17 research outputs found

    Warming reduces both photosynthetic nutrient use efficiency and water use efficiency in Mediterranean shrubsWarming reduces nutrient use efficiency

    Get PDF
    [EN] The ratio between net photosynthetic rates and the foliar contents of essential plant macronutrients (N, P, K) is termed photosynthetic nutrient use efficiency (PNutUE). A universal trade-off exists whereby plants cannot maximize their PNutUE and their intrinsic water use efficiency (WUEi, carbon gain per unit water spent) simultaneously, because any increase in intercellular CO2 concentration (ci) through a greater stomatal opening would increase PNutE but also enhances transpiration and therefore decreases WUEi. Rising temperatures associated with climate change can result in large decreases in WUEi in semiarid shrubs through photosynthetic machinery impairment and enhanced stomatal conductance and transpiration, but we know remarkably little about the influence of warming and drought on PNutUE and its interplay with WUEi in dryland vegetation. Using a 6-year (2011–2017) manipulative field experiment, we examined the effects of warming (2.5ºC, W), rainfall reduction (30%, RR), and their combination (W+RR) on the photosynthetic use efficiency of three essential nutrients (PNUE, PPUE and PKUE) and on WUEi in three shrub species growing at two semiarid shrublands for the years 2015–2017. Across species, warming (W and W+RR) reduced PNUE by 42.9%, PPUE by 43.8% and PKUE by 41.5% on average relative to shrubs growing under ambient temperatures, whereas RR did not significantly affect their PNutUE. These drastic reductions in PNutUE with warming were mainly driven by non-stomatal and largely non-nutritional decreases in net photosynthetic rates, which were almost halved in warmed shrubs. The photosynthetic use efficiencies of N, P and K were inversely related to foliar δ13C, a proxy for time integrated WUEi, in both ambient (control and RR) and warmed (W and W+RR) shrubs, but with significantly smaller slopes and intercepts for warmed shrubs. Thus, plants achieve a smaller gain in PNutUE for any given increase in stomatal conductance (and reduction in WUEi) under warmer climatic conditions. The strong negative impact of warming on PNutE, along with the warming-induced shift in the trade-off between PNutUE and WUEi, could be indicative of an increasing inability of native plants to cope with warmer conditions, with dire implications for dryland vegetation productivity and survival under climate change.S

    Ecosystem stability at the landscape scale is primarily associated with climatic history

    Get PDF
    There is an increasing interest in landscape-scale perspectives of ecosystem functioning to inform policy and conservation decisions. However, we need a better understanding of the stability of ecosystem functioning (e.g. plant productivity) at the landscape scale to inform policy around topics such as global food security. We investigate the role of the ecological and environmental context on landscape-scale stability of plant productivity in agricultural pasture using remotely sensed enhanced vegetation index data. We determine whether four measures of stability (variability, magnitude of extreme anomalies, recovery time and recovery rate) are predicted by (a) species richness of vascular plants, (b) regional land cover heterogeneity and (c) climatic history. Stability of plant productivity was primarily associated with climatic history, particularly a history of extreme events. These effects outweighed any positive effects of species richness in the agricultural landscape. A history of variable and extreme climates both increased and decreased contemporary ecosystem stability, suggesting both cumulative and legacy effects, whereas land cover heterogeneity had no effect on stability. The landscape scale is a relevant spatial scale for the management of an ecosystem's stability. At this scale, we find that past climate is a stronger driver of stability in plant productivity than species richness, differing from results at finer field scales. Management should take an integrated approach by incorporating the environmental context of the landscape, such as its climatic history, and consider multiple components of stability to maintain functioning in landscapes that are particularly vulnerable to environmental change

