures may be too warm. But these
differences in brightness temperatures may not be sig-
nificant given that the overall uncertainty is about 2 K.
We can remove this ambiguity by examining changes
in the synthetic radiances between case A and the con-
trol. Figure 14c shows the impact of rainfall assimilation
is to reduce possible warm biases by about 0.1 K in
regions where rain rates have been modified (see Fig.
13d). A change of 0.1 K may be significant given the
broad weighting function and is consistent with that the
error std dev is also reduced. In any case, there is no



530 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

FIG. 10. Monthly averaged biases and standard deviations of 6-h O–F residuals for winds, geopotential height, and specific
humidity averaged over the Tropics for Dec 1992: Open circles for the control. Solid circles for case B.
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TABLE 7. Probability of the December-mean tropical O–F residual
for specific humidity being the same in case B and the control.

Pressure
(hPa)

T-test probability
for bias

F-test probability
for std dev

300
400
500
700
850

1000

0.150 112 2
3.846 3 1028

1.734 3 10212

3.888 3 1028

0.245 183 2
0.405 889 2

1.438 3 1024

9.398 3 1027

5.292 3 10211

0.099 4
0.855 3
0.306 0

FIG. 11. Ensemble-mean rms error and error std dev for six cases
of 5-day forecasts of the tropical geopotential height at 500 hPa:
Solid lines are results using the ECMWF analysis as verification.
Dashes are the same forecasts with the GEOS (case B) assimilation
as verification.

FIG. 12. Anomaly correlations of the sea level pressure for a six-
case ensemble of 5-day forecasts: Solid lines for the control. Dashes
for case B.

evidence of rainfall assimilation adversely affecting the
tropospheric temperature.

7. Sensitivity to SSM/I-derived precipitation
intensity

In this section we test the sensitivity of our results
to the SSM/I-derived rainfall intensity since there is still
uncertainty in this quantity. At the present time, rain
rates given by the various microwave retrieval algo-
rithms may differ by as much as a factor of 2, while
there is considerable agreement in terms of rainfall pat-
terns (Adler et al. 1996). For physical initialization,
Krishnamurti et al. (1994) found that the impact of rain-
fall assimilation on the model forecast is sensitive to
the SSM/I-derived rain rate, which may reflect incom-
patibilities between the retrieved rain rates and the mod-
el’s physical parameterizations. We do not expect to see
this type of sensitivity in our 111D assimilation scheme
within the IAU framework since the IAU tendencies
would compensate for deficiencies in the model physics
(whatever they might be). We tested this in an assimi-
lation experiment in which the observed rain rate was
50% of the SSM/I GPROF retrieval and no TPW ob-
servation was used (as in case A). The observed trop-
ical-mean precipitation in this case is about 1.5 mm
day21, much smaller than the model estimate of 3 mm
day21 in the control. This experiment is a severe test of
our algorithm’s ability to assimilate such extreme rain
rates and will reveal if the improved OLR in case A is
due to improvements in the spatial pattern or intensity
of the tropical rainfall.

Figure 15 shows that the 111D assimilation algo-
rithm has no difficulty in assimilating these extreme rain
rates, which increases the correlation with the obser-
vations from 0.53 to 0.80, and reduces the monthly mean
bias by 62% and the error std dev by 47%. Figure 16
shows the impact on the December-mean OLR. Com-
paring Fig. 16 with Fig. 6c (with the SSM/I GPROF
rain rate at its full strength) shows only minor differ-
ences. This confirms that improvement in the OLR
through rainfall assimilation is due primarily to the im-
proved spatial pattern of rainfall and is not sensitive to
the retrieved rainfall intensity.

8. Summary and discussion

We have developed a variational framework for as-
similating 6-h averaged tropical precipitation and TPW
estimates in the GEOS DAS and tested a simplified
moisture-adjustment procedure in the limit of small ob-
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FIG. 13. Synthetic HIRS2 channel 12 brightness temperature for Dec 1992. (a) Control minus TOVS observation. (b) Case A minus
TOVS observation. (c) Case A minus the control. (d) Corresponding change in precipitation for the same period.
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FIG. 14. Same as Fig. 13 except for the MSU channel 2.

servation errors. Results show that assimilating these
data types not only improves precipitation and TPW in
the analysis but also reduces biases and state-dependent
systematic errors in fields such as OLR, clouds, surface
radiation, and the large-scale circulation. Assimilating
these data also improves the short-range forecast in the
Tropics. The improvement in forecast is, however, mod-
est, consistent with the fact that random errors can dom-
inate over systematic errors in the instantaneous fields.
An important result of this study is that improving the
short-range forecast is not necessarily a prerequisite for
improving the 4D assimilation as a climate dataset. In
the presence of biases and other errors in the forecast

model, it is possible to improve the time-averaged cli-
mate content of the analysis without equally significant
improvements in forecast. The full benefit of rainfall
and TPW assimilation cannot be gauged strictly in terms
of forecast skills or the 6-h analysis.

