568 research outputs found

    Simulations of the latitudinal variability of CO-like and OCS-like passive tracers below the clouds of Venus using the Laboratoire de Météorologie Dynamique GCM

    Get PDF
    International audienceThe lower atmosphere of Venus below the clouds is a transitional region between the relatively calm lowermost scale height and the super-rotating atmosphere in the cloud region and above. Any observational constraint is then welcome to help in the development of general circulation models of Venus, a difficult task considering the thickness of its atmosphere. Starting from a state-of-the-art 3D Venus GCM [Lebonnois et al., 2010], we have included passive tracers in order to investigate the latitudinal variability of two minor gaseous species, carbonyl sulfide (OCS) and carbon monoxide (CO), whose vertical profiles and mixing ratios are known to vary with latitude between 30 and 40 km [Marcq et al., 2008]. The relaxation to chemical equilibrium is crudely parametrized through a vertically uniform timescale τ. A satisfactory agreement with available observations is obtained with 108 s ≲ τCO ≲ 5 * 108 s and 107 s ≲ τOCS ≲ 10 s. These results, in addition to validating the general circulation below the clouds, are also helpful in characterizing the chemical kinetics of Venus' atmosphere. This complements the much more sophisticated chemical models which focus more on thermodynamical equilibrium [Yung et al., 2009; Krasnopolsky, 2007]

    About the various contributions in Venus rotation rate and LOD

    Full text link
    % context heading (optional) {Thanks to the Venus Express Mission, new data on the properties of Venus could be obtained in particular concerning its rotation.} % aims heading (mandatory) {In view of these upcoming results, the purpose of this paper is to determine and compare the major physical processes influencing the rotation of Venus, and more particularly the angular rotation rate.} % methods heading (mandatory) {Applying models already used for the Earth, the effect of the triaxiality of a rigid Venus on its period of rotation are computed. Then the variations of Venus rotation caused by the elasticity, the atmosphere and the core of the planet are evaluated.} % results heading (mandatory) {Although the largest irregularities of the rotation rate of the Earth at short time scales are caused by its atmosphere and elastic deformations, we show that the Venus ones are dominated by the tidal torque exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation, these effects have a large amplitude of 2 minutes of time (mn). These variations of the rotation rate are larger than the one induced by atmospheric wind variations that can reach 25-50 seconds of time (s), depending on the simulation used. The variations due to the core effects which vary with its size between 3 and 20s are smaller. Compared to these effects, the influence of the elastic deformation cause by the zonal tidal potential is negligible.} % conclusions heading (optional), leave it empty if necessary {As the variations of the rotation of Venus reported here are of the order 3mn peak to peak, they should influence past, present and future observations providing further constraints on the planet internal structure and atmosphere.}Comment: 12 pages, 10 figures, Accepted in A&

    Titan's lakes chemical composition: sources of uncertainties and variability

    Full text link
    Between 2004 and 2007 the instruments of the CASSINI spacecraft discovered hydrocarbon lakes in the polar regions of Titan. We have developed a lake-atmosphere equilibrium model allowing the determination of the chemical composition of these liquid areas. The model is based on uncertain thermodynamic data and precipitation rates of organic species predicted to be present in the lakes and seas that are subject to spatial and temporal variations. Here we explore and discuss the influence of these uncertainties and variations. The errors and uncertainties relevant to thermodynamic data are simulated via Monte-Carlo simulations. Global Circulation Models (GCM) are also employed in order to investigate the possibility of chemical asymmetry between the south and the north poles, due to differences in precipitation rates. We find that mole fractions of compounds in the liquid phase have a high sensitivity to thermodynamic data used as inputs, in particular molar volumes and enthalpies of vaporization. When we combine all considered uncertainties, the ranges of obtained mole fractions are rather large (up to ~8500%) but the distributions of values are narrow. The relative standard deviations remain between 10% and ~300% depending on the compound considered. Compared to other sources of uncertainties and variability, deviation caused by surface pressure variations are clearly negligible, remaining of the order of a few percent up to ~20%. Moreover no significant difference is found between the composition of lakes located in north and south poles. Because the theory of regular solutions employed here is sensitive to thermodynamic data and is not suitable for polar molecules such as HCN and CH3CN, our work strongly underlines the need for experimental simulations and the improvement of Titan's atmospheric models.Comment: Accepted in Planetary and Space Scienc

    Net-Exchange parameterization of infrared radiative transfers in Venus' atmosphere

    Get PDF
    International audienceThermal radiation within Venus atmosphere is analyzed in close details. Prominent features are identified, which are then used to design a parameterization (a highly simplified and yet accurate enough model) to be used in General Circulation Models. The analysis is based on a net exchange formulation, using a set of gaseous and cloud optical data chosen among available referenced data. The accuracy of the proposed parameterization methodology is controlled against Monte Carlo simulations, assuming that the optical data are exact. Then, the accuracy level corresponding to our present optical data choice is discussed by comparison with available observations, concentrating on the most unknown aspects of Venus thermal radiation, namely the deep atmosphere opacity and the cloud composition and structure

    Density and temperatures of the upper martian atmosphere measured by stellar occultations with Mars Express SPICAM

    No full text
    International audienceWe present one Martian year of observations of the density and temperature in the upper atmosphere of Mars (between 60 and 130 km) obtained by the Mars Express ultraviolet spectrometer Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM). Six hundred sixteen profiles were retrieved using stellar occultations technique at various latitude and longitude. The atmospheric densities exhibit large seasonal fluctuations due to variations in the dust content of the lower atmosphere which controls the temperature and, thus, the atmospheric scale height, below 50 km. In particular, the year observed by SPICAM was affected by an unexpected dust loading around Ls = 130° which induced a sudden increase of density above 60 km. The diurnal cycle could not be analyzed in detail because most data were obtained at nighttime, except for a few occultations observed around noon during northern winter. There, the averaged midday profile is found to slightly differ from the corresponding midnight profile, with the observed differences being consistent with propagating thermal tides and variations in local solar heating. About 6% of the observed mesopause temperatures exhibits temperature below the CO2 frost point, especially during northern summer in the tropics. Comparison with atmospheric general circulation model predictions shows that the existing models overestimate the temperature around the mesopause (above 80 to 100 km) by up to 30 K, probably because of an underestimation of the atomic oxygen concentration which controls the CO2 infrared cooling
    corecore