    Methods and approaches to advance soil macroecology

    Get PDF
    Motivation and aim Soil biodiversity is central to ecosystem function and services. It represents most of terrestrial biodiversity and at least a quarter of all biodiversity on Earth. Yet, research into broad, generalizable spatial and temporal patterns of soil biota has been limited compared to aboveground systems due to complexities of the soil system. We review the literature and identify key considerations necessary to expand soil macroecology beyond the recent surge of global maps of soil taxa, so that we can gain greater insight into the mechanisms and processes shaping soil biodiversity. We focus primarily on three groups of soil taxa (earthworms, mycorrhizal fungi and soil bacteria) that represent a range of body sizes and ecologies, and, therefore, interact with their environment at different spatial scales. Results The complexities of soil, including fine-scale heterogeneity, 3-D habitat structure, difficulties with taxonomic delimitation, and the wide-ranging ecologies of its inhabitants, require the classical macroecological toolbox to be expanded to consider novel sampling, molecular identification, functional approaches, environmental variables, and modelling techniques. Main conclusions Soil provides a complex system within which to apply macroecological research, yet, it is this property that itself makes soil macroecology a field ripe for innovative methodologies and approaches. To achieve this, soil-specific data, spatio-temporal, biotic, and abiotic considerations are necessary at all stages of research, from sampling design to statistical analyses. Insights into whole ecosystems and new approaches to link genes, functions and diversity across spatial and temporal scales, alongside methodologies already applied in aboveground macroecology, invasion ecology and aquatic ecology, will facilitate the investigation of macroecological processes in soil biota, which is key to understanding the link between biodiversity and ecosystem functioning in terrestrial ecosystems

