8,689 research outputs found
On the Troll-Trust Model for Edge Sign Prediction in Social Networks
In the problem of edge sign prediction, we are given a directed graph
(representing a social network), and our task is to predict the binary labels
of the edges (i.e., the positive or negative nature of the social
relationships). Many successful heuristics for this problem are based on the
troll-trust features, estimating at each node the fraction of outgoing and
incoming positive/negative edges. We show that these heuristics can be
understood, and rigorously analyzed, as approximators to the Bayes optimal
classifier for a simple probabilistic model of the edge labels. We then show
that the maximum likelihood estimator for this model approximately corresponds
to the predictions of a Label Propagation algorithm run on a transformed
version of the original social graph. Extensive experiments on a number of
real-world datasets show that this algorithm is competitive against
state-of-the-art classifiers in terms of both accuracy and scalability.
Finally, we show that troll-trust features can also be used to derive online
learning algorithms which have theoretical guarantees even when edges are
adversarially labeled.Comment: v5: accepted to AISTATS 201
Simplifying one-loop amplitudes in superstring theory
We show that 4-point vector boson one-loop amplitudes, computed in ref.[1] in
the RNS formalism, around vacuum configurations with open unoriented strings,
preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward
identities, in that they vanish for non MHV configurations (++++) and (-+++).
In the MHV case (--++) we drastically simplify their expressions. We then study
factorisation and the limiting IR and UV behaviour and find some unexpected
results. In particular no massless poles are exposed at generic values of the
modular parameter. Relying on the supersymmetric properties of our bosonic
amplitudes, we extend them to manifestly supersymmetric super-amplitudes and
compare our results with those obtained in the D=4 hybrid formalism, pointing
out difficulties in reconciling the two approaches for contributions from N=1,2
sectors.Comment: 38 pages plus appendice
Un-oriented Quiver Theories for Majorana Neutrons
In the context of un-oriented open string theories, we identify quivers
whereby a Majorana mass for the neutron is indirectly generated by exotic
instantons. We discuss two classes of (Susy) Standard Model like quivers,
depending on the embedding of SU(2)_W in the Chan-Paton group. In both cases,
the main mechanism involves a vector-like pair mixing through a
non-perturbative mass term. We also discuss possible relations between the
phenomenology of Neutron-Antineutron oscillations and LHC physics in these
models. In particular, a vector-like pair of color-triplet scalars or
color-triplet fermions could be directly detected at LHC, compatibly with
n-\bar{n} limits. Finally we briefly comment on Pati-Salam extensions of our
models.Comment: More comments on phenomenology and fluxes, Re-discussion of
SM-quivers compatible with n-cycles conditions Version accepted by JHE
Stringy instanton corrections to N=2 gauge couplings
We discuss a string model where a conformal four-dimensional N=2 gauge theory
receives corrections to its gauge kinetic functions from "stringy" instantons.
These contributions are explicitly evaluated by exploiting the localization
properties of the integral over the stringy instanton moduli space. The model
we consider corresponds to a setup with D7/D3-branes in type I' theory
compactified on T4/Z2 x T2, and possesses a perturbatively computable heterotic
dual. In the heteoric side the corrections to the quadratic gauge couplings are
provided by a 1-loop threshold computation and, under the duality map, match
precisely the first few stringy instanton effects in the type I' setup. This
agreement represents a very non-trivial test of our approach to the exotic
instanton calculus.Comment: 63 pages, 5 figures. V2: final version with minor corrections
published on JHEP05(2010)10
Growth limitation of marine fish by low iron availability in the open ocean
Unidad de excelencia María de Maeztu MdM-2015-0552It is well-established that phytoplankton growth can be limited by the vanishingly low concentrations of dissolved iron found in large areas of the open ocean. However, the availability of iron is not typically considered an important factor in the ecology of marine animals, including fish. Here, we compile observations to show that the iron contents of lower trophic level organisms in iron-limited regions can be an order of magnitude less than the iron contents of most fish. Although this shortfall could theoretically be overcome if iron assimilation rates were very high in fish, observations suggest this is not the case, consistent with the high recommended iron contents for mariculture feed. In addition, we highlight two occurrences among fish living in iron-poor regions that would conceivably be beneficial given iron scarcity: the absence of hemoglobin in Antarctic icefish, and the anadromous life history of salmon. Based on these multiple lines of evidence, we suggest that the iron content of lower trophic level organisms can be insufficient to support many fish species throughout their life cycles in iron-poor oceanic regions. We then use a global satellite-based estimate of fishing effort to show that relatively little fishing activity occurs in high nitrate low chlorophyll (HNLC) regions, the most readily identified iron-poor domains of the ocean, particularly when compared to satellite-based estimates of primary production and the observed mesozooplankton biomass in those waters. The low fishing effort is consistent with a low abundance of epipelagic fish in iron-limited regions, though other factors are likely to contribute as well. Our results imply that the importance of iron nutrition extends well beyond plankton and plays a role in the ecology of large marine animals
Phenomenological analysis of D-brane Pati-Salam vacua
In the present work we perform a phenomenological analysis of the effective
low energy models with Pati-Salam (PS) gauge symmetry derived in the context of
D-branes. A main issue in these models arises from the fact that the