Diagnostics show that assimilating SSM/I GPROF
rain rates derived from the DMSP F10 and F11 satellites
improves the spatial and temporal distributions of clouds
and radiative fluxes in cloudy-sky regions, while assim-
ilating SSM/I TPW retrievals reduces low-level mois-
ture biases to improve the clear-sky longwave radiation
in the analysis. In our case study for December 1992,
using both data types leads to a 46% reduction in the
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FIG. 15. Impact of rainfall assimilation on precipitation with the observed rain rate assumed to be 50% of the SSM/I GPROF rain rate.
(a) Difference between the observed rain rate and precipitation from the control sampled at SSM/I observation locations. The contour interval
is 3 mm day21. (b) Same as (a) but for precipitation assimilation.

FIG. 16. Difference between NOAA OLR and OLR from the sensitivity experiment assimilating 50% of the SSM/I GPROF rain rate. The
contour interval is 25 W m22.
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spatial bias and 26% reduction in the error std dev in
the monthly mean OLR averaged between 208S and
208N relative to NOAA OLR measurements. Compar-
isons with the ISCCP cloud data suggest that assimi-
lating the SSM/I rain rates and TPW reduces the month-
ly mean error std dev in the total cloud fraction. This
is consistent with the reduced spatial bias and error std
dev in the monthly mean shortwave radiation at the
surface, compared with Pinker’s satellite–model esti-
mate.

By improving the latent heating distribution, rainfall
assimilation should improve the large-scale circulation
in the Tropics, which is difficult to verify given the
sparse wind observations in the Tropics. There are, how-
ever, indirect measures of the effect of rainfall assimi-
lation on the vertical motion field (and, by association,
the related horizontal divergent motions). In regions
away from detraining clouds, sinking motions reduce
the upper-tropospheric humidity through adiabatic de-
scent. A comparison of synthetic TOVS brightness tem-
peratures with the observed HIRS2 12 radiance shows
that rainfall assimilation reduces a moist UTH bias in
the analysis in areas away from large precipitation
changes. We interpret this drying to be associated with
an enhanced subsidence in response to an improved la-
tent heating field through rainfall assimilation. However,
the synthetic radiance study also suggests that rainfall
assimilation increases the bias and error std dev in UTH
in areas of reduced precipitation, which is a direct con-
sequence of the current moisture adjustment scheme de-
positing excessive moisture aloft. This procedure can
be improved by concentrating the moisture adjustment
in the lower troposphere. But a better long-term solution
is to combine the rainfall and TPW assimilation pro-
cedure with TOVS moisture assimilation. Since the
TOVS IR moisture channels are sensitive to UTH, they
are complementary to the SSM/I TPW retrieval, which
is sensitive to the moisture content in the lower tro-
posphere.

While precipitation and TPW assimilation signifi-
cantly improves the time-averaged analysis, its impact
on short-range forecast ranges from neutral to modest
improvements. The 6-h O–F statistics for tropical pre-
cipitation against SSM/I observations show less than
7% error std dev reductions in the first 12 h, which is
small compared with the 30%–40% reductions of the
error std dev in the 6-h averaged and monthly mean
assimilated precipitation. Although the O–F residual for
precipitation averaged over the Tropics is small, rainfall
assimilation further reduces the tropical-mean bias by
about 40% in forecasts beyond the first day. Rainfall
and TPW assimilation does not improve nor degrade
the monthly mean 6-h O–F statistics for winds and the
geopotential height against rawinsonde observations in
the Tropics. But the corresponding 6-h O–F statistics
for moisture suggest moistening in the middle and upper
troposphere, consistent with the synthetic radiance anal-
ysis.

Ensemble 5-day forecasts show that rainfall and TPW
assimilation can reduce the rms error in forecasts up to
4 days in the Tropics. Rainfall and TPW assimilation
does not lead to improved short-term forecasts in the
extratropics but it is equally significant that it does not
degrade the forecast while improving the time-averaged
assimilation fields.

This study shows that the 6-h average SSM/I-derived
precipitation estimate, despite uncertainties in its inten-
sity, provides valuable information on the spatial dis-
tribution of rainfall, which can be used to improve glob-
al analyses. Earlier studies by Krishnamurti (1984,
1991, 1993, 1994) on physical initialization have shown
that satellite-derived rain rate can be used to improve
nowcasting and 1-day forecasts, but the impact is sen-
sitive to the retrieved rainfall intensity. Since physical
initialization improves the analysis through an improved
forecast, this sensitivity is potentially an issue in satellite
data applications. An advantage of our 111D procedure
is that it uses observations to constrain the fields
throughout the assimilation cycle rather than just at the
initial time. The scheme is therefore not sensitive to
deficiencies in the model physics or retrieval algorithms.

In this work we have assumed that the observations
are perfect relative to the model estimates and that there
is no cross correlation between moisture and tempera-
ture. But the methodology developed in this study can
be extended to incorporate estimates of observation and
model errors for a multivariate 111D problem, as de-
scribed in section 2b. Results presented in this study
provide a useful baseline for evaluating the performance
of error covariance models in optimizing the IAU pa-
rameter estimate. Moreover, we have shown that sat-
ellite-derived rainfall and TPW data are useful for cor-
recting model physics and reducing systematic errors in
the assimilation fields. It may be possible to use this
information to identify or correct systematic errors in
the assimilation system. The improvements shown here
were obtained using observations from two SSM/I in-
struments. With the launch of the TRMM satellite,
which adds yet another microwave instrument with im-
proved resolution to the existing two DMSP SSM/I in-
struments, we are optimistic that rainfall and TPW as-
similation will be even more effective in improving the
quality of assimilated global datasets in the near future.
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