    LAS TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN EN LA EDUCACIÓN LATINOAMERICANA: MODELOS Y TENDENCIAS DE USO

    Get PDF
    LAS TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN EN LA EDUCACIÓN LATINOAMERICANA: MODELOS Y TENDENCIAS DE USO   COLECCIÓN RESULTADO DE INVESTIGACIÓN   Primera Edición 2021 Vol. 1   Editorial EIDEC Sello   Editorial EIDEC (978-958-53018) NIT 900583173-1   ISBN: 978-958-53018-7-0 Formato: Digital PDF (Portable Document Format) DOI REPOSITORIO: https://doi.org/10.34893/1hfp-y566 Publicación: Colombia Fecha Publicación: 2021-05-31   Coordinación Editorial Escuela Internacional de Negocios y Desarrollo Empresarial de Colombia – EIDEC Instituto Tolimense de Formación Técnica Profesional - ITFIP.  Colombia Centro de Investigación Científica, Empresarial y Tecnológica de Colombia – CEINCET Red de Investigación en Educación, Empresa y Sociedad – REDIEES   Revisión y pares evaluadores Centro de Investigación Científica, Empresarial y Tecnológica de Colombia – CEINCET Red de Investigación en Educación, Empresa y Sociedad – REDIEES   Entidad Financiadora Instituto Tolimense de Formación Técnica Profesional - ITFIP.  Colombia AUTORES   Ana Angélica Casara Palivoda Wilske[1], Ana Belem Soberanes-Martín[2], Anthony Bautista-Pariona [3], Armando Guillermo Antúnez Sánchez[4], Brenda Luz Colorado Aguilar[5], Bruno Eliseo Ramírez Rengifo  [6],   Catalina Rondón Oyuela[7], Cindy Jiménez-Picado[8], Fernando Pari-Tito[9], Edgar de Jesús Ramírez Ramírez[10] Fredery Fabían Polanias Soto[11], Gloria Concepción Tenorio-Sepúlveda[12], Irma Pianucci[13], José Cabrejo-Paredes[14], Juan Zarate-Yépez[15], Karla Yanitzia Artavia-Díaz[16], Libardo Cartagena[17],   Lupe Esther Graus Cortez[18], María Guadalupe Ñeco Reyna[19], María Guadalupe Venteño Jaramillo[20], María Laura Manzi[21], Marta Tenutto Soldevilla[22], Melissa Rivera Guzmán[23], Nayibe Soraya Sánchez León[24], Osbaldo Turpo-Gebera[25], Raúl Alberto Irigoyen[26], Roció Diaz Zavala[27], Tanya Lizeth Báez Jiménez [28], Yolanda Coral Martínez Dorado[29] , Yudi Castro Blanco[30] Yusselfy Márquez Benítez[31]     [1]Estudiante de maestría en Prácticas Transculturales - UNIFACVEST / Brasil / Santa Catarina. Especialista en educación especial. Licenciada en Letras. [2]Licenciada en Sistemas de Computación Administrativa, Universidad del Valle de México, Maestra en Educación, Universidad de las Américas, Doctora en Ciencias de la Educación, Colegio de Estudios de Posgrado de la Ciudad de México. Profesora de Tiempo Completo, Universidad Autónoma del Estado de México, correo electrónico: [email protected]. [3]Pregrado, Universidad Nacional del Santa, Médico Cirujano, Universidad Nacional del Santa, correo electrónico:  [email protected]. [4] Docente de Pregrado y Posgrado en la Universidad de Granma, Cuba, [email protected] [5]Doctorado en sistemas y ambientes educativos, Universidad Veracruzana, Profesor-investigador en la Benemérita Escuela Normal Veracruzana “Enrique C. Rébsamen”, [email protected] [6] Ingeniero agrónomo, Universidad del Tolima. Magister en Administración y Dirección de Empresas MBA, UNIR de la Rioja España.   Docente, Instituto Tolimense de Formación Técnica Profesional ITFIP, Espinal Tolima, Colombia. Docente de tiempo completo, [email protected] [7] Tecnóloga en Gestión Informática. Instituto Tolimense de Formación Técnica Profesional ITFIP, Espinal Tolima, Colombia, Estudiante de Ingeniería de sistemas, [email protected] [8]Graduada en Enseñanza de Inglés y Negocios Internacionales, Maestrando en Administración con énfasis en Gerencia de Proyectos, Universidad Estatal a Distancia (UNED), Investigadora y Docente, UNED, [email protected]. [9] Investigador Junior, Universidad Nacional de San Agustín de Arequipa, correo electrónico: [email protected] [10] Estudiante de doctorado en Educación, de la Universidad San Buenaventura, Cali. Docente de inglés de la IE. Agustín Nieto Caballero, en Cali. [email protected] [11] Doctor en robótica y automatización. Ingeniero Electrónico.  Actualmente docente de catedra del ITFIP, [email protected] [12] Licenciada en informática administrativa, Universidad Tecnológica Americana, Maestra en Tecnología Educativa, Tecnológico de Monterrey, Profesora investigadora, Tecnológico Nacional de México / Tes de Chalco, correo electrónico: [email protected] [13] Lic. en Cs. de la Computación, Universidad Nacional de San Luis, Especialista en Entornos Virtuales de Aprendizaje, OEI, Prof. Adjunto, Universidad Nacional de San Luis, correo electrónico: [email protected] [14] Pregrado, Universidad Nacional de Trujillo, Posgrado, Universidad Nacional de Trujillo, Docente Universitario, Universidad Nacional de Trujillo, correo electrónico: [email protected]. [15] Tesista de posgrado, Universidad Nacional de San Agustín de Arequipa, correo electrónico: [email protected] [16]Graduada en Docencia, Universidad San Marcos (USAM), Máster en Administración de negocios con énfasis en Gerencia de Proyectos, Universidad Estatal a Distancia (UNED), Investigadora y Gestora de proyectos, UNED, [email protected] [17]Ingeniero Electrónico, Universidad Antonio Nariño, Magister en Ingeniería Universidad Libre Bogotá, Magister en Gestión de Proyectos Tecnológicos Universidad Internacional de la Rioja “UNIR”. Ocupación: docente, Instituto Tolimense de Formación Técnica Profesional “ITFIP”, correo electrónico: [email protected]. [18] Magister en Educación de la Universidad del Tolima. Licenciada en Ciencias Sociales Universidad de Cundinamarca UEDC.  