right-handed fermions and the PS-symmetry breaking Higgs field transform
identically under the PS symmetry, causing unnatural matter-Higgs mixing
effects. We argue that this problem could be solved in particular D-brane
setups where these fields arise in different intersections. We further observe
that whenever a large Higgs mass term is generated in a particular class of
mass spectra, a splitting mechanism -reminiscent of the doublet triplet
splitting- may protect the neutral Higgs components from a heavy mass term. We
analyze the implications of each individual representation which in principle
is available in these models in order to specify the minimal spectrum required
to build up a consistent PS model which reconciles the low energy data. A short
discussion is devoted on the effects of stringy instanton corrections,
particularly those generating missing Yukawa couplings and contributing to the
fermion mass textures. We discuss the correlations of the intersecting D-brane
spectra with those obtained from Gepner constructions and analyze the
superpotential, the resulting mass textures and the low energy implications of
some examples of the latter along the lines proposed above.Comment: 50 pages, 3 figures (v2 - Minor corrections
New light on gamma-ray burst host galaxies with Herschel
Until recently, dust emission has been detected in very few host galaxies of
gamma-ray bursts (GRBHs). With Herschel, we have now observed 17 GRBHs up to
redshift z~3 and detected seven of them at infrared (IR) wavelengths. This
relatively high detection rate (41%) may be due to the composition of our
sample which at a median redshift of 1.1 is dominated by the hosts of dark
GRBs. Although the numbers are small, statistics suggest that dark GRBs are
more likely to be detected in the IR than their optically-bright counterparts.
Combining our IR data with optical, near-infrared, and radio data from our own
datasets and from the literature, we have constructed spectral energy
distributions (SEDs) which span up to 6 orders of magnitude in wavelength. By
fitting the SEDs, we have obtained stellar masses, dust masses, star-formation
rate (SFR), and extinctions for our sample galaxies. We find that GRBHs are
galaxies that tend to have a high specfic SFR (sSFR), and like other
star-forming galaxies, their ratios of dust-to-stellar mass are well correlated
with sSFR. We incorporate our Herschel sample into a larger compilation of
GRBHs, and compare this combined sample to SFR-weighted median stellar masses
of the widest, deepest galaxy survey to date. This is done in order to
establish whether or not GRBs can be used as an unbiased tracer of cosmic
comoving SFR density (SFRD) in the universe. In contrast with previous results,
this comparison shows that GRBHs are medium-sized galaxies with relatively high
sSFRs; stellar masses and sSFRs of GRBHs as a function of redshift are similar
to what is expected for star-forming galaxy populations at similar redshifts.
We conclude that there is no strong evidence that GRBs are biased tracers of
SFRD; thus they should be able to reliably probe the SFRD to early epochs.Comment: 18 pages, 9 figures, accepted for publication in A&A. Revised to
include Fig. 6, mistakenly omitted in origina
D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories
Systems of D3-branes at orientifold singularities can receive
non-perturbative D-brane instanton corrections, inducing field theory operators
in the 4d effective theory. In certain non-chiral examples, these systems have
been realized as the infrared endpoint of a Seiberg duality cascade, in which
the D-brane instanton effects arise from strong gauge theory dynamics. We
present the first UV duality cascade completion of chiral D3-brane theories, in
which the D-brane instantons arise from gauge theory dynamics. Chiral examples
are interesting because the instanton fermion zero mode sector is topologically
protected, and therefore lead to more robust setups. As an application of our
results, we provide a UV completion of certain D-brane orientifold systems
recently claimed to produce conformal field theories with conformal invariance
broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references
adde
Cystic fibrosis bone disease: Pathophysiology, assessment and prognostic implications.
Cystic fibrosis bone disease (CFBD) is a common long-term complication of cystic fibrosis (CF) that can lead to increased fractures and significant morbidity and mortality in this patient population. CFBD pathophysiology remains poorly understood and is likely to be multifactorial. There are limited studies evaluating diagnostic tools and tests to guide therapeutic decisions and monitoring of CFBD. This review will present and discuss the current evidence
The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy
Like other body districts, lungs present a complex bacteria community. An emerging function of lung microbiota is to promote and maintain a state of immune tolerance, to prevent uncontrolled and not desirable inflammatory response caused by inhalation of harmless environmental stimuli. This effect is mediated by a continuous dialog between commensal bacteria and immune cells resident in lungs, which express a repertoire of sensors able to detect microorganisms. The same receptors are also involved in the recognition of pathogens and in mounting a proper immune response. Due to its important role in preserving lung homeostasis, the lung microbiota can be also considered a mirror of lung health status. Indeed, several studies indicate that lung bacterial composition drastically changes during the occurrence of pulmonary pathologies, such as lung cancer, and the available data suggest that the modifications of lung microbiota can be part of the etiology of tumors in lungs and can influence their progression and response to therapy. These results provide the scientific rationale to analyze lung microbiota composition as biomarker for lung cancer and to consider lung microbiota a new potential target for therapeutic intervention to reprogram the antitumor immune microenvironment. In the present review, we discussed about the role of lung microbiota in lung physiology and summarized the most relevant data about the relationship between lung microbiota and cancer
- …