Actualmente Vicerrectora Académica del Instituto Tolimense de Formación Técnica Profesional ITFIP del Espinal Tol. [email protected]. [19] PhD. En Educación. Mención en Estudios Interculturales. Universidad Nacional de Educación a Distancia-UNED-Madrid- España. - Universidad Veracruzana- Docente. Red Iberoamericana de Estudios Interculturales e Interdisciplinarios. ORCID: org/0000-1915-386X  GOOGLE ACADEMICO: http://mariagpe.edu/%C3%B1eco Correo electrónico Institucional: [email protected]  Correo electrónico Personal: [email protected] [20]  Dra. En Economía, Especialidad en Ciencias, Tecnología e Innovación – Posgrado. UNAM Docente – UNAM. Facultad de Filosofía en Letras. Red Iberoamericana de Estudios interculturales e Interdisciplinarios. ORCID: 0000-0003-4832-6221 GOOGLE ACADEMICO: https://scholar.google.com.mx/citations?user=wd9SXaMAAAAJ&hl=en [21] Lic. en Psicología, Universidad de Palermo, Profesora universitaria, Universidad de Palermo, Diploma superior en Gestión educativa (FLACSO), docente de Universidad Favaloro y Universidad de Palermo, correo electrónico: [email protected] [22] Dra. de educación (UNL, UNSam, UnSam, Mgter. y Espec. en educación (UdeSA), Lic. en Psicología (UBA), Lic. y profesora (UM), docente de UNLaM, UNM, Dir. de Esp. en Docencia Universitaria con Orientación. Cs Agr. (UNR), coordinadora del doctorado intensivo (UP) correo electrónico: [email protected] [23]  Ingeniera de Sistemas, Instituto Tolimense de Formación Técnica Profesional ITFIP, Espinal Tolima, Colombia. Docente Catedrática, [email protected] [24] Ingeniera de sistemas, Universidad Antonio Nariño. Magister en E-learning y Redes Sociales, UNIR de la Rioja España.   Docente, Instituto Tolimense de Formación Técnica Profesional ITFIP, Espinal Tolima, Colombia. Docente de tiempo completo,  [email protected] [25] Docente - Investigador, Universidad Nacional de San Agustín de Arequipa, correo electrónico: [email protected] [26] Maestrando en Educación, Universidad Nacional de la Matanza (UNLaM), Lic. en Gestión Educativa (UNLaM), docente de (UNLaM), Universidad Favaloro y de AMIT, correo electrónico: [email protected] [27] Docente, Universidad Nacional de San Agustín de Arequipa, correo electrónico: [email protected] [28] Licenciatura en Educación Preescolar, Benemérita Escuela Normal Veracruzana “Enrique C. Rébsamen”, Egresada de la Licenciatura en Educación Preescolar, [email protected] [29] Doctora en Pedagogía. Profesora Titular y Líder del Grupo de Investigación “Gestión del Conocimiento para la Innovación Educativa” en la Escuela Normal Superior Oficial de Guanajuato, México. [email protected] [30] Docente de Pregrado y Posgrado en la Universidad de Granma, Cuba, [email protected] [31] Bacterióloga y Laboratorista Clínico, Universidad Colegio Mayor de Cundinamarca, Magister en Educación, Universidad de Pamplona N.S. Docente Investigador Universitario, Universidad de Boyacá. correo electrónico: [email protected]   Coordinadores editoriales   Mg. Nayibe Soraya Sánchez León - Colombia Instituto Tolimense de Formación Técnica Profesional - ITFIP.  Colombia   Mg. Yohanna Milena Rueda Mahecha Editorial EIDEC   Dr. Cesar Augusto Silva Giraldo Centro de Investigación Científica, Empresarial y Tecnológica de Colombia – CEINCET – Colombia. Red de Investigación en Educación, Empresa y Sociedad – REDIEES – Colombia.   Editores literarios   PhD. José Hugo Cornejo Martin del Campo - México PhD. Eva Margarita Godínez López - México PhD. Hugo Heriberto Morales del Valle - México Lic. Bertha Amelia Soria Zendejas - México Maestro Tiburcio López Macías - México Mg. Nayibe Soraya Sánchez León - Colombia   El libro LAS TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN EN LA EDUCACIÓN LATINOAMERICANA: MODELOS Y TENDENCIAS DE USO, esta publicado bajo la licencia de Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) Internacional (https://creativecommons.org/licenses/by-nc/4.0/deed.es). Esta licencia permite copiar, adaptar, redistribuir y reproducir el material en cualquier medio o formato, con fines no comerciales, dando crédito al autor y fuente original, proporcionando un enlace de la licencia de Creative Commons e indicando si se han realizado cambios. Licencia: CC BY-NC 4.0. NOTA EDITORIAL: Las opiniones y los contenidos de los resúmenes publicados en el libro LAS TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN EN LA EDUCACIÓN LATINOAMERICANA: MODELOS Y TENDENCIAS DE USO.  Son de responsabilidad exclusiva de los autores; así mismo, éstos se responsabilizarán de obtener el permiso correspondiente para incluir material publicado por parte de la Editorial EIDEC y la entidad financiadora de la publicación Instituto Tolimense de Formación Técnica Profesional - ITFIP.&nbsp

    Altered leaf elemental composition with climate change is linked to reductions in photosynthesis, growth and survival in a semi‐arid shrubland

    Get PDF
    1. Climate change will increase heat and drought stress in many dryland areas, which could reduce soil nutrient availability for plants and aggravate nutrient limitation of primary productivity. Any negative impacts of climate change on foliar nutrient contents would be expected to negatively affect the photosynthetic capacity, water use efficiency and overall fitness of dryland vegetation. 2. We conducted a 4‐year manipulative experiment using open top chambers and rainout shelters to assess the impacts of warming (~2°C, W), rainfall reduction (~30%, RR) and their combination (W + RR) on the nutrient status and ecophysiological performance of six native shrub species of contrasting phylogeny in a semi‐arid ecosystem. Leaf nutrient status and gas exchange were assessed yearly, whereas biomass production and survival were measured at the end of the study. 3. Warming (W and W + RR) advanced shoot growth phenology and reduced foliar macro‐ (N, P, K) and micronutrient (Cu, Fe, Zn) concentrations (by 8%–18% and 14%–56% respectively), net photosynthetic rate (32%), above‐ground biomass production (28%–39%) and survival (23%–46%). Decreased photosynthesis and growth in W and W + RR plants were primarily linked to enhanced nutritional constraints on carbon fixation. Poor leaf nutrient status in W and W + RR plants partly decoupled carbon assimilation from water flux and led to drastic reductions in water use efficiency (WUEi; ~41%) across species. The RR treatment moderately decreased foliar macro‐ and micronutrients (6%–17%, except for Zn) and biomass production (22%). The interactive impacts of warming and rainfall reduction (W + RR treatment) on plant performance were generally smaller than expected from additive single‐factor effects. 4. Synthesis. Large decreases in plant nutrient pool size and productivity combined with increased mortality during hotter droughts will reduce vegetation cover and nutrient retention capacity, thereby disrupting biogeochemical processes and accelerating dryland degradation with impending climate change. Increased macro‐ and micronutrient co‐limitation of photosynthesis with forecasted climate change conditions may offset any gains in WUEi and productivity derived from anthropogenic CO2 elevation, thereby increasing dryland vegetation vulnerability to drought stress in a warmer and drier climate. The generalized reduction in leaf nutrient contents with warming compromises plant nutritional quality for herbivores, with potential cascading negative effects across trophic levels.This study was supported by the Spanish Ministerio de Economía y Competitividad (projects CGL2010‐21064, CGL2013‐48753‐R and CGL2013‐44661‐R co‐funded by European Union FEDER funds), Fundación Séneca (19477/PI/14) and the European Research Council (ERC Grant agreements 242658 [BIOCOM] and 647038 [BIODESERT]). L.L.‐S. and I.P. acknowledge support from the JAE‐CSIC and Juan de la Cierva Programs (FPDI‐2013‐16221) respectively

    Data from: Poor plant performance under simulated climate change is linked to mycorrhizal responses in a semiarid shrubland

    No full text
    1.Warmer and drier conditions associated with ongoing climate change will increase abiotic stress for plants and mycorrhizal fungi in drylands worldwide, thereby potentially reducing vegetation cover and productivity and increasing the risk of land degradation and desertification. Rhizosphere microbial interactions and feedbacks are critical processes that could either mitigate or aggravate the vulnerability of dryland vegetation to forecasted climate change. 2.We conducted a four-year manipulative study in a semiarid shrubland in the Iberian Peninsula to assess the effects of warming (~2.5°C; W), rainfall reduction (~30%; RR) and their combination (W+RR) on the performance of native shrubs (Helianthemum squamatum) and their associated mycorrhizal fungi. 3.Warming (W and W+RR) decreased the net photosynthetic rates of H. squamatum shrubs by ~31% despite concurrent increases in stomatal conductance (~33%), leading to sharp decreases (~50%) in water use efficiency. Warming also advanced growth phenology, decreased leaf nitrogen and phosphorus contents per unit area, reduced shoot biomass production by ~36% and decreased survival during a dry year in both W and W+RR plants. Plants under RR showed more moderate decreases (~10-20%) in photosynthesis, stomatal conductance and shoot growth. 4.Warming, RR and W+RR altered ectomycorrhizal fungal (EMF) community structure and drastically reduced the relative abundance of EMF sequences obtained by high-throughput sequencing, a response associated with decreases in the leaf nitrogen, phosphorus and dry matter contents of their host plants. In contrast to EMF, the community structure and relative sequence abundances of other non-mycorrhizal fungal guilds were not significantly affected by the climate manipulation treatments. 5.Synthesis: Our findings highlight the vulnerability of both native plants and their symbiotic mycorrhizal fungi to climate warming and drying in semiarid shrublands, and point to the importance of a deeper understanding of plant-soil feedbacks to predict dryland vegetation responses to forecasted aridification. The interdependent responses of plants and ectomycorrhizal fungi to warming and rainfall reduction may lead to a detrimental feedback loop on vegetation productivity and nutrient pool size, which could amplify the adverse impacts of forecasted climate change on ecosystem functioning in EMF-dominated drylands

    Data from: Poor plant performance under simulated climate change is linked to mycorrhizal responses in a semiarid shrubland

    No full text
    1.Warmer and drier conditions associated with ongoing climate change will increase abiotic stress for plants and mycorrhizal fungi in drylands worldwide, thereby potentially reducing vegetation cover and productivity and increasing the risk of land degradation and desertification. Rhizosphere microbial interactions and feedbacks are critical processes that could either mitigate or aggravate the vulnerability of dryland vegetation to forecasted climate change. 2.We conducted a four-year manipulative study in a semiarid shrubland in the Iberian Peninsula to assess the effects of warming (~2.5°C; W), rainfall reduction (~30%; RR) and their combination (W+RR) on the performance of native shrubs (Helianthemum squamatum) and their associated mycorrhizal fungi. 3.Warming (W and W+RR) decreased the net photosynthetic rates of H. squamatum shrubs by ~31% despite concurrent increases in stomatal conductance (~33%), leading to sharp decreases (~50%) in water use efficiency. Warming also advanced growth phenology, decreased leaf nitrogen and phosphorus contents per unit area, reduced shoot biomass production by ~36% and decreased survival during a dry year in both W and W+RR plants. Plants under RR showed more moderate decreases (~10-20%) in photosynthesis, stomatal conductance and shoot growth. 4.Warming, RR and W+RR altered ectomycorrhizal fungal (EMF) community structure and drastically reduced the relative abundance of EMF sequences obtained by high-throughput sequencing, a response associated with decreases in the leaf nitrogen, phosphorus and dry matter contents of their host plants. In contrast to EMF, the community structure and relative sequence abundances of other non-mycorrhizal fungal guilds were not significantly affected by the climate manipulation treatments. 5.Synthesis: Our findings highlight the vulnerability of both native plants and their symbiotic mycorrhizal fungi to climate warming and drying in semiarid shrublands, and point to the importance of a deeper understanding of plant-soil feedbacks to predict dryland vegetation responses to forecasted aridification. The interdependent responses of plants and ectomycorrhizal fungi to warming and rainfall reduction may lead to a detrimental feedback loop on vegetation productivity and nutrient pool size, which could amplify the adverse impacts of forecasted climate change on ecosystem functioning in EMF-dominated drylands

    Dataset for León-Sánchez et al. Journal of Ecology

    No full text
    Data was collected in a field climate change simulation experiment in Aranjuez, in central Spain (40°02′N–3°32′W, 495 m altitude). The dataset includes leaf gas exchange measurements, isotopic C composition, leaf nutrients (P, N), leaf morphological traits, plant biomass, plant survival and mycorrhizal fungi relative abundances

    What have biological records ever done for us? A systematic scoping review

    No full text
    Biological records provide biodiversity information over large spatial and temporal scales.  Our systematic scoping review of biological records from the well-recorded region of the United Kingdom (UK) and Ireland revealed that over half of all studies using biological records were studying species distributions (134 of 253 studies) and/or temporal trends (139 of 253 studies).  A minority of studies (61 of 253) focused on methodological questions, while most studies used biological records with existing methods as tools for answering biological and ecological questions.  However, only 31 of 253 studies tested models using independent data.  Most studies (154 of 253) integrated multiple biological records datasets, showing that biological records hold a largely untapped potential for independently testing conclusions by withholding some of those datasets for use as independent test data.  Our results provide guidance for data providers and researchers interested in more effectively collecting and using biological records
